Appendix C # Summary of Major Metallogenic Belts in Northeast Asia (the Russian Far East, Yakutia, Siberia, Transbaikalia, Northern China, Mongolia, South Korea, and Japan) By Sergey M. Rodionov¹, Alexander A. Obolenskiy², Elimir G. Distanov², Gombosuren Badarch³, Gunchin Dejidmaa⁴, Duk Hwan Hwang⁵, Alexander I. Khanchuk⁶, Masatsugu Ogasawara⁷, Warren J. Nokleberg⁶, Leonid M. Parfenov⁶, Andrei V. Prokopiev⁶, Zhan V. Seminskiy¹⁰, Alexander P. Smelov⁶, Hongquan Yan¹¹, Yuriy V. V. Davydov ⁶, Valeriy Yu. Fridovskiy¹², Gennandiy N. Gamyanin⁶, Ochir Gerel¹³, Alexei V. Kostin⁶, Sergey A. Letunov¹⁴, Xujun Li¹¹, Valeriy M. Nikitin¹², Vladimir V. Ratkin⁶, Vladimir I. Shpikerman¹⁵, Sadahisa Sudo⁷, Vitaly I. Sotnikov², Alexander V. Spiridonov¹⁴, Vitaly A. Stepanov¹⁶, Fengyue Sun¹¹, Jiapeng Sun¹¹, Weizhi Sun¹¹, Valeriy M. Supletsov⁶, Vladimir F. Timofeev⁶, Oleg A. Tyan⁶, Valeriy G. Vetluzhskikh⁶, Koji Wakita⁷, Yakov V. Yakovlev⁶, and Lydia M. Zorina¹⁴ ¹ Russian Academy of Sciences, Yakutsk. ² Mongolian Academy of Sciences, Ulaanbaatar. ³ Russian Academy of Sciences, Novosibirsk. ⁴ Korean Institute of Geosciences and Mineral Resources, Taejon. ⁵ Russian Academy of Sciences, Vladivostok. ⁶ Russian Academy of Sciences, Irkutsk. ⁷ U.S. Geological Survey, Menlo Park, Calif. ⁸ Geological Survey of Japan/AIST, Tsukuba. ⁹ Russian Academy of Sciences, Khabarovsk. ¹⁰ Jilin University, Changchun, People's Republic of China. ¹¹ Jilin University, Changchun. ¹² Yakutian State University, Yakutsk. ¹³ Mongolian University of Science and Technology, Ulaanbaatar. ¹⁴ Russian Academy of Sciences, Irkutsk. ¹⁵ Russian Academy of Sciences, Magadan. ¹⁶ Russian Academy of Sciences, Blagoveschensk. Appendix C. Summary of Major Metallogenic Belts in Northeast Asia (the Russian Far East, Yakutia, Siberia, Transbaikalia, Northern China, Mongolia, South Korea, and Japan). [Note: For each time span, metallogenic belts are listed from west to east, progressing from north to south. Adapted from detailed descriptions of metallogenic belts in Nokleberg and others (2004), Rodionov and others (2004), and Naumova and others (2006); detailed descriptions of major deposits adapted from Ariunbileg and others (2003)] | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | | | |------------------------------|--|--|--|---|--|--|--|--|--|--| | | Major Metallogenic Belts - Archean (> 2.5 Ga) | | | | | | | | | | | Jidong
(JD) | Banded iron formation
(Shuichang, Sijiaying); Au in
shear zone and quartz vein
(Jinchangyu) | Northern China | Sino-Korean craton - West
Liaoning-Hebei-Shanxi
granulite-orthogneiss
terrane. | Archean and Proterozoic. Archean deposits have Rb-Sr isotopic age greater than 3,500 Ma. Proterozoic or younger age for Au deposits in shear and retrograde metamorphic zones with isotopic ages of 2.5-2.6 Ga., 1.7-1.8 Ga., or younger. | Banded iron formation deposits are interpreted as having formed in a volcanic and sedimentation basin along an unstable proto-continental margin, or in a fragment of Archean craton. Au deposits are interpreted as having formed during retrograde metamorphism to greenschist facies. | | | | | | | Liaoji
(LJ) | Banded iron formation
(Gongchangling);
Volcanogenic Zn-Pb-Cu
massive sulfide (Hongtoushan);
Au in shear zone and quartz
vein (Jiapigou) | Northeastern
China | Sino-Korean craton, Jilin-
Liaoning-East Shandong
terrane. | Late Archean. Metamorphic age of the Anshan Group hosting the banded iron formation deposits is 2.5-2.6 Ga. Isotopic age of the banded iron formation deposits units is probably older than 2.8 Ga. U-Pb zircon isotopic age for trondhjemite (mylonite) is 3,804 Ma. | Host greenstone belt in the Northern Liaoning (Hunbei) area is interpreted as having formed in an active continental margin whereasthe greenstone belts in the Anshan-Benxi and Jiapigou areas are interpreted as having formed in oceanic rifts along a continental margin. Au deposits are interpreted as having formed during retrograde metamorphism to greenschist facies. Because of the ancient geologic units and lack of detailed data, several mineral deposit types are combined into a composite belt. | | | | | | | Sharizhalgai
skiy
(SH) | Banded iron formation; Talc
(magnesite) replacement
(Sosnov□ Baits, Baikalskoye,
Savinskoye) | Russia, southern-
eastern Siberia
(East Sayan) | Sharizhalgay terrane (tonalite-trondhjemite gneiss, included in the North Asian craton) and Onot granite-greenstone terrane, derived from the North Asian craton). | Archean. Sharyzhalgay series has
U-Pb, Rb-Sr, Sm-Nd isotopic
ages of 2.42-3.12 Ga.
Sedimentary rocks in the Onot
terrane are Paleoproterozoic. | Some deposits (Kitoy group and the Baikalskoye deposit) are hosted in Archean sequences; others (Onot group – Sosnovy Baits deposits) are Proterozoic age. Layering in ferruginous quartzite and occurrence in two-pyroxene schists are interpreted as derived from ferruginous volcanic and sedimentary rock sequences. | | | | | | | Sutam
(ST) | Banded iron formation
(Olimpiyskoe) | Russia, southern
Yakutia | Central Aldan superterrane (included in the North Asian craton). | Archean. Gneiss in the Sutam block has isotopic age of 2.5-3.0 Ga. | Two rock groups with banded iron formation deposits occur in the belt. (1) Magnetite-hypersthene and magnetite-pyroxene gneiss interlayered with amphibole-pyroxene and magnetite-pyroxene-plagioclase schist, which which the banded iron formation deposits consist of magnetite and hypersthene-magnetite quartzite occur in the outer part of an antiform. (2) Feldspar quartzite interlayered with garnet- and sillimanite-bearing schist with diopside calciphyre. Also occurring are magnetite-hypersthene and garnet-magnetite hypersthene layers. | | | | | | | West Aldan
(WA) | Banded iron formation
(Charskoye, Tarynnakh,
Nelyuki, Dagda, Sulumatskoye,
Severnoye and Yuzhnoye
NizhneSakukan,
Sakukannyrskoye and Oleng-
Turritakhskoye); Au in shear
zone and quartz vein (Lemochi,
Olondo) | Russia, southern
Yakutia | West Aldan terrane
(included in the North
Asian craton). | Archean through
Paleoproterozoic. Metavolcanic
and sedimentary rocks
interlayered with banded iron
formation deposits have isotopic
ages of 2.7-3.2 Ga. Age of Au
occurrences is Late Archean to
Paleoproterozoic. | Belt is interpreted as having formed in a back-arc basin and (or) island arc. Au occurrences are mainly in shear zones cutting metabasalt, amphibolite, and ultramafic rock. Shear zones formed during amalgamation of terranes or during later tectonic events. Banded iron formation deposits (magnetite quartzite) form stratiform layers and lenses in metabasalt and amphibolite, and local siliceous metavolcanic rock and schist. | |---------------------|--|-----------------------------|---|---|--| | Wutai
(WT) | Banded iron formation
(Baizhiyan) | Northern China | Sino-Korean craton - West
Liaoning-Hebei-Shanxi
terrane (Granulite-
orthogneiss) | Archean. Isotopic ages of >2.5 Ga. | Wutai greenstone belt and contained banded iron formation deposits deposits are interpreted as having formed in a non-mature to mature island arc. | | | | N | Iajor Metallogenic Belts, Pal | eoproterozoic (2.5-1.6Ga) | | | Baydrag
(BD) | Banded iron formation
(Baydragiin Gol) | Central Mongolia | Baydrag cratonal terrane
(part of the Tuva-
Mongolia superterrane). | Paleoproterozoic. K-Ar
phlogopite isotopic age for skarn
is 1,900 Ma. U-Pb isochron and
Pb-Pb zircon isochron ages
range
from 2.65-2.8 Ga for tonalite
gneiss in the Baydrag
metamorphic complex, and 2.4
Ga for charnokite in the
Bombogor intrusive Complex | Banded iron formation deposits are hosted in Paleoproterozoic gneiss, amphibolite, schist, marble and quartzite derived from a volcanic and clastic sedimentary rock basin. Host rocks are intruded by Bombogor intrusive complex that is interpreted as a continental margin arc. | | Jiliaojiao
(JLJ) | Sedimentary-metamorphic borate (Wengquangou); Sedimentary-metamorphic magnesite (Xiafangshen); Talc (magnesite) replacement (Fanjiapuzi); Banded iron formation (Dalizi); Korean Pb-Zn massive sulfide (Qingchengzi); Metamorphic graphite (Nanshu); Au in shear zone and quartz vein (Baiyunshan, Nancha) | Northeastern
China | East Shandong-East
Liaoning-East Jilin rift
basin overlying the Sino-
Korean craton. | Late Paleoproterozoic. Metamorphism and intense deformation occurred at 1.9 Ga. Paleoproterozoic Dashiqiao Formation is with isotopic age of 1.7-1.5 Ga. Marble in the Proterozoic Liaohe group has isotopic age of 1.8 Ga. | Belt is interpreted as having formed in a passive continental margin, possibly as part of the Paleoproterozoic East Shandong-East Liaoning-East Jilin rift. Environment of formation and deposit controls are debated. Metallogenic belt is composite and includes several mineral deposit types. | | Name
(symbol) | Mineral deposit types (major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | | | |-------------------------------|--|-----------------------------|--|---|---|--|--|--|--|--| | | Major Metallogenic Belts, Paleoproterozoic (2.5-1.6Ga) | | | | | | | | | | | Kalar-
Stanovoy
(KS) | Au in shear zone and quartz
vein (Ledyanoe, Namark,
Pravokabaktanskoe) | Russia, southern
Yakutia | Veins in the Kalar tectonic melange zone (included in the North Asian craton). | Paleoproterozoic (about 2.0 Ga) | Belt is interpreted as having formed during the collision between the Tynda and West Aldan terranes in the Aldan-Stanovoy region and during subsequent collapse of orogenic belt. Cause of collision was amalgamation of terranes during the formation of the North Asia craton. Au deposits occur in hear zones that cut metamorphosed mafic and ultramafic and plutonic rock. | | | | | | | Luliangshan
(LL) | Banded iron formation
(Yuanjiachun); Au in shear
zone and quartz vein
(Hulishan) | Northern China | Hutuo rift basin or foreland basin | Early Paleoproterozoic. Pb-Pb isotopic age of 2.23 Ga. U-Pb zircon isotopic age of 2.37 Ga. | Banded iron formation deposits iron and shear zone Au deposits are interpreted as having formed in a Paleoproterozoic Hutuo Basin that was superposed on the Archean Northern China craton. A composite metallogenic belt that includes several mineral deposit types. | | | | | | | Nimnyr
(NM) | Apatite carbonatite (Seligdar) | Russia, southern
Yakutia | Central Aldan superterrane (included in the North Asian craton). | Paleoproterozoic. Carbonatite pluton with isotopic age of 1.9 Ga. | Carbonatite is interpreted as having formed during interplate rifting. Deposits consist of apatite-carbonate, apatite-quartz-carbonate, martite-apatite-quartz-carbonate, and martite-apatite-carbonate and apatite-carbonate-quartz ores in a carbonatite in asymmetric stocks. | | | | | | | Qinglong
(QL) | Banded iron formation
(Zhalanzhangzhi); Clastic-
sediment-hosted Sb-Au
(Qinglonghe) | Northern China | Sino-Korean craton -West
Liaoning-Hebei-Shanxi
terrane. | Paleoproterozoic. | Banded iron formation deposits are hosted in marine volcaniclastic and clastic sedimentary rocks with minor conglomerate that are metamorphosed to amphibolite and greenschist facies. Belt is interpreted as having formed in a passive continental margin or aulacogen that was subsequently regionally metamorphosed and thrusted. | | | | | | | Tyrkanda-
Stanovoy
(TS) | Au in shear zone and quartz
vein (Kolchedannyi Utyos) | Russia, southern
Yakutia | Veins in the Tyrkanda
tectonic melange zone
(included in the North
Asian craton). | Paleoproterozoic (about 2.0 Ga). | Belt is interpreted as having formed during collision between the Tynda composite terrane and the Central Aldan and East Aldan superterranes. The reason for collision is unclear. Au shear zone deposits cut metamorphosed mafic and utramafic bodies and plutonic rocks. | | | | | | | Uguy-
Udokanskiy
(UU) | Zoned mafic-ultramafic Cu-
PGE (Chineyskoye;);
Sediment-hosted Cu
(Udokanskoye); Ta-Nb-REE
alkaline metasomatite (Pravo-
Ingamakit, Sakinskoye,
Sulbanskoye, Katuginskoye) | Russia, southern
Yakutia | West Aldan terrane (included in the North Asian craton). | Paleoproterozoic. Age of Cu sandstone in the Udokan deposit is 2.2-1.8 Ga. Ta, Nb, REE alkaline metasomatite deposits have an isotopic age of 2.0-1.6 Ga. | Cu and PGE deposits in zoned mafic-ultramafic plutons and Cu in the sedimentary rocks are interpreted as having formed along a passive continental-margin rift. Ta-Nb-REE alkaline metasomatite deposits are interpreted as having formed during later collision and formation of anatectic granite. | | | | | | | | Major Metallogenic Belts, Mesoproterozoic (1.6-1.0 Ga) | | | | | | | | |--------------------------------|--|---|--|---|--|--|--|--| | Darvi (DR) | Sedimentary bauxite (Alag
Uul); Sedimentary Fe-V | Mongolia | Baydrag cratonal terrane (part of the Tuva-Mongolia superterrane). | Mesoproterozoic. | Belt is interpreted as having formed during bauxite sedimentation in a Lower to Middle Riphean sedimentary basin along a passive continental margin | | | | | Langshan-
Bayan Obo
(LB) | Sedimentary exhalative Pb-Zn
(SEDEX) (Huogeqi); Polygenic
REE-Fe-Nb deposits (Bayan
Obo) | Northwestern and
North-Central
China | Layers in the Zhangbei-
Bayan Obo-Langshan rift-
related metasedimentary
and metavolcanic units
deposited on the Sino-
Korean craton. | Mesoproterozoic. Sm-Nd isochron ages for monazite, bastnaesite, and riebeckite are 1.2-1.3 Ga. Th-Pb and Sm-Nd ages of Ba-REE-F carbonates and aeschynite are 474-402 Ma. | Bayan Obo deposit is interpreted as a SEDEX deposit related to a carbonatite magma and associated hydrothermal activity. Belt is hosted in a Mesoproterozoic overlap sedimentary assemblages that formed in a rift along the passive continental margin of the Sino-Korean craton. | | | | | Yanliao
(YL) | Chemical-sedimentary Fe-Mn
(Wafangzi); Sedimentary
exhalative Pb-Zn (SEDEX)
(Gaobanhe) | Northern and
Northeastern
China | Jixian Group -
sedimentary cover on
Sino-Korea craton. | Mesoproterozoic. Age of the Jixian Group is 1.4-1.1 Ga. | Belt is interpreted as having formed in a shallow marine basin on the Sino-Korean craton. | | | | | | | M | ajor Metallogenic Belts, Neop | proterozoic (1,000-540 Ma) | | | | | | Angara-Pit
(AP) | Sedimentary hematite Fe
(Nizhne-Angarskoye);
Volcanogenic-sedimentary Fe | Russia, eastern
Siberia (Yenisei
Ridge) | North Asian craton
margin, East Angara fold
and thrust belt. | Upper Riphean. | Belt is interpreted as having formed during pre-
orogenic subsidence of the North Asian craton margin
in a back-arc (interland) sedimentary basin. | | | | | Baikalo-
Muiskiy
(BM) | Volcanogenic-hydrothermal-
sedimentary massive sulfide
Pb-Zn (±Cu); Polymetallic (Pb,
Zn, Ag) carbonate-hosted
metasomatite; Serpentinite-
hosted asbestos
(Kholodninskoye, Lugovoye,
Molodezhnoye) | Russia, Northern
Transbaikalia | Baikal-Muya island arc
terrane (part of the
Circum-Siberia collage),
and Muya metamorphic
terrane (part of the Tuva-
Mongolia superterrane),
and Olokit-Delunuran
craton-margin rift terrane. | Neoproterozoic. | Various deposits in the belt are interpreted as having formed in the Baikal-Muya island arc or during Riphean accretion of terrane with Muya metamorphic terrane and Olokit-Delunuran continental-margin rift terrane. | | | | | Bodaibin-
skiy
(BO) | Au in black shale (Sukhoy
Log,
Vysochaishi, Dogaldynskoye) | Russia, Northern
Transbaikalia | North Asian craton margin, Patom fold and thrust belt. | Belt formation started in the
Neoproterozoic with subsequent
enrichment in the Devonian to Early
Carboniferous. Age of gold from the
Sukhoy Log deposit is about 320
Ma. | Initial gold deposition occurred during sedimentation and later metamorphism and hydrothermal activity. Subsequent Neoproterozoic postcollisional magmatic and hydrothermal activity formed economic deposits. Subsequent deposition of Au-Ag sulfosalt deposits during magmatic and hydrothermal activity in the middle and late Paleozoic. | | | | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | | | | |------------------------------|---|--|--|--|---|--|--|--|--|--|--| | | Major Metallogenic Belts, Neoproterozoic (1,000-540 Ma) | | | | | | | | | | | | Bokson-
Kitoiskiy
(BK) | Sedimentary bauxite (Boksonskoye); Magmatic nepheline (Botogolskoye); Serpentine-hosted asbestos (Ilchirskoye); Au in shear zone and quartz vein (Zun-Kholba) | Russia, southern-
eastern Siberia
(East Sayan) | Layers in, and veins and plutons intruding or associated with the Belaya-Kitoy metamorphic, Hug subduction zone, and Tunka island arc terranes, the Tannuola plutonic belt, and Huvsgol-Bokson sedimentary overlap assemblage (all part of the Yenisey-Transbaikal collage). | Neoproterozoic through Silurian. Neoproterozoic sedimentary rocks with Cambrian through Silurian metamorphism, hydrothermal alternation, and plutonic intrusion. Younger of part of Sumsunur tonalite complex has U-Pb and Rb-Sr isotopics ages of 790 Ma. | Belt is hosted in metamorphic, oceanic, subduction zone, and tonalite-trondhjemite-gneiss terranes that underwent Cambrian through Silurian metamorphism, hydrothermal alternation, and plutonic intrusion. Deposits formed in multiple events. Metallogenic belt is a composite that includes several mineral deposit types. | | | | | | | | Central-
Yenisei
(CY) | Au in black shale (Olympiada);
Au in shear zone and quartz
vein (Sovetskoye); Clastic-
sediment-hosted Sb-Au
(Udereiskoye) | Russia, eastern
Siberia (Yenisei
Ridge) | Central Angara passive continental margin terrane (part of the Central Siberia collage). | Late Neoproterozoic. K-Ar isotopic age for late-stage hydromica metasomatites in the Sb-Au deposit is 605 Ma-664 Ma. Rb-Sr isotopic age for the Tatarsk granitoid is 601 Ma. | Gold deposits are interpreted as having formed during collisional development of the late Riphean continental margin of the North Asian craton. Gold initially forming in black shale was subsequently concentrated and remobilized during collision-related metamorphism, granitoid intrusion, and hydrothermal activity. | | | | | | | | Hovsgol
(HO) | Sedimentary phosphate
(Hubsugul); Volcanogenic-
sedimentary Mn (Saihangol);
Sedimentary Fe-V (Hitagiin
gol) | Northern Mongolia | Huvsgol-Bokson
sedimentary overlap
assemblage deposited on
the Tuva-Mongolia
superterrane. | Vendian and Early Cambrian. | Belt is interpreted as having formed during sedimentation in a carbonate-dominated basin along a continental shelf. | | | | | | | | Jixi
(JX) | Banded iron formation
(Shuangyashan); Homestake
Au (Dongfengshan);
Metamorphic graphite;
(Liumao); Metamorphic
sillimanite | Northeastern
China | Jiamusi terrane
(Metamorphic) terrane and
Zhangguangcailing
(Continental margin arc)
superterrane | Neoproterozoic through Cambrian. | Belt is part of a khondalite that is interpreted as derived from Al-rich mudstone and carbonates of the Mashan and the Xingdong groups that were deposited in a shallow sea and isolated oceanic basin and lagoon. | | | | | | | | Kyllakh
(KY) | Carbonate-hosted Pb-Zn
(Mississippi valley type)
(Sardana) | Russia, Far East | Verkhoyansk (North
Asian) craton margin. | Vendian. | Belt is interpreted as having formed on passive margin of the North Asian craton in the Vendian. Economic deposits occur in areas of facial thinning of dolomite. | | | | | | | | Lake
(LA) | Volcanogenic Cu-Zn massive sulfide (Urals type) (Borts uul); Volcanogenic-sedimentary Fe; Podiform Cr; Mafic-ultramafic related Ti-Fe (±V); Cu (±Fe, Au, Ag, Mo) skarn; Fe skarn; Granitoid-related Au vein (Khyargas); Cyprus Cu-Zn Massive Sulfide (Naran Davaa); Mafic-ultramafic related Cu-Ni-PGE (Tsagdaltyn Davaa) | Western Mongolia | Lake island arc terrane (part of the Yenisey-Transbaikal collage). | Late Neoproterozoic. Khantayshir ophiolite has an U-Pb zircon isotopic age of 568 Ma. Dariv ophiolite has an U-Pb zircon isotopic age of 573 Ma. | Various deposits in the belt are interpreted as having formed during sea floor spreading volcanism and related mafic-ultramafic magmatism, and in subduction-related island are volcanism and mafic plutonism, and multiple-phase granitic magmatism. | |--------------------------------|---|--|--|--|--| | Pribaikal-
skiy
(PB) | Carbonate-hosted Pb-Zn
(Mississippi Valley type)
(Barvinskoye) | Russia, East Sayan | Sheared margin between
the Paleoproterozoic
Akitkan volcanic-plutonic
belt and the Verkhoyansk
(North Asian) craton
margin. | Riphean. | Belt is interpreted as having formed along shear zones and faults that occur between an ancient active continental margin along the North Asian craton margin. | | Prisayan-
skiy
(PR) | REE (±Ta, Nb, Fe) carbonatite (Beloziminskoye); Maficultramafic related Ti-Fe (±V) | Russia, southern-
eastern Siberia
(East Sayan) | Various units in the North
Asia craton: Onot granite-
greenstone and
Sharizhalgay tonalite-
trondhjemite gneiss
terranes containing mafic-
ultramafic plutons in the
Ziminsky complex, and
ultramafic alkaline
plutonic rock. | Late Neoproterozoic. Rb-Sr isochron age for talc deposit is 633 Ma; Rb-Sr and ⁴⁰ Ar- ³⁹ Ar age for REE carbonatite deposits is 547 Ma. | Belt occurs in the enderbite-gneiss, tonalite-trondjemite, anorthosite-paragneiss units in terranes that are fragments of Precambrian craton crystalline basement. Host terranes are uplifted parts of the North Asian craton. | | Vorogovsko
-Angarsk
(VA) | Sedimentary exhalative Pb-Zn (SEDEX) (Gorevskoye);
Carbonate-hosted Pb-Zn (Mississippi valley type)
(Moryanikhinskoye); Fe skarn (Enashiminskoye) | Russia, eastern
Siberia (Yenisei
Ridge) | West Angara passive continental margin terrane (part of the Central Siberia collage). | Early Neoproterozoic. Model Pb-Pb isotopic age for Gorevskoye deposit is 834-852 Ma. Pb isotopic age of Moryanikhinskoye deposit is 740-849 Ma. Host rocks have an isotopic age of 950 Ma. | SEDEX deposits are interpreted as having formed along transcrustal block-bounding faults in the margin of the platform. Carbonate-hosted Pb-Zn deposits were hosted in the reefs. Fe skarn deposits formed during contact metasomatism of marine volcanic and sedimentary rocks. | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | | | |------------------------------|--|--|--
--|--|--|--|--|--|--| | | Major Metallogenic Belts, Cambrian Through Silurian (540-410 Ma) | | | | | | | | | | | Bedobinsk
(BE) | Sediment-hosted Cu
(Bedobinsk, Kurishskoye) | Russia, eastern
Siberia (Yenisey
Ridge area) | North Asian craton. | Middle and Late Cambrian. | Belt is interpreted as having formed in an inland-sea
basin during post-saline stage of rock deposition.
Main source of copper was weathered Riphean rocks
as well as lode deposits in the Yenisei Ridge, and
from hydrothermal activity along deep-fault zones
related to rifting. | | | | | | | Bayanhon-
gor
(BH) | Au in shear zone and quartz
vein (Bor Khairhan, Khan Uul,
Dovont); Granitoid-related Au
vein (Tsagaantsakhir Uul); Cu-
Ag vein (Jargalant,
Bayantsagaan, Burdiingol); Cu
(±Fe, Au, Ag, Mo) skarn
(Khokhbulgiin Khondii) | Central Mongolia | Veins in the Hangay-
Dauria subduction-zone
terrane, Orhon-Ikatsky
continental margin arc
terrane, and Zag-Haraa
turbidite basin (all part of
the Yenisey-Transbaikal
collage). | Late Ordovician. K-Ar metamorphic isotopic ages of foliated and metamorphosed host mudstone (Vendian to Early Cambrian Olziitgol Formation in the Orhon terrane) are 447 and 453.9 Ma. | Belt is interpreted as having formed during regional metamorphism associated with accretion of the Bayanhongor and Baydrag terranes. | | | | | | | East
Liaoning
(EL) | Diamond-bearing kimberlite (Fuxian) | Northeastern
China | Kimberlites intruding the
Sino-Korean craton - Jilin-
Liaoning-East Shandong
tonalite-trondhjemite-
gneiss terrane. | Ordovician(?). Isotopic age of
kimberlite is about 340-455 Ma.
Isotopic age of kimberlite on
Shandong Peninsula is 460-490 Ma. | Kimberlite and associated intrusions occur along the northeast-trending regional Tanlu fault along northern margin of the Sino-Korean Platform. | | | | | | | Govi-Altai
(GA) | Volcanogenic-sedimentary Fe
(Uhin Ovoo); Volcanogenic-
sedimentary Mn (Tahilgat Uul,
Sharturuutiin gol) | Southwestern
Mongolia | Govi Altai continental-
margin turbidite terrane
(part of the South
Mongolia-Khingan
collage). | Middle Cambrian through Early Ordovician. | Belt is interpreted as having formed during sedimentation along an early Paleozoic continental slope. | | | | | | | Hovd
(HO) | Granitoid-related Au vein; Au skarn; Cu (±Fe, Au, Ag, Mo) skarn (Yolochka) | Western Mongolia | Replacements related to the Turgen granitoid complex that intrudes the Hovd continental-margin turbidite terrane (part of the Altai collage). | Ordovician through Late Silurian.
K-Ar isotopic age of the Hovd
complex is 426-456 Ma. | Belt is interpreted as having formed during subduction related granitic magmatism along a continental-margin arc. | | | | | | | Hunjiang-
Taizihe
(HT) | Evaporite sedimentary gypsum (Rouguan) | Northeastern
China. | Platform sedimentary cover on the Sino-Korean craton. | Cambrian and Ordovician. | Gypsum is interpreted as having formed in a supertidal sabkha sedimentary environment. | | | | | | | Jinzhong
(JZ) | Evaporite sedimentary gypsum (Taiyuan) | Northern China | Sino-Korean platform sedimentary cover | Cambrian and Ordovician. | Gypsum is interpreted as having formed in a large epicontinental marine basin. | | | | | | | Jixi (JX) | | | Started in the Neoproterozo | ic (1000-540 Ma) | | | | | | | | Kiyalykh-
Uzen
(KY) | Cu (±Fe, Au, Ag, Mo) skarn
(Kiyalykh-Uzen, Juliya
Mednaya); W±Mo±Be skarn
(Tuim); Fe skarn (Samson); W-
Mo-Be greisen, stockwork, and
quartz vein (Verhne-
Askizskoye, Turtek) | Russia, southern-
eastern Siberia
(Kuznetsk Alatau
Mountains) | Replacements related to
the Tannuola plutonic belt
(part of the Yenisey-
Transbaikal collage). | Early Ordovician through Early Silurian. ⁴⁰ Ar/ ³⁹ Ar host-rock isotopic age is 480-420 Ma. | Belt is related to early Paleozoic collisional granitoids that intrude a Vendian and Cambrian shelf carbonate and clastic-carbonate rocks during transpressive (dextral-slip) movement along the Kuznetsk Alatau fault. | |---------------------------|--|--|---|--|---| | Kizir-Kazyr
(KK) | Fe skarn (Irbinskoye);
Volcanogenic-sedimentary Fe
(Belokitatskoye); Granitoid-
related Au vein (Olkhovskoye) | Russia, southern-
eastern Siberia
(Eastern Sayan
Ridge) | Replacements related to
the Tannuola plutonic belt
(part of the Yenisey-
Transbaikal collage). | Cambrian and Ordovician. K-Ar isotopic age for deposit-related gabbro, diorite, and granodiorite plutons in the Irbinskoye district is 430 Ma. | Deposits are hosted in gabbro, diorite, and granodiorite in the collisional Tannuola plutonic belt, and in the volcanogenic-sedimentary rocks of the Kizir-Kazir island-arc terrane, part of the Yenisey-Transbaikal collage. | | Martaiginsk
(MT) | Granitoid-related Au vein
(Sarala, Komsomolskoye); Au
skarn (Natal'evskoye,
Sinyukhinskoye,
Komsomolskoye) | Russia, southern-
eastern Siberia
(Kuznetsk Alatau,
Gorny Altai
Mountains) | Granitoids and veins related to the Tannuola plutonic belt (part of the Yenisey-Transbaikal collage). | Late Ordovician and Early Silurian. ⁴⁰ Ar/ ³⁹ Ar isotopic age of 480-460 Ma for the Martaiginsk complex; K-Ar age of 445-427 Ma for the Lebed complex; Rb-Sr ages of 472 Ma, 458 Ma, 444 Ma, and 433 Ma for gangue minerals and metasomatite for the Gavrilovskoye, Centralnoye, Komsomolskoye, Sarala deposits. | Belt is related to early Paleozoic collisional granitoids that intrude Vendian and Cambrian shelf carbonate and clastic-carbonate rocks during transpressive (dextral-slip) movement along the Kuznetsk Alatau fault. Deposits clusters along fault and shear zones that are branches of the Kuznetsk Alatau fault. | | Ozerninsky
(OZ) | Volcanogenic-hydrothermal-
sedimentary (metasomatic)
massive sulfide Pb-Zn (±Cu);
(Ozernoye); Volcanogenic-
sedimentary Fe (Arishinskoye) | Russia, western
Transbaikalia | Eravna island arc terrane (part of Yenisey-Transbaikal collage). | Cambrian through Silurian. Isotopic age of younger granitoids intruding terrane is 320-400 Ma. | Belt is interpreted as having formed in an island arc that was subsequently intruded by the Barguzin-Vitim batholith. | | South
Khingan
(SK) | Banded iron formation
(Yuzhno-Khingan,
Kimkanskoe, Kostenginskoe) | Russia, Far East | Malokhingansk
subduction-zone terrane,
included in the Sino-
Korean craton. | Neoproterozoic through Cambrian.
Banded iron formation deposits
intruded by granitic plutons with K-
Ar isotopic ages of 604 and 301 Ma. | Belt is interpreted as having formed in a volcanic and
sedimentation basin along an unstable proto-
continental margin, or in a fragment of an Archean
craton that was incorporated into an subduction-zone
terrane. | | Uda-
Shantar
(US) | Volcanogenic-sedimentary Fe
(Gerbikanskoe); Volcanogenic-
sedimentary Mn (Ir-Nimiiskoe-
1); Sedimentary phosphate
(North-Shantarskoe,
Nelkanskoe, Ir-Nimiiskoe-2,
Lagapskoe) | Russia, Far East | Galam subduction-zone terrane (part of the Mongol-Okhotsk collage). | Early Paleozoic. | Belt is interpreted as having formed during sea floor hydrothermal activity associated with basaltic volcanism that was accompanied by chert deposition in basins. Fe and Mn deposits occur in elongate beds and lenses. Sedimentary P deposits are interpreted as having formed in limestone caps that formed in two stages on accreted seamounts, atolls, and guyots. Units and deposits were subsequently incorporated into a subduction zone. | Belt is interpreted as having formed during island arc volcanism. Deposits are hosted in pillow basalt and Belt is interpreted as having formed during regional accretion of the Beitianshan-Atasbogd and metamorphism and vein emplacement associated with siliceous rocks. Zhongtianshan terranes. | Name
(symbol) | Mineral deposit types (major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | |-------------------------------|--|------------------------------
--|---|---| | | | Major Metallogenic B | elts, Devonian through Early | y Carboniferous (Mississippian)(4 | 110-320 Ma) | | Bayangovi
(BG) | Au in shear zone and quartz vein (Bayangovi district) | Southern Mongolia | Replacements in the Govi
Altai continental-margin
turbidite terrane (part of
the South Mongolia-
Khingan collage). | Devonian. | Belt is interpreted as having formed regional metamorphism of the Govi-Altai terrane, part of the South Mongolia-Khingan collage, during collision with the Lake terrane. | | Botuobiya -
Markha
(BM) | Diamond-bearing kimberlite (Mir, Internatsional'naya) | Russia, Central
Yakutia | Kimberlite intruding the North Asian craton. | Devonian. | Tectonic environment unknown. Devonian kimberlite pipes intrude mostly Cambrian to Silurian carbonate sedimentary rocks of the North Asian craton. | | Daldyn-
Olenyok
(DO) | Diamond-bearing kimberlite
(Aikhal, Udachnaya,
Ubileinaya, Sytykanskaya) | Russia, Northeast
Yakutia | Kimberlite intruding the North Asian craton. | Devonian. | Tectonic environment unknown. Devonian kimberlite pipes intrude mostly Cambrian to Silurian carbonate sedimentary rocks of the North Asian craton. | | Deluun-
Sagsai | Polymetallic (Pb, Zn±Cu, Ba, Ag, Au) volcanic-hosted | Western Mongolia | Granitoids and replacements related to the | Early Devonian through Early Carboniferous. | Belt is interpreted as having formed along an active Andean-type continental margin. | Early Devonian. Carboniferous. Late Devonian through Early Deluun sedimentary- (part of the Altai volcanic-plutonic belt continental margin arc). Edren Island arc terrane Veins in the Edren island arc terrane and Zoolen subduction-zone terrane (both part of the South Mongolia-Khingan (part of the South collage). collage). Mongolia-Khingan Edrengiin (ED) Edren- Zoolon (EZ) metasomatite (Burgedtas); Au) vein and stockwork Polymetallic Pb-Zn \pm Cu (\pm Ag, (Nominy Am); Volcanogenic Volcanogenic Cu-Zn massive Volcanogenic-sedimentary Fe Au in shear zone and quartz vein (Edren, Nemegt) sulfide (Urals type) (Olgii nuruu); Volcanogenic- sedimentary Mn; (Olgiibulag) Southwestern Southern Mongolia Mongolia Zn-Pb-Cu massive sulfide (Kuroko, Altai type); Sediment-hosted Cu (Khatuugiin gol); Ag-Pb epithermal vein (Dulaan khar uul); Granitoid related Au vein (DS) | Hongqiling
(HQ) | Mafic-ultramafic related Cu-
Ni-PGE (Hongqiling);
Polymetallic (Pb, Zn±Cu, Ba,
Ag, Au) volcanic-hosted
metasomatite (Guanma) | Northeastern
China | Mafic and ultramafic plutons in the Hongqiling plutonic and the Guanma volcanic sedimentary complexes that intrude and overlap the Zhangguangcailing superterrane and the Laoling terrane (part of the Bureya-Jiamusi supterterrane). | Mississippian. Isotopic ages of 331-350 Ma. | Belt is interpreted as having formed during extension after accretion of the Zhangguangcailing superterrane and Laoling terrane. Belt is hosted in Mississipian or possibly Triassic mafic-ultramafic plutons, and in overlap volcanic assemblages in an extensional basin that formed after the accretion. | |-----------------------------|--|--|---|--|--| | Kizhi-Khem
(KZ) | W-Mo-Be greisen, stockwork,
and quartz vein
(Okunevskoye); Porphyry Cu-
Mo (±Au, Ag) (Aksug,
Dashkhemskoye); Ta-Nb-REE
alkaline metasomatite
(Aryskanskoye 1); Granitoid-
related Au vein | Russia, southern-
eastern Siberia
(Northeast Tuva
area) | Replacements and granitoids related to the South-Siberian volcanic-plutonic belt that overlies and intrudes the Khamsara island-arc terrane. | Devonian through Pennsylvanian. Estimated ⁴⁰ Arr ³⁹ Ar isotopic age for the Aksug Cu-Mo-porphyry deposit is 400-380 Ma. Alaskite and alkalic granite hosting W-Mo-Be deposits intrude Silurian-Devonian granite and have K-Ar isotopic ages of 305-280 Ma. | Belt is interpreted as having formed during granitoid magmatism associated with the South Siberian volcanic plutonic belt that formed during rifting associated with transpessional faulting. Deposit-related plutons intrude Early Cambrian volcanic rocks of the Khamsara islandarc terrane and early Paleozoic granites of the Tannuola plutonic belt. | | Korgon-
Kholzun
(KK) | Volcanogenic-sedimentary Fe (Kholzunskoye, Inskoye, Beloretskoye); Fe skarn, Mafic-ultramafic related Ti-Fe (±V) (Kharlovskoye); Polymetallic (Pb, Zn, Ag) carbonate-hosted metasomatite (Charyshskoye) | Russia, southern-
eastern Siberia
(Gorny Altai area) | Deposits related to the Altai volcanic-plutonic belt that overlap and intrude the Altai and Charysh continental margin turbidite terranes. | Devonian and Carboniferous. | Belt is interpreted as having formed along the Altay continental margin arc. | | Mamsko-
Chuiskiy
(MC) | Muscovite pegmatite
(Vitimskoye, Lugovka,
Kolotovka, Bolshoye
Severnoye, Komsomolsko-
Molodezhnoye,
Sogdiondonskoye, and
Chuyskoye) | Russia, northern
Transbaikalia | Veins and dikes in the
Mamsky and Konkudero-
Mamakansky complexes
intruding the Chuja
paragneiss terrane
(included in the Baikal-
Patom craton margin). | Devonian and Early
Carboniferous. Mamsky complex
has an isotopic age of 350-300
Ma. | Interpreted as having formed during intrusion of alkaline granitoid of the Mamsky and Konkudero-Mamakansky Complexes into the Chuya paragneiss terrane that were part of a passive margin. The host granitoids are interpreted as having formed during post-accretionary magmatism in transpression zones related to transform microplate boundaries and within-plate (plume) environment. | | Name | Mineral deposit types | Country, region | Unit or structure related | Age range | Testenia event for origin of metallogenia helt | |----------|-----------------------|-----------------|---------------------------|-----------|--| | (symbol) | (major deposits) | | to origin of belt | | Tectonic event for origin of metallogenic belt | | <u> </u> | | | | | | # Major Metallogenic Belts, Devonian through Early Carboniferous (Mississippian)(410-320 Ma) | Muiskiy
(MS) | Granitoid-related Au vein; Au
in shear zone and quartz vein
(Irokindinskoye); Carbonate-
hosted Hg-Sb (Kelyanskoye);
Porphyry Sn (Mokhovoye) | Russia,
Northwestern
Transbaikalia | Granitoids and veins related to the Barguzin-Vitim granitoid that intrudes the Baikal-Muya island arc terrane and Muya metamorphic terrane (both part of the Tuva-Mongolia superterrane). | Devonian and Early
Carboniferous. | Belt is interpreted as having formed in granitoids and veins generation during Riphean collision of the Baikal-Muya terrane with the Muya terrane. | | |---------------------|---|--|---|--|---|--| | Rudny Altai
(RA) | Volcanogenic Zn-Pb-Cu
massive sulfide (Kuroko, Altai
types) (Korbalihinskoye,
Stepnoye, Talovskoye,
Rubtsovskoye, Zakharovskoye,
Jubileinoye); Barite vein
(Zarechenskoye,
Zmeinogorskoye); Volcanic-
hosted metasomatite | Russia, southern-
eastern Siberia | Rudny Altai island arc,
terrane (part of the West
Siberian collage). | Middle and Late Devonian. | Belt is interpreted as having formed in an island arc.
Belt is hosted in shallow marine shelf volcanic rocks | | | Salair
(SL) | Polymetallic (Pb, Zn±Cu, Ba, Ag, Au) volcanic-hosted metasomatite (Salairskoye); Porphyry Cu-Mo (±Au, Ag) (Kamenushinskoye) |
Russia, southern-
eastern Siberia
(Salair Range) | Porphyry intrusions and associated replacements related to the Altay volcanic-plutonic belt (Altay arc) that overlies and intrudes the Salair terrane. | Middle Devonian through Early
Carboniferous for deposit-related
quartz-porphyry intrusion. | Belt is interpreted as having formed in an active continental margin arc environment into which mafic dike swarms and small intrusions, and siliceous porphyries were intruded. | | | Sette-Daban
(SD) | Sediment-hosted Cu
(Kurpandzha); Basaltic native
Cu (Lake Superior type)
(Dzhalkan and Rossomakha);
REE (±Ta, Nb, Fe) carbonatite
(Gornoye Ozero, Povorotnoye);
Carbonate-hosted Pb-Zn
(Mississippi valley type)
(Lugun, Segenyakh) | Russia, southern
Yakutia | Verkhoyansk (North
Asian) craton margin. | Middle Devonian through Early Carboniferous. | Cu deposits interpreted as having formed during Devonian rifting. REE and apatite deposits are hosted in alkali-ultramafic and carbonatite plutons are also interpreted as having formed during Devonian rifting. | | | Sorsk
(SO) | Porphyry Mo (±W, Bi)
(Sorskoye); Polymetallic (Pb,
Zn, Ag) carbonate-hosted
metasomatite (Karasuk); Zn-Pb
(±Ag, Cu) skarn (Julia
Svintsovaya) | Russia, southern-
eastern Siberia
(Kuznetsk Alatau
Mountains) | Granitoids and associated replacements related to the South Siberian volcanic-plutonic belt (South Siberian arc). | Early and Middle Devonian. ⁴⁰ Ar- ³⁹ Ar isotopic age of deposits is 385-400 Ma. K-feldspar and albite metasomatite age is 400-380 Ma. Host volcanic rocks with K-Ar age of 396 Ma and Rb-Sr age of 416 Ma. | Belt is interpreted as having formed during Devonian subalkalic porphyry magmatism related to interplate rifting and transpressional faulting. Deposit-related porphyry intrusions intrude older early Paleozoic granitoid plutons. Skarn and metasomatic polymetallic deposits are hosted in Vendian and Cambrian shallowwater marine carbonate rocks. | | | Teisk
(TE) | Fe skarn (Teiskoye,
Khaileolovskoye); Mafic-
ultramafic related Ti-Fe (±V)
(Patynskoye, Kul-Taiga);
Volcanogenic-Sedimentary Fe
(Chilanskoye) | Russia, southern-
eastern Siberia
(Kuznetsk Alatau
Mountains) | Plutonic rocks of the
South Siberian volcanic-
plutonic belt (South
Siberian arc). | Early Devonian. K-Ar isotopic ages for syenite-diorite of the Malaya Kul-Taiga pluton are 411 and 438 Ma. K-Ar isotopic age of Devonian volcanic rocks is 396 Ma and Rb-Sr isotopic age is 416 Ma. | Belt is interpreted as having formed during interplate transpression and rifting that formed the South Minusa volcanic basin. Deposit is related to Early Devonian granosyenite plutons that occur along marginal faults of Devonian basins. | |------------------------------|---|--|---|--|---| | Tsagaan-
suvarga
(TsS) | Porphyry Cu-Mo (±Au, Ag)
(Tsagaan suvarga; Oyutolgoi,
Oyut, Bor Ovoo); Porphyry Cu
(±Au) (Oyu Tolgoi); Porphyry
Au; Granitoid-related Au vein
(Alagtolgoi) | Southeastern
Mongolia | Granitoids related to the
Gurvansayhan island arc
terrane (part of the South
Mongolia-Khingan
collage). | Late Devonian and Early Carboniferous. ⁴⁰ Ar/ ³⁹ Ar isotopic age for the Tsagaan suvarga porphyry Cu deposit is 364.9± 3.5 Ma. | Belt is interpreted as having formed in a mature island arc or continental-margin arc. | | Udzha
(UD) | REE (±Ta, Nb, Fe) carbonatite (Tomtor) | Russia, Northeast
Yakutia | North Asian craton. | Devonian. Host rock Rb-Sr isotopic age is 810 Ma; K-Ar age is 240 Ma. | Belt is interpreted as having formed during intrusion of alkali-ultramafic rock and carbonatite associated with Devonian rifting. | | Ulziit
(UZ) | Au in shear zone and quartz vein (Olon Ovoot) | Southern Mongolia | Replacements in the Govi
Altai continental-margin
turbidite terrane (part of
the South Mongolia-
Khingan collage). | Devonian(?). | Belt is interpreted as having formed regional metamorphism of the Govi-Altai terrane during collision with the Idermeg terrane. | | Yaroslavka
(YA) | Fluorite greisen (Voznesenka-II); Sn-W greisen, stockwork, and quartz vein (Yaroslavskoe) | Russia, Far East | Granitoids intruding the
Voznesenka passive
continental margin terrane
(part of the Bureya-
Jiamusi supterterrane). | Late Cambrian though Devonian.
Granitoids have K-Ar isotopic
ages of 440-396 Ma. | Belt is interpreted as having formed in a collisional arc that formed in a fragment of Gondwanaland. Host leucogranite plutons are interpreted as having formed during early Paleozoic collision of the Voznesenka and Kabarga terranes. Deposit-related granitoids intrude Cambrian clastic rocks and limestone. | # Major Metallogenic Belts, Late Carboniferous (Pennsylvanian) through Middle Triassic (320-230Ma) | Ang
(AI | gara-Ilim
) | Fe skarn (Korshunovskoye);
REE (±Ta, Nb, Fe) carbonatite
(Chuktukonskoye); Weathering
crust carbonatite REE-Zr-Nb-
Li (Chuktukonskoye) | Russia, eastern
Siberia | Replacements related to
the Tungus plateau basalt,
sills, dikes, and intrusions
that intrude the North
Asian craton. | Late Permian and Early
Triassic(?). Isotopic ages of
related igneous rock range from
260-200 Ma. | Belt is interpreted as related to widespread development of Trapp magmatism on the North Asian craton. Fe skarn deposits associated with Triassic explosive and intrusive basaltic complexes in diatremes. REE-Ta-Nb carbonatite deposits are associated with alkali-ultramafic intrusions. | |------------|--|--|--|--|---|---| | Alt
(Al | | REE-Li pegmatite; Muscovite
pegmatite (Keketuohai,
Ayoubulake) | Northwestern
Mongolia;
Northwestern
China | Veins, dikes, and replacements related to granitoids in the Altai volcanic-plutonic belt that intrudes the Altai continental margin turbidite terrane. | Late Carboniferrous. Calcalkaline anatectic granite with K-Ar isotopic age of 219 Ma. | Belt is interpreted as having formed during intrusion of collisional granite that formed during collision of Kazakhstan and North Asian cratons. Belt is interpreted as having formed during high-grade metamorphism with crustal melting and generation of anatectic granite. | | Uya | ttsengel-
anga-
denedalai
UE) | Granitoid-related Au vein
(Mongot, Battsengel, Uyanga
groups, Sharga Ovoo, Tsagaan
Ovoo) | Central Mongolia | Small stitching plutons
that formed in the early
stage of intrusion of the
Hangay plutonic belt that | Late Carboniferous and Permian. | Belt is interpreted as having formed along the Selenga
continental margin arc that was adjacent to the Mongol-
Okhotsk Ocean. Belt is hosted in gabbro, diorite, and
granodiorite stocks and dikes. | | Name Mineral deposit types Country, region Unit or structure related Age range Tectonic event for origin of metallogenic belt | | Age range | Unit or structure related to origin of belt | Country, region | Mineral deposit types (major deposits) | (1 1) | |---|--|-----------|---|-----------------|--|--------| |---|--|-----------|---|-----------------|--|--------| # Major Metallogenic Belts, Late Carboniferous (Pennsylvanian) through Middle Triassic (320-230Ma) | | 1,111 | jor Metanogeme Ben | s, Eure Curbonnerous (1 cm | syrvaman) enrough Middle 111assie | (020 2001111) | |--|---|-----------------------
--|--|--| | | | | intrudes the Hangay-Dauria and Onon subduction-zone terranes (part of the Mongol-Okhotsk collage). Plutonic rocks are related to the Selenga sedimentary-volcanic plutonic belt (part of the Selenga arc). | | | | Buteeliin
nuruu
(BU) | Peralkaline granitoid-related
Nb-Zr-REE (Bayangol); REE-
Li pegmatite (Bayangol 1); W-
Mo-Be greisen, stockwork, and
quartz vein | Northern Mongolia | Granitoids related to the
Selenga sedimentary-
volcanic plutonic belt
(Selenga arc) intruding the
West Stanovoy terrane. | Early Permian(?) or Mesozoic(?). Early Permian according to a Pb-Pb zircon age of 275 Ma for strongly foliated granite-gneiss. K-Ar isotopic ages of 89-129 Ma for migmatite, gneissic granite, leucogranite, aplite, and pegmatite. | Belt is interpreted as related to an Early Permian core complex that consists of granitoids that intrude granitegneiss and mylonite in the West Stanovoy terrane. Alternatively, the belt may be related collisional granitoids generated during Mesozoic closure of the Mongol-Okhotsk Ocean. | | Central
Mongolia
(CM) | Fe-Zn skarn; Sn skarn, Zn-Pb (±Ag, Cu) skarn; W±Mo±Be skarn; Cu (±Fe, Au, Ag, Mo) skarn (Erdenekhairkhan); Porphyry Cu-Mo (±Au, Ag) (Zos Uul); Porphyry Mo (±W, Bi); Au skarn (Buutsagaan); Granitoid related Au vein; W-Mo-Be greisen, stockwork, and quartz vein; Basaltic native Cu (Lake Superior type) | Central Mongolia | Replacements and granitoids related to the Selenga sedimentary-volcanic plutonic belt (part of the Selenga arc). | Early and Late Permian. | Belt is interpreted as having formed along the Selenga continental margin arc along the northern margin of the Mongol-Okhotsk Ocean. | | Duobaoshan
(DB) | Porphyry Cu-Mo (±Au, Ag)
(Duobaoshan) | Northeastern
China | Granitoids related to the
Nora-Sukhotin-
Duobaoshan island arc,
terrane (part of the South
Mongolia-Khingan
collage). | Pennsylvanian. K-Ar isotopic age for host batholith is 292 Ma. | Belt is interpreted as having formed in an island arc. Belt is hosted in a subduction-related granodiorite porphyry. | | Harmagtai-
Hongoot-
Oyut
(HH) | Porphyry Cu-Mo (±Au, Ag)
(Nariinhudag, Hongoot,
Kharmagtai); Porphyry Au;
Granitoid-related Au vein
(Uhaa hudag and Kharmagtai,
Shine, Hatsar); Au-Ag | Southern Mongolia | Granitoids related to the
South-Mongolian
volcanic-plutonic belt
(South Mongolian arc)
that intrude the
Mandalovoo-Onor island | Middle Carboniferous through Early Permian. | Belt is interpreted as having formed in the South Mongolian continental-margin arc. | | | epithermal Vein Deposits
(Shuteen) | | arc terrane and Mandah
subduction-zone terranes
(both part of the South
Mongolia-Khingan
collage). | | | |-------------------------------------|--|--------------------------------------|--|---|--| | Hitachi
(Hit) | Volcanogenic Zn-Pb-Cu
massive sulfide (Kuroko, Altai
types) (Hitachi) | Japan | South Kitakami island arc
terrane (part of the
Bureya-Jiamusi
supterterrane). | Permian. | Belt is interpreted as having formed in an island arc. | | Kalatongke
(KL) | Mafic-ultramafic related Cu-
Ni-PGE (Kalatongke);
Granitoid-related Au vein
(Alatasi) | Northwestern
China | Waizunger-Baaran island arc terrane (part of the Atasbogd collage). | Pennsylvanian. | Belt is interpreted as having formed in an island arc. | | Kureisko-
Tungsk
(KT) | Fe skarn (Suringdakonskoye);
Mafic-ultramafic related Cu-
Ni-PGE (Bilchany River);
Metamorphic graphite
(Noginskoye) | Russia, northern-
Eastern Siberia | Replacements and plutons
related to the Tungus
plateau basalt, sills, dikes,
and intrusions that intrude
North Asian craton. | Permian and Triassic. | Belt is interpreted as related to mantle superplume magmatism that resulted in widespread development of Trapp magmatism on the North Asian craton along the long-lived West-Siberian rift system and the Yenisei sublongitudinal major fault. | | Maimecha-
Kotuisk
(MK) | Fe-Ti (±Ta, Nb, Fe, Cu, apatite) carbonatite (Magan I, Bor-
Uryach); REE (±Ta, Nb, Fe) carbonatite (Gulinskoye I);
Phlogopite carbonatite
(Odikhimcha) | Russia, Northeast
Siberia | Alkali-ultramafic-
carbonatite intrusions
related to the Tungus
plateau basalt that intrude
the North Asian craton. | Late Permian and Early Triassic. ⁴⁰ Ar/ ³⁹ Ar isotopic ages of deposit-
related intrusions range from 249-
253 Ma. | Belt is interpreted as related to mantle superplume magmatism that resulted in widespread development of Trapp magmatism on North Asian craton. Magmatic rocks include tholeite, diabase, trachybasalt, melanonephelinite volcanic rocks and intrusive rocks, and ijolite-carbonatite and kimberlite complexes. | | Mino-
Tamba-
Chugoku
(MTC) | Volcanogenic-sedimentary Mn
(Hamayokokawa); Podiform
chromite (Wakamatsu); Besshi
Cu-Zn-Ag massive sulfide
(Yanahara) | Japan | Mino Tamba Chichibu
subduction-zone terrane
(part of the Honshu-
Sikhote-Alin collage). | Permian (or older) through
Jurassie. | Belt is hosted in a subduction zone complex composed of marine sedimentary and volcanic rock, and fragments of oceanic crust with ultramafic rock. Besshi deposits are interpreted as having formed along a spreading ridge. Belt contains fragments of oceanic crust with podiform chromite deposits are hosted in ultramafic rocks, and chert-hosted Mn deposits. Deposits and host rocks were subsequently incorporated into a subduction zone. | | Norilsk
(NR) | Mafic-ultramafic related Cu-
Ni-PGE (Norilsk I, II,
Oktyabrskoye 3); Basaltic
native Cu (Lake Superior type)
(Arylakhskoye); Porphyry Cu-
Mo (±Au, Ag)
(Bolgochtonskoye) | Russia, northern-
Eastern Siberia | Tungus plateau basalt,
sills, dikes, and intrusions
that intrude the North
Asian craton. | Early Triassic. ⁴⁰ Ar/ ³⁹ Ar isotopic ages for mafic-ultramafic rocks in the Norilsk district are 241.0-245.3 Ma. Isotopic age for Cu-Mo deposits is 223.3 Ma | Belt is interpreted as related to mantle-derived superplume magmatism that resulted in widespread development of Trapp magmatism on the North Asian craton. | | Orhon-
Selenge
(OS) | Porphyry Cu-Mo (±Au, Ag)
(Erdenetiin Ovoo, Central,
Oyut; Shand; Zuiliin gol) | Central Mongolia | Granitoids in the Selenga sedimentary-volcanic plutonic belt (Selenga arc). | Triassic. Quartz-sericite
metasomatite of the Erdenetiin
Ovoo deposit has K-Ar isotopic
ages 210-190 Ma. Explosive
breccia has age of 210 Ma. K-Ar
ages of deposit-related granite | Belt is interpreted as having formed during oblique subduction of oceanic crust of the Mongol-Okhotsk Ocean plate under the southern margin of the Siberian continent. Basaltic Cu hosted in basalt and trachybasalt in mafic volcanic rock in the Permian Khanui Series. | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | | |--|--|---------------------------------|---|---|--|--|--|--|--| | | Major Metallogenic Belts, Late Carboniferous (Pennsylvanian) through Middle Triassic (320-230Ma) | | | | | | | | | | | | | | range from 185-240-250 Ma. ⁴⁰ Ar/ ³⁹ Ar isochron isotopic age of 207± 2 Ma for
white mica from highest-grade part of the Erdenet mine. | | | | | | | Shanxi
(SX) | Sedimentary bauxite (Ke'er) | Northern China | Stratiform units in the upper part of the Sino-Korean Platform overlapping the Sino-Korean craton and the West Liaoning-Hebei-Shanxi terrane. | Pennsylvanian. | Belt formed during weathering of metamorphic rocks of
the Northern China Platform. Bauxite deposits are
hosted in karst and lagoonal basins in a littoral-shallow
sea. | | | | | | | Major Metallogenic Belts, Late Triassic through Early Jurassic (230-175 Ma) | | | | | | | | | | Central
Hentii
(CH) | Sn-W greisen, stockwork and quartz vein (Modot, Tsagaan dabaa); REE-Li pegmatite; Ta-Nb-REE alkaline metasomatite (Janchivlan); W±Mo±Be skarn; Peralkaline peralkaline granitoid-related Nb-Zr-REE (Avdrant) | Mongolia | Replacements and granitoids related to the Mongol-Transbaikalia volcanic-plutonic belt that intrudes and overlaps the Hangay-Dauria terrane (part of the Mongol-Okhotsk collage, and adjacent units). | Late Triassic and Early Jurassic.
Deposit-related granite with Rb-Sr isotopic age of 190.49 Ma and
K-Ar age of 188-225 Ma. | Belt is interpreted as having formed during generation of collisional granitoids during final closure of the Mongol-Okhotsk Ocean and formation of the Mongol-Transbaikal arc. Small plutons hosting REE deposits intruded in a continental postcollisional event. | | | | | | Delgerhaan
(DE) | Porphyry Cu (±Au); Granitoid-
related Au vein (Bayan Uul,
Unegt) | Central Mongolia | Granitoids in the Mongol-
Transbaikalia volcanic-
plutonic belt that intrudes
the Hangay-Dauria and,
Ononsky terranes (part of
the Mongol-Okhotsk
collage and Gobi-
Khankaisk-Daxinganling
volcanic-plutonic belt and
associated arc). | Late Triassic. ⁴⁰ Ar/ ³⁹ Ar isochron isotopic ages for plagioclasebiotite porphyry and biotite granodiorite from Bayan Uul orefield are 220-223 Ma. | Belt is interpreted as having formed during generation of collisional granitoids during final closure of the Mongol-Okhotsk Ocean and formation of the Mongol-Transbaikal arc. | | | | | | Govi-
Ugtaal-
Baruun-Urt
(GB) | Fe-Zn skarn (Tomortiin Ovoo);
Cu (±Fe, Au, Ag, Mo) skarn;
Zn-Pb (±Ag, Cu) skarn; Sn
skarn (Oortsog ovoo); Fe skarn;
Porphyry Mo (Aryn nuur) | Central and eastern
Mongolia | Replacements related to
the Mongol-Transbaikalia
volcanic-plutonic belt that
intrudes and overlies the
Argun-Idermeg
superterrane and the Gobi-
Khankaisk-Daxinganling
volcanic-plutonic belt and
associated arc. | Late Triassic and Early Jurassic. | Belt is interpreted as having formed during generation of collisional granitoids during final closure of the Mongol-Okhotsk Ocean and formation of the Mongol-Transbaikal arc. Belt is hosted in Late Triassic through Early Jurassic alaskite, granite, and alkaline granite. | | | | | | Harmorit-
Hanbogd-
Lugiingol
(HL) | Sn-W greisen, stockwork, and quartz vein (Khar morit); Ta-Nb-REE Alkaline Metasomatite (Khan Bogd); REE (±Ta, Nb, Fe) carbonatite (Lugiin Gol); Peralkaline granitoid-related Nb-Zr-REE; REE-Li pegmatite | Mongolia | Replacements and granitoids related to the South Mongolian volcanic-plutonic belt that intrudes and overlaps the Hutaguul-Xilinhot and Gurvansayhan terranes and the Lugyngol overlap volcanic-sedimentary basin (both part of the South Mongolia-Khingan and adjacent collages). | Middle Triassic through Early Jurassic. Rb-Sr whole-rock isochron age for the Lugiin gol nepheline syenite pluton is 244 Ma and whole rock-mineral isochron ages are 222 Ma and 180-199 Ma. K-Ar age is 228-242 Ma. The Khanbogd REE-Nb-Zr deposit is associated with late Paleozoic alkaline granite pluton with a Rb-Sr age isotopic of 277 Ma and a K-Ar age of 293 Ma. | Belt is interpreted as having formed in the late Paleozoic and early Mesozoic South Mongolian continental margin arc. | |--|---|--|---|--|---| | Kalgutinsk
(KG) | W-Mo-Be greisen, stockwork,
and quartz vein
(Kalgutinskoye,
(Urzarsaiskoye); Ta-Nb-REE
alkaline metasomatite
(Akalakhinskoye); Sn-W
greisen, stockwork, and quartz
vein (Baliktigkhem) | Russia, southern-
eastern Siberia
(Gorny Altai
Mountains) | Granitoids and replacements related to the Belokurikha plutonic belt that intrudes the Altai and West Sayan terranes (both part of the Altai collage). | Early Jurassic. Rb-Sr isotopic age for the Chindagatui pluton is 201.0 Ma and 204.0 for Kalguta pluton. U-Pb isotopic ages for Ta spodumene granite in the Alakha stock are 183 and 188 Ma and a Rb-Sr age is 195 Ma. Rb-Sr age of Li-F granite-porphyry in the the Dzulaly stock is 188.0 Ma | Belt is interpreted as having formed during generation of REE granitoids along transpression zones (Hovd regional fault zone and companion faults) related to transform microplate boundaries and within-plate (plume) environment. | | Mongol
Altai
(MA) | W-Mo-Be greisen, stockwork,
and quartz vein (Ulaan Uul,
Tsunheg) | Western Mongolia | Small bodies of leucogranite that intrude the Altai and Hovd Hovd terranes (both part of the Altai collage). | Late Triassic and Early Jurassic. | Belt is interpreted as having formed during Mesozoic intraplate rifting related to magmatism along transtensional zones (Hovd regional fault zone and companion faults) along transform microplate boundaries and within-plate (plume) environment. | | North
Hentii
(NH) | Granitoid-related Au vein; Au
in shear zone and quartz vein
(Boroo, Sujigt, Narantolgoi) | Northern Mongolia | Granitoids related to the
Mongol-Transbaikalia
volcanic-plutonic belt. | Middle Triassic through Middle
Jurassic. K-Ar isotopic ages of
166-235 Ma for deposit-related
Yoroogol gabbro-granite. | Belt is interpreted as having formed during generation of collisional granitoids during final closure of the Mongol-Okhotsk Ocean and formation of the Mongol-Transbaikal arc. Belt is interpreted as having formed during granitoid intrusion related to extensional margin of the Khentii collisional uplift. | | North
Kitakami
(NK) | Volcanogenic-sedimentary Mn
(Nodatamagawa);
Volcanogenic Zn-Pb-Cu
massive sulfide (Kuroko, Altai
types) (Taro) | Japan | Mino Tamba Chichibu
subduction-zone terrane
(part of the Honshu-
Sikhote-Alin collage). | Triassic and Early Cretaceous. | Mn deposits are interpreted as having formed in a syngenetic setting on the ocean floor. Kuroko deposits are interpreted as having formed in an island arc. Deposits were subsequently incorporated into a subduction zone. | | North
Taimyr
(NT) | W-Mo-Be greisen, stockwork,
and quartz vein (Kolomeitseva
River); W±Mo±Be skarn
(Morzhovoye); Porphyry Cu-
Mo (±Au, Ag) (Mamont River) | Russia, northern-
Eastern Siberia
(Taimyr
Peminsula) | Replacements associated with granitoids intruding Permian-Triassic volcanic and sedimentary rocks of the Lenivaya-Chelyuskin sedimentary assemblage, Central Taimyr superterrane, Kara superterrane. | Middle and Late Triassic. Age of deposit-related granitoids is about 223-233 Ma. | Belt is interpreted as having formed during generation of granitoids during and after collision between the North Asian craton and the Kara superterrane. Belt is hosted in intrusions in tectonic blocks which are bounded by postorogenic faults. | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | |---|---|---|---|--|---|--|--| | Major Metallogenic Belts, Late Triassic through Early Jurassic (230-175 Ma) | | | | | | | | |
Sambagawa
-Chichibu-
Shimanto
(SCS) | Besshi Cu-Zn-Ag massive
sulfide (Besshi); Volcanogenic-
sedimentary Mn (Ananai);
Cyprus Cu-Zn massive sulfide
(Okuki) | Japan | Shimanto subduction-zone terrane (part of the Sakhalin-Hokkaido collage), Mino Tamba Chichibu subduction-zone terrane (part of the Honshu-Sikhote-Alin collage), and Sambagawa metamorphic terrane (part of the Honshu-Sikhote-Alin collage). | Early Jurassic through
Campanian. Age of submarine
basaltic volcanism and related
Besshi-type deposits is interpreted
as between 200 and 140 Ma. | Mn deposits are interpreted as having formed in syngenetic setting on the ocean floor. Besshi and Cyprus deposits are interpreted as having formed during submarine volcanism related to spreading ridge. Deposits were subsequently incorporated into a subduction zone. | | | | Wulashan-
Zhangbei
(WZ) | Alkaline complex-hosted Au;
(Dongping); Au potassium
metasomatite (Hadamen);
Granitoid-related Au vein | Northwestern and
North-Central
China | Granitoids related to the
Alashan-Yinshan Triassic
plutonic belt (too small to
show at 15 M scale) that
intrudes the Sino-Korean
craton - Erduosi terrane,
Solon terrane, and
adjacent units | Middle Jurassic or younger. ⁴⁰ Ar- ³⁹ Ar isotopic ages of 327 Ma and 157-177 Ma for intrusion and deposit potassic feldspar, respectively. | Belt is interpreted as having formed in granitoids generated above a mantle plume in an extensional tectonic setting. Belt is related to Late Triassic through Early Jurassic alkaline to subalkaline granite. | | | | | | Major Metallo | genic Belts, Middle Jurassic | through Early Cretaceous (175-96 M | Ла) | | | | Allakh-Yun'
(AY) | Au in shear zone and quartz
vein (Yur, Nekur, Bular); Cu
(±Fe, Au, Ag, Mo) skarn
(Muromets); Au in black shale
(Svetly) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins in the Verkhoyansk
(North Asian) craton
margin. | Late Jurassic through Early
Cretaceous. | Belt is interpreted as having formed during accretion of the Okhotsk terrane to the North Asian craton margin. Belt occurs in the Minorsk-Kiderikinsk zone of highly deformed Late Carboniferous and Permian rocks in the western South Verkhoyansk synclinorium. Au quartz veins are slightly older than large anatectic granitic plutons of the South Verkhoyansk synclinorium. | | | | Ariadny
(AR) | Zoned mafic-ultramafic Cr-
PGE (Katenskoe); Mafic-
ultramafic related Ti-Fe (±V)
(Ariadnoe, Koksharovskoe) | Russia, Far East | Plutons intruding the Samarka subduction-zone terrane (part of the Honshu-Sikhote-Alin collage). | Middle Jurassic through Early
Cretaceous. K-Ar isotopic ages of
about 160 Ma age | Belt is interpreted as having formed during generation of ultramafic and gabbroic plutons during underthrusting of the Kula oceanic ridge and formation of bimodal igneous rocks along a transform continental margin. | | | | Bindong
(BD) | Zn-Pb (±Ag, Cu) skarn (Ergu-
Xishan); W±Mo±Be skarn
(Wudaoling); Fe skarn
(Chuihongshan) | Northeastern
China | Replacements related to small granitoids in the Mesozoic Jihei volcanic and plutonic belt that intrudes and overlies the Zhangguangcailing superterrane, Zhangguangcailing sedimentary overlap assemblage, and adjacent units. | Late Jurassic and Early
Cretaceous. K-Ar isotopic age of
157.8 Ma for the Wudaoling
quartz porphyry. | Belt is interpreted as having formed during interplate extensional tectonism along the Trans-Baikalian-Daxinganling transpressional arc with generation of subalkaline to alkaline volcanism and related sedimentation. | | | | Chara-
Aldan
(CA) | Au potassium metasomatite
(Kuranakh); Au skarn (Klin);
U-Au (El'kon group); Au in
shear zone and quartz vein
(Krutoy); Charoite
metasomatite (Murunskoye) | Russia, southern
Yakutia | Replacements and granitoids related to the South Yakutian subalkaline and alkaline igneous belt (part of the Stanovoy plutonic belt) that intrudes the North Asian craton and the Central Aldan superterrane. | Jurassic and Early Cretaceous. | Belt is interpreted as having formed in the back-arc part of the Uda-Stanovoy continental-margin arc that was related to subduction and closure of the Mongol-Okhotsk Ocean beneath the North Asian craton to the north. Belt is hosted in subalkaline and alkaline plutonic rocks, including plutons, stocks, and sills of syenite, monzonite, granosyenite, alkali gabbro, and volcanic analogues, as well as zoned alkali-ultramafic plutons. | |---|---|--|--|---|---| | Chybaga-
lakh
(CH) | Cassiterite-sulfide-silicate vein
and stockwork (Kere-
Yuryakh); Sn-B (Fe) skarn
(ludwigite) (Titovskoe);
Granitoid-related Au vein
(Chuguluk, Nenneli) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Main granite belt that
intrudes the southern
margin of Kolyma-
Omolon superterrane. | Late Jurassic through early Neocomian. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton with associated regional metamorphism and
generation of anatectic high-alumina granitoids. | | Djeltu-
laksky
(DL) | Granitoid-related Au vein
(Zolotaya Gora) | Russia, Far East | Granitoids related to the Stanovoy granite belt that intrudes the Tynda terrane (Stanovoy block) and Dzugdzur anorthositic belt (both part of the North Asian craton). | Early Cretaceous. | Belt is interpreted as having formed in the Uda-
Stanovoy continental-margin arc that was related to
subduction and closure of the Mongol-Okhotsk Ocean
beneath the North Asian craton to the north. | | Daxingan-
ling
(DX) | Zn-Pb (±Ag, Cu) skarn
(Baiyinnuoer); Sn skarn;
Cassiterite-sulfide-silicate vein
and stockwork (Maodeng);
Polymetallic Pb-Zn ± Cu (±Ag,
Au) vein and stockwork
(Meng'entaolegai, Aonaodaba);
Peralkaline granitoid-related
Nb-Zr-REE (Baerzhe); Au-Ag
epithermal vein (Guandi) | Northeastern
China (Great
Xingan
Mountains) | Veins, replacements, and granitoids related to to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt. | Late Jurassic and Early Cretaceous. Alubaogeshan granite porphyry has isotopic age of 149 Ma. Duerji granite complex has a U-Pb zircon age of 150 Ma. Rb- Sr age of 125 Ma for the Baerzhe pluton. Rb-Sr whole-rock isochron age of 148.31 Ma for the Aobaodaba granite porphyry. | Belt is interpreted as having formed during interplate extensional tectonism along the Trans-Baikalian-Daxinganling transpressional arc. The extension is interpreted as occurring during the Late Jurassic in a back-arc setting with formation a series of volcanic and sedimentary basins and sub-alkaline to alkaline granite. The basins and granitoids are controlled by northeast-north-northeast and east-west striking regional faults that reflect the pre-Mesozoic structures. | | Dzid-
Selenginskiy
(DS) | W-Mo-Be greisen, stockwork,
and quartz vein (Dzhida,
Bulagtai); Granitoid-related Au
vein; Au skarn (Tavt, Teshig
1); Porphyry Mo (±W, Bi);
Fluorspar vein (Naranskoye);
Magmatic and metasomatic
apatite (Oshurkovskoye) | Russia, western
Transbaikalia;
northern Mongolia | Veins, replacements, and plutons related to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt that overlies and intrudes the Dzhid, Hamar-Davaa and the Orhon-Ikatsky terranes (both part of the Yenisey-Transbaikal collage). | Middle Jurassic through Early
Cretaceous. Isotopic ages of 180-
170 Ma and 145-140 Ma for
Gudjir complex granitoids. | Interpreted as having formed during subalkaline and alkaline granitoid magmatism associated with transform-continental margin faulting (Mongok-Okhotsk and related faults) and associated Trans-Baikalian-Daxinganling transpressional arc during late-stage of closing and after closing of the Mongol-Okhotsk Ocean. | | East
Mongolian-
Priargun-
skiy-
Deerbugan
(EM) | Polymetallic (Pb, Zn, Ag)
carbonate-hosted metasomatite
(Klichkinskoye,
Vozdvizhenskoye); Zn-Pb
(±Ag, Cu, W) skarn; Au skarn
(Savinskoye-5, Bayandun); | Russia, eastern
Transbaikalia;
Central and eastern
Mongolia;
Northeastern
China | Veins, volcanic
complexes, replacements,
and granitoids related to
the Trans-Baikalian-
Daxinganling
sedimentary-volcanic- | Middle Jurassic through Early
Cretaceous. Gold deposits
and
occurrences with isotopic ages of
190-180 Ma and 165-175 Ma. K-
Ar isotopic age for sericite at
Ulaan Ag-Pb-Zn deposit is 161 | Belt is interpreted as having formed during Middle Jurassic to Early Cretaceous extensional tectonism associated with generation of the Trans-Baikalian-Daxinganling transpressional arc. Belt is controlled by major, regional northeast-and northwest-trending faults. | | Name
(symbol) | Mineral deposit types (major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | |--|--|-----------------|---|-----------|--|--|--|--| | Major Metallogenic Belts. Middle Jurassic through Early Cretaceous (175-96 Ma) | | | | | | | | | | Polymetallic (Pb, Zn±Cu, Ba, | |--------------------------------| | Ag, Au) volcanic-hosted | | metasomatite (Tsav, Jiawula); | | Volcanic-hosted Au-base-metal | | metasomatite (Novo- | | Shirokinskoye); W-Mo-Be | | greisen, stockwork, and quartz | | vein (Tumentsogt); Porphyry | | Cu-Mo (±Au, Ag) | | (Wunugetushan); Porphyry Mo | | (±W, Bi) (Shakhtaminskoye); | | Granitoid-related Au vein | | (Urliin Ovoo); Carbonate- | | hosted As-Au metasomatite | | (Zapokrovskoye); Au-Ag | | epithermal vein (Noni, | | Tsagaanchuluut khudag II, | | Erentaolegai); Sedimentary | | siderite Fe; Sn-W greisen, | | stockwork, and quartz vein | | (Baga Gazar); Carbonate- | | hosted Hg-Sb; Fluorspar vein | | (Solonechnoye); Volcanic- | | hosted U | | | plutonic belt that overlies and intrudes Argun-Idermeg superterrane, and Gobi-Khankaisk-Daxinganling volcanicplutonic belt and adjacent units. Ma. K-Ar isotopic ages of mica at Dornot uranium deposit range from 141-143 Ma. K-Ar isotopic age of the granodioritic porphyry is 164 Ma. # Govi-Tamsag (GT) Sediment-hosted U (Haraat); Evaporite sedimentary gypsum (Shiree Uul, Taragt-2); Sedimentary celestite (Horgo uul); Volcanic-hosted zeolite (Tsagaantsav) Southern Mongolia Stratiform units in the Trans-Baikalian-Daxinganling sedimentary-volcanicplutonic belt that overlies and intrudes the Dzhida, Govi Altai, Mandalovoo-Onor terranes (parts of the South Mongolia-Khingan and Yenisey-Transbaikal collages). Late Jurassic and Early Cretaceous. Belt is interpreted as having formed in Early Cretaceous (Aptian-Albian) and local Paleogene sedimentary rocks deposited in grabens and depressions that overlap the Mesozoic Eastern-Mongolian-Preargune continental rift belt that developed on the Idermeg passive continental margin, Govi-Altai turbidite, and Mandal-Ovoo island arc terranes. Units and structures part of the Trans-Baikalian-Daxinganling transpressional arc. The sedimentary U deposits and occurrences formed in the latest stage of a late Mesozoic continental rift. The gypsum deposits and occurrences formed in continental evaporite basins. # Hartolgoi-Sulinheer (HS) Au-Ag epithermal vein (Biluut, Khoit Barjin); Ag-Pb epithermal vein (Biluut); Porphyry Mo; W±Mo±Be skarn (Qiyishan); Polymetallic Pb-Zn \pm Cu (\pm Ag, Au) vein and stockwork (Harmorit, Khartolgoi); Southern Mongolia; Northwestern China Veins and replacements related to latite and lamprophyre dikes in the Trans-Baikalian-Daxinganling sedimentary-volcanicplutonic belt that intrudes and overlies the Tsagaan Late Jurassic and Early Cretaceous. Belt is interpreted as having formed during interplate extensional tectonism along the Trans-Baikalian-Daxinganling transpressional arc. | | Carbonate-Hosted Ag-Pb
(Hartolgoi); Carbonate-hosted
Hg-Sb (Zuun Togoo Uul);
Silica-carbonate (Listvenite)
Hg | | Uul-Guoershan (part of
Atasbogd collage), and
Solon terrane (part of
Solon collage). | | | |-------------------------------|--|---|--|--|--| | Jiliaolu
(JLL) | Zn-Pb (±Ag, Cu) skarn
(Huanren); Cu (±Fe, Au, Ag,
Mo) skarn (Huatong);
Granitoid-related Au vein
(Jiaojia); Polymetallic Pb-Zn ±
Cu (±Ag, Au) vein and
stockwork (Ermi); Volcanic-
hosted Au-base metal
metasomatite (Liujiapuzhi) | Northeastern
China | Replacements and
granitoids related to the
Jilin-Liaoning-East
Shandong volcanic-
plutonic belt that overlies
and intrudes Sino-Korean
craton - Jilin-Liaoning-
East Shandong terrane | Middle Jurassic and Early
Cretaceous. | Belt is interpreted as having formed during interplate magmatism associated with extensional tectonism related to oblique subduction of the Pacific Oceanic plate beneath the Eurasian continental plate. Belt is hosted in twenty relatively large volcanic basins. Belt contains more than 200 granitoid-related vein Au deposits in a district of 23,000 km², some large and superlarge, that comprise one quarter of the proven Au reserve in China. | | Kitakami
(KK) | metasomatite (Liujiapuzhi)
Cu (±Fe, Au, Ag, Mo) skarn
(Kamaishi); Granitoid-related
Au vein (Oya) | Japan | Replacements in the Early
Cretaceous Hiroshima
granitic belt intruding the
South Kitakami terrane
(part of the Bureya-
Jiamusi supterterrane),
and the Mino-Tamba-
Chichibu terranes (part of
the Honshu-Sikhote-Alin
collage). | Early Cretaceous (Aptian through
Albian). K-Ar isotopic ages of
120-110 Ma for deposit-related
granitic rocks in the Kitakami
Mountains. | Belt is interpreted as having formed during intrusion of granitoids associated with a continental-margin arc and siliceous magmatism. | | Kondyor-
Feklistov
(KD) | Zoned mafic-ultramafic Cr-PGE (Kondyor) | Russia, Far East | Mafic-ultramafic intrusions intruded along a major fault cutting the North Asian craton and northeastern part of the Tukuringra-Dzhagdy terrane (part of the Mongol-Okhotsk collage). | Early Cretaceous. K-Ar isotopic ages for the zoned maficultramafic intrusions in the Kondyor metallogenic belt range from 110-160 Ma. ⁴⁰ Ar- ³⁹ Ar isotopic age of 127 Ma for the alkalic mafic and ultramafic igneous rocks at Ingagli. | Belt is interpreted as having formed during intrusion of mafic-ultramafic plutons along a deep-seated fault that formed along the North Asian craton margin during collision and accretion of outboard terranes. | | Kular
(KU) | Au in shear zone and quartz
vein (Emelyanovskoye);
Granitoid-related Au vein
(Novoe); Sn-W greisen,
stockwork, and quartz vein
(Tirekhtyak district) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins in the Kular-Nera
terrane (part of the
Verkhoyansk-Kolyma
collage). | Late Jurassic through Early
Neocomian. Deposit-related
granite has a ⁴⁰ Ar- ³⁹ Ar isotopic
age of 103 Ma. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton and associated regional metamorphism. Belt
occurs in a complex fold and thrust structure with
refolded recumbent isoclines. Host rocks are
metamorphosed to the greenschist facies. | | Nerchinsky
(NC) | Granitoid-related Au vein
(Darasunskoye); W-Mo-Be
greisen, stockwork, and quartz
vein (Muoklakanskoye);
Fluorspar vein (Usuglinskoye) | Russia, eastern
Transbaikalia | Granitoids and replacements related to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt that intrudes and overlaps the West Stanovoy terrane, Barguzin-Vitim granitoid belt, and Selenga sedimentary-volcanic plutonic belt. | Middle Jurassic thorugh Early Cretaceous. | Belt is interpreted as related to magmatism along transtensional zones along transform microplate boundaries and within-plate (plume) environment. Belt is related to granitoids in the Trans-Baikalian-Daxinganling transpressional arc. | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | |-------------------------|---|-----------------------|---
--|--|--|--|--| | | Major Metallogenic Belts, Middle Jurassic through Early Cretaceous (175-96 Ma) | | | | | | | | | | | | plutonic belt that intrudes
and overlaps the West
Stanovoy terrane,
Barguzin-Vitim granitoid
belt, and Selenga
sedimentary-volcanic
plutonic belt. | | | | | | | North
Bureya
(NB) | Au-Ag epithermal vein
(Pioneer); Granitoid-related Au
vein (Pokrovskoe) | Russia, Far East | Veins and granitoids related to the Umlekam-Ogodzhin volcanic-plutonic belt that intrudes and overlaps the Malokhingansk and, Turan terranes (part of the Bureya superterrane), Gonzha terrane, and Nora-Sukhotin-Duobaoshan terrane (part of the South Mongolia-Khingan collage), and Tukuringra-Dzhagdy terrane (part of the Mongol-Okhotsk collage). | Early Cretaceous. | Belt is interpreted as having formed with the Umlekan-Ogodzhin continental-margin arc that formed during subduction of part of the ancestral Pacific Ocean plate that is now preserved as tectonically interwoven fragments of the Badzhal, Khabarovsk, and Samarka terranes. | | | | | North Jilin
(NJ) | Zn-Pb (±Ag, Cu) skarn
(Tianbaoshan); Granitoid-
related Au vein; Porphyry Cu
(±Au) (Xiaoxinancha);
Porphyry Mo (±W, Bi)
(Daheishan); Polymetallic (Pb,
Zn±Cu, Ba, Ag, Au) volcanic-
hosted metasomatite (Sanmen);
Au-Ag epithermal vein
(Ciweigou); Fluorspar vein | Northeastern
China | Replacements related to Late Jurassic and Early granitoids intruding the North Margin plutonic belt that overlies the North China Platform and Laoling terrane (part of the Wundurmiao collage) and Zhangguangcailing superterrane. | Middle Jurassic through Early
Cretaceous. Siliceous and mafic
volcanic rocks at Ciweigou Au-
Ag epithermal deposit have a Rb-
Sr isochron age of 147.5 Ma. | Belt is interpreted as related to magmatism along transpression zones along transform microplate boundaries and within-plate (plume) environments. | | | | | North
Bureya
(NB) | Au-Ag epithermal vein
(Pioneer); Granitoid-related Au
vein (Pokrovskoe) | Russia, Far East | Veins and granitoids
related to the Umlekam-
Ogodzhin volcanic-
plutonic belt that intrudes
and overlaps the
Malokhingansk terrane,
the Turan terrane of the
Bureya-Jiamusi
superterrane, the Gonzha | Early Cretaceous. | Belt is interpreted as having formed with the Umlekan-
Ogodzhin continental-margin arc during subduction of
part of the ancestral Pacific Ocean plate that is now
preserved as tectonically interwoven fragments of the
Badzhal, Khabarovsk, and Samarka terranes. | | | | | | | | terrane, the Nora-
Sukhotin-Duobaoshan
terrane (part of the South
Mongolia-Khingan
collage), and the
Tukuringra-Dzhagdy
terrane (part of the
Mongol-Okhotsk collage). | | | |--|---|---|---|---|---| | North
Stanovoy
(NS) | Granitoid-related Au vein
(Bamskoe); Au-Ag epithermal
vein (Burindinskoe) | Russia, Far East | Granitoids related to the
Stanovoy granite belt
intruding the Tynda
terrane (part of the North
Asian craton). | Early Cretaceous. | Belt is interpreted as having formed in the Uda-
Stanovoy continental-margin arc during subduction and
closure of the Mongol-Okhotsk Ocean beneath the North
Asian craton to the north. | | Onon-
Turinskiy
(OT) | Granitoid-related Au vein
(Lubavinskoye); □orphyry Au
(Ara-Ilinskoe); Cassiterite-
sulfide-silicate vein and
stockwork (Khapcheranga,
Tarbaldzheiskoe) | Russia, Central
Transbaikalia;
northern Mongolia | Veins, volcanic complexes, and replacements related to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt that overlies and intrudes the Selenga sedimentary-volcanic plutonic belt, and the Ononsky terrane (part of the Mongol-Okhotsk collage). | Middle Jurassic through Early Cretaceous. | Belt is interpreted as having formed during interplate extensional tectonism along the Trans-Baikalian-Daxinganling transpressional arc. Belt and related host rocks occurs along the sub-meridional Onon-Tura fault. | | Polousny
(PO) | Cassiterite-sulfide-silicate vein and stockwork deposits (Ulakhan-Sala); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork deposits (Aragochan, Dalnee) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Granitoids related to the
Northern granite belt that
intrudes the Kolyma-
Omolon superterrane and
adjacent units. | Middle Cretaceous (Neocomian to Aptian). ⁴⁰ Ar- ³⁹ Ar isotopic age of 120-130 Ma. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton and associated regional metamorphism and
generation of anatectic granitoids. | | Samarka
(SM) | Porphyry Cu-Mo (±Au, Ag)
(Malakhitovoe); Porphyry Mo
(±W, Sn, Bi); W±Mo±Be skarn
(Vostok-2, Lermontovsky) | Russia, Far East | Replacements and granitoids in the Khungari-Tatibi granite belt that intrudes the Samarka terrane (part of the Honshu-Sikhote-Alin collage). | Early and mid-Cretaceous. K-Ar isotopic ages of 110-115 Ma for host granitoids. | Belt is interpreted as having formed during generation of S-type grantitoid plutons during underthrusting of the Kula oceanic ridge and formation of bimodal igneous rocks along a transform continental margin. | | Shilkinsko-
Tukuringrs
kiy
(ST) | Granitoid-related Au vein
(Ukonikskoe); Porphyry Au;
Au skarn; Au-Ag epithermal
vein; Porphyry Mo (±W, Bi)
(Zhirekenskoye); W-Mo-Be
greisen, stockwork, and quartz
vein; Cassiterite-sulfide-silicate
vein and stockwork; Ta-Nb- | Russia, eastern
Transbaikalia | Granitoids, volcanic rocks, and replacements related to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt. | Middle Jurassic through Early Cretaceous. | Belt is interpreted as related to magmatism along transtension zones the Trans-Baikalian-Daxinganling transpressional arc. Belt occurs in basins with continental sedimentary rocks and alkaline magmatic plutonic and volcanic rocks that occur along the Mongol-Okhotsk suture that separates various terranes and the North Asian and the Sino-Korean cratons. | REE alkaline metasomatite; Polymetallic Pb-Zn \pm Cu (\pm Ag, | Name | Mineral deposit types | Country, region | Unit or structure related | Age range | Testania event for evisin of metallogenia helt | |----------|-----------------------|-----------------|---------------------------|-----------|--| | (symbol) | (major deposits) | | to origin of belt | | Tectonic event for origin of metallogenic belt | # Major Metallogenic Belts, Middle Jurassic through Early Cretaceous (175-96 Ma) | | Au) vein and stockwork
(Berezitovoe); Au-Ag
epithermal vein (Baleyskoe);
Fluorite vein (Kalanguyskoye) | | | | | |-----------------------------------|--|---|--|---|---| | South
Verkho-
yansk
(SV) | Au in shear zone and quartz vein (Nezhdaninka); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork (Upper Menkeche); Granitoid-related Au vein; W-Mo-Be greisen, stockwork, and quartz vein; Au-Ag epithermal vein | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins related to mid-
Cretaceous granitoids in
the South Verkhoyansk
granite belt intruding the
Verkhoyansk (North
Asian) craton margin | Aptian through Late Cretaceous. | Belt is interpreted as having formed during accretion of the Okhotsk terrane to the North Asian craton and resultant deformation of South Verkhoyansk belt. Au
quartz veins are relatively older than large granitic plutons intruding the South Verkhoyansk synclinorium that have ⁴⁰ Ar- ³⁹ Ar isotopic ages of 120-123 Ma. | | Taebaegsan
(TB) | Fe skarn (Kangwon, Dongnam,
Susuk); Fe-Zn skarn
(Yomisan); Zn-Pb (Ag, Cu, W)
skarn; W±Mo±Be skarn
(Wondong, Sangdong); REE-Li
pegmatite; Au in shear zone
and quartz vein (Seojom);
polygenic REE-Fe-Nb (Bayan-
Obo type) (Hongcheon-Jaun) | South Korea | Replacements and dikes related to Middle Jurassic through Early Cretaceous granitoids in the Daebo Granite intruding the Yeongnam Metamorphic Complex and Great Limestone Group (both part of the Sino-Korean craton). | Middle Jurassic through Early Cretaceous. | Belt is interpreted as having formed during intrusion of granitoids along a continental-margin arc that was linked to subduction of the ancestral Pacific Ocean plate. Granite consists of biotite granite, feldspar porphyry, and granite porphyry that intrude Precambrian metasedimentary rocks. Deposits formed during contact metasomatism of calcareous layers in metasedimentary rock. | | Tompo
(TO) | W±Mo±Be skarn (Agylky); Sn-W greisen, stockwork, and quartz vein (Erikag, Dzhuptagan) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Replacements in the
Northern and Transverse
granite belt along the
northwestern margin of
the Kolyma-Omolon
superterrane. | Neocomian. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton with associated regional metamorphism and
generation of anatectic granitoids. Belt occurs along
sublatitudinal high-angle, probable strike-slip faults that
cut Permian through Middle Jurassic sandstone and
shale. | | Verkhne-
Ingodinsky
(VI) | Cassiterite-sulfide-silicate vein
and stockwork (Ingodinskoye,
Levo-Ingodinskoye) | Russia, Central
Transbaikalia | Veins, volcanic complexes, and replacements related to the Trans-Baikalian-Daxinganling sedimentary-volcanic-plutonic belt. | Middle Jurassic through Early Cretaceous. | Belt is interpreted as related to magmatism in transpression zones related to the Trans-Baikalian-Daxinganling transpressional arc. | | Verkho-
yansk
(VK) | Au in shear zone and quartz
vein (Djandi, Nikolaevskoe,
Otkrytoe); Polymetallic Pb-Zn
± Cu (±Ag, Au) vein and
stockwork; Sn-W greisen,
stockwork, and quartz vein | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Verkhoyansk (North
Asian) craton margin. | Late Jurassic through early Neocomian. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton and associated regional metamorphism. | (Imtandzha); Au in black shale (Mangazeika 2) | Yana-
Adycha
(YA) | Cassiterite-sulfide-silicate vein
and stockwork (Ege-Khaya,
Ilin-Tas, Burgochan); Sn-W
greisen, stockwork, and quartz
vein (Kester) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Replacements in the
Transverse granite belt
along the northwestern
margin of the Kolyma-
Omolon superterrane. | Mid-Cretaceous. | Belt is interpreted as having formed during collision of
the Kolyma-Omolon superterrane and the North Asian
craton and associated regional metamorphism and
generation of anatectic granitoids. | |---------------------------------------|--|---|---|--|---| | Yanshan
(YS) | Cu (±Fe, Au, Ag, Mo) skarn (Shouwangfen); W±Mo±Be skarn (Yangjiazhangzi); Porphyry Mo (±W, Bi) (Dazhuangke); Granitoidrelated Au vein (Jinchanggouliang); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork (Caijiaying); Au-Ag epithermal vein (Niujuan) | Northeastern and northern China | Veins, replacements, and granitoids related to the Yanliao volcanic and sedimentary basin and plutonic belt that overlies and intrudes the northeastern Sino-Korean craton. | Middle Jurassic through Early
Cretaceous. K-Ar isotopic age of
Hongluoshan granite is of 178 to
186 Ma. K-Ar age for related dike
at Jinchanggouliang deposit is
about 120 Ma. Quartz diorite and
quartz monzonite at Dazhuangke
deposit have a K-Ar isotopic age
of 146-168 Ma. | Belt is interpreted as having formed during interplate magmatism associated with extensional tectonism related to oblique subduction of the Pacific Oceanic plate beneath the Eurasian plate. | | | | Major Me | etallogenic Belts, Cenomania | n through Campanian (96-72 Ma) | | | Badzhal-
Komso-
molsk
(BK) | Sn-W greisen, stockwork, and
quartz vein (Pravourmiyskoe,
Solnechnoe, Sobolinoye);
Cassiterite-sulfide-silicate vein
and stockwork; Cu (±Fe, Au,
Ag, Mo) skarn; Porphyry Mo
(±W, Sn, Bi) | Russia, Far East | Veins and replacements
related to the Khingan-
Okhotsk volcanic-plutonic
belt. | Late Cretaceous. K-Ar isotopic ages of 75-86 Ma. Rb-Sr age of 95-83 Ma. | Belt is interpreted as having formed during generation of granitoids along the Khingan transform continental-margin arc consisting of the Khingan-Okhotsk volcanic-plutonic belt that related to oblique subduction of the ancestral Pacific Ocean plate. | | Chelasin
(CL) | Sn-B (Fe) skarn (ludwigite);
Granitoid-related Au vein; Cu
(±Fe, Au, Ag, Mo) skarn;
Porphyry Cu (±Au) (Chelasin) | Russia, Far East | Replacements and granitoids related to the Okhotsk-Chukotka volcanic-plutonic belt that intrudes and overlies the North Asian craton and the Uda volcanic-plutonic belt. | Late Cretaceous and Paleocene. | Belt is interpreted as having formed during generation of granitoids in the Okhotsk-Chukotka continental margin arc that is related to subduction of the ancestral Pacific Ocean plate. | | Central
Polousny
(CP) | Cassiterite-sulfide-silicate vein
and stockwork (Ukachilkan);
Sn-W greisen, stockwork, and
quartz vein (Deputatskoe;
Takalkan) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Northern granite belt
along the northwestern
margin of the Kolyma-
Omolon superterrane. | Aptian through Late Cretaceous.
Deputatskiy stock has a K-Ar
isotopic age of 108 Ma. | Belt is interpreted as having formed during extension related to initiation of opening of Eurasia Basin in the Arctic Ocean. Belt associated with REE and subalkali granitoids that occur in small stocks. | | Chokhchur-
Chekur-
dakh
(CC) | Cassiterite-sulfide-silicate vein
and stockwork (Churpunya,
Chokurdakh) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Svyatoi Nos volcanic
belt that occurs along the
southern margin of the
Kolyma-Omolon
superterrane. | Aptian through Late Cretaceous. Granitoids have ⁴⁰ Ar- ³⁹ Ar isotopic ages of 105-106 Ma. | Belt is interpreted as having formed during extension related to initiation of opening of the Eurasia Basin in the Arctic Ocean. Belt occurs along the Yana fault. Belt is hosted in granodiorite, amphibole-biotite granite, and subalkali granite that form part of Svyatoy Nos magmatic arc. | | Eckyuchu-
Billyakh
(EB) | Polymetallic Pb-Zn ± Cu (±Ag,
Au) vein and stockwork
(Prognoz); Clastic-sediment-
hosted Sb-Au; Hg-Sb-W vein | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements
related to the Transverse
granite belt that intrudes
the Verkhoyansk (North | Aptian through Late Cretaceous.
Granitoid stocks and dikes of
various composition have ⁴⁰ Ar-
³⁹ Ar isotopic ages of older than | Belt is interpreted as having formed during extension related to initiation of opening of the Eurasia Basin in the Arctic Ocean. Belt is hosted in granitoid stocks and dikes that occur at the terminations of the Transverse | | Name
(symbol) | Mineral deposit types (major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | |---|--|------------------|---|---
--|--|--|--| | | Major Metallogenic Belts, Cenomanian through Campanian (96-72 Ma) | | | | | | | | | | and stockwork (Zvyozdochka);
Ag-Sb vein vein; Au-Ag
epithermal vein | | Asian) craton margin. | 120 Ma. Khoboyatu-Echiy granite pluton has a ⁴⁰ Ar- ³⁹ Ar age of 97 Ma. | granitoid belt. | | | | | Ezop-Yam-
Alin
(EY) | W-Mo-Be greisen, stockwork,
and quartz vein (Lednikovy-
Sarmaka); Sn-W greisen,
stockwork, and quartz vein;
Cassiterite-sulfide-silicate vein
and stockwork; Porphyry Mo
(±W, Sn, Bi) (Ippatinskoe,
Olgakanskoe, Shirotnoe) | Russia, Far East | Veins and replacements related to the Khingan-Okhotsk volcanic-plutonic belt. | Late Cretaceous. Sn granite has isotopic ages of 75-100 Ma. | Belt is interpreted as having formed during generation of granitoids along along the Khingan transform continental-margin arc that contains the Khingan-Okhotsk volcanic-plutonic belt and that is related to oblique subduction of ancestral Pacific Ocean plate. | | | | | Gyeongnam
(GN) | Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork; Polymetallic (Pb, Zn±Cu, Ba, Ag, Au) volcanic-hosted metasomatite (Gwymyeong, Mulkum, Kuryong); Fe skarn Ulsan); W-Mo-Be greisen, stockwork, and quartz vein; Porphyry Mo (±W, Sn, Bi); Cu-Ag vein (Goseong, Tongyoung) Au in shear zone and quartz vein (Cheolma) | South Korea | Veins and replacements related to the Cretaceous Bulgugsa granite (biotite and feldspar porphyry) that intrudes Sino-Korean craton - Yeongnam terrane. | Cenomanian through Campanian (96-75 Ma). | Belt is interpreted as having formed in a continental-
margin arc during subduction of the ancestral Pacific
Ocean plate. Deposits occur along the fissures and shear
zones. | | | | | Gyeongpuk
(GP) | Polymetallic Pb-Zn ± Cu (±Ag,
Au) vein and stockwork
(Darak, Chilgok); W-Mo-Be
greisen, stockwork, and quartz
vein (Kyeongju); Sn-W
greisen, stockwork, and quartz
vein (Wangpiri); Fe skarn;
Polymetallic Ni vein
(Samkwang). | South Korea | Veins and replacements related to the Cretaceous Bulgugsa granite (biotite granite and granodiorite) that intrudes the Sino-Korean craton - Yeongnam terrane. | Cenomanian through Campanian. | Belt is interpreted as having formed in a continental-
margin arc during subduction of the ancestral Pacific
Ocean plate. | | | | | Hidaka
(HD) | Cyprus Cu-Zn massive sulfide (Shimokawa) | Japan, Hokkaido | Stratiform units in the Shimanto subduction-zone terrane (part of the East Sakhalin collage). | Middle Cretaceous through Eocene. | Belt is interpreted as having formed in basalt generated along the Kula-Pacific ridge. Subsequent structural incorporatation of host rocks and deposits into a subduction zone. | | | | | Inner Zone
Southwest
Japan
(ISJ) | Zn-Pb (±Ag, Cu) skarn
(Kamioka Tochibara); W-Mo-
Be greisen, stockwork, and
quartz vein (Otani); W±Mo±Be
skarn; Cu (±Fe, Au, Ag, Mo) | Japan | Veins and replacements in
the Nohi rhyolite volcanic
belt and the Hiroshima
granitic belt that overlie
and intrude a large portion | Cretaceous and Paleogene.
Cretaceous age of deposit-related
granitic rocks in the Ryoke and
Sanyo belts. Mainly a Paleogene
age for Sanin belt. | Belt is interpreted as having formed during generation of granitoids along the East Asia continental margin arc related to subduction of the Kula and Pacific Ocean plates. East Asia arc is interpreted as the southern extension of the East Sikhote-Alin arc. | | | | | | skarn; Cu (±Fe, Au, Ag, Mo)
skarn (Bandojima); Porphyry
Mo (±W, Sn, Bi); Polymetallic
Pb-Zn ± Cu (±Ag, Au) vein and
stockwork (Ikuno); Fluorspar
vein; Metamorphic graphite | | and intrude a large portion
of central and southern
Japan. | age for Sanin belt. | extension of the East Sikhote-Alin arc. | |--------------------------------|---|---|--|---|--| | Khandyga
(KA) | Ag-Sb vein; Carbonate-hosted
As-Au metasomatite; Clastic-
sediment-hosted Sb-Au
(Senduchen); Clastic sediment-
hosted Hg±Sb (Seikimyan) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Verkhoyansk (North
Asian) craton margin. | Aptian through Late Cretaceous. | Belt is interpreted as having formed during post-
accretionary extension related to initiation of opening of
the Eurasia Basin. Belt occurs in veins and replacements
in the southern Verkhoyansk fold and thrust along the
Sette-Daban tectonic zone. | | Kukhtuy-
Uliya
(KU) | Au-Ag epithermal vein
(Khakandzha, Yurievka);
Porphyry Mo (±W, Sn, Bi);
Porphyry Sn; Polymetallic (Pb,
Zn±Cu, Ba, Ag, Au) volcanic-
hosted metasomatite | Russia, Far East | Veins related to the
Okhotsk-Chukotka
volcanic-plutonic belt that
intrudes and overlies the
Okhotsk terrane. | Late Cretaceous and Paleocene. | Belt is interpreted as having formed during generation of granitoids along the Okhotsk-Chukotka continental margin arc related to subduction of the ancestral Pacific Ocean plate. | | Luzhkinsky
(LZ) | Sn-W greisen, stockwork, and quartz vein (Tigrinoe, Zimnee, Arsenyevsky); Cassiteritesulfide-silicate vein and stockwork (Vysokogorskoe); W-Mo-Be greisen, stockwork, and quartz vein; Porphyry Sn (Yantarnoe); Porphyry Cu (±Au); Porphyry Cu-Mo (±Au, Ag); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork | Russia, Far East | Veins, replacements, and granitoids related to the East Sikhote-Alin volcanic-plutonic belt that overlies and intrudes the Zhuravlevsk-Amur River terrane (part of the Honshu-Sikhote-Alin collage). | Mid-Cretaceous through early
Tertiary isotopic ages that range
form 100 to 50 Ma. | Belt is interpreted as having formed during generation of granitoids in the back-arc of the East-Sikhote-Alin continental-margin arc related to oblique subduction of the ancestral Pacific Ocean plate. | | Malo-
Khingan
(MK) | Porphyry Sn (Khinganskoe);
Rhyolite-hosted Sn | Russia, Far East | Granitoids related to the Khingan-Okhotsk volcanic-plutonic belt. | Late Cretaceous. Probable
deposit-related to subalkaline
potassium granite has K-Ar ages
of 80-90 Ma and a Rb-Sr whole-
rock isochron age of 78 Ma. | Belt is interpreted as having formed during generation of granitoids along the Khingan transform continental-margin arc that contained the Khingan-Okhotsk volcanic-plutonic belt. Arc is related to oblique subduction of the ancestral Pacific Ocean plate. | | Pilda-
Limuri
(PL) | Sn-W greisen, stockwork, and quartz vein; W-Mo-Be greisen, stockwork, and quartz vein; Ag-Sb vein (Dyappe); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork (Uchaminskoye); Granitoidrelated Au vein (Agnie-Afanasievskoye) | Russia, Far East | Veins, replacements, and granitoids related to the Khingan-Okhotsk volcanic-plutonic belt. | Late Cretaceous. | Belt is interpreted as having formed during generation of granitoids along the Khingan transform continental-margin arc that contained the Khingan-Okhotsk volcanic-plutonic belt. Arc is related to oblique subduction of the ancestral Pacific Ocean plate. | | Preddzhug-
dzhursky
(PD) | Porphyry Cu-Mo (±Au, Ag_;
Porphyry Cu (±Au); Au-Ag
epithermal vein (Avlayakan);
Granitoid-related Au vein; Cu
(±Fe, Au, Ag, Mo) skarn | Russia, Far East | Granitoids related to the Okhotsk-Chukotka volcanic-plutonic belt that intrudes and overlies the East Aldan superterrane and adjacent units. | Late Cretaceous and Paleocene. | Belt is interpreted as having formed during generation of granitoids along Okhotsk-Chukotka continental margin arc related to oblique subduction of the ancestral Pacific Ocean plate. | | Name
(symbol) | Mineral deposit types (major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | | | | |---|---|---|---|---
---|--|--|--| | Major Metallogenic Belts, Cenomanian through Campanian (96-72 Ma) | | | | | | | | | | Selennyakh
(SE) | Carbonate-hosted Hg-Sb (Gal
Khaya, Pologoye, Arbat);
Volcanic-hosted Hg (Dogdo);
Ag-Sb vein (Kysylga) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements in
the Uyandina-Yasachnaya
volcanic belt along the
southern margin of
Kolyma-Omolon
superterrane. | Aptian through Late Cretaceous. | Belt is interpreted as having formed during post-accretionary extension related to initiation of opening of the Eurasia Basin. | | | | | Sergeevka-
Taukha
(ST) | Granitoid-related Au vein (Progress, Askold); Boron (datolite) skarn (Dalnegorsk); Zn-Pb (±Ag, Cu) skarn (Nikolaevskoe, Partizanskoe); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork; Porphyry Sn; Polymetallic (Pb, Zn±Cu, Ba, Ag, Au) volcanichosted metasomatite (Krasnogorskoye); Au-Ag epithermal vein; Porphyry Cu (±Au) | Russia, Far East | Veins and granitoids
related to the East
Sikhote-Alin volcanic-
plutonic belt that overlies
and intrudes the
Sergeevka, Samarka, and
Taukha terranes. | Late Cretaceous and early
Tertiary. K-Ar ages of deposits
range between 60 and 80 Ma. | Belt is interpreted as having formed during generation of granitoids along the East-Sikhote-Alin continental-margin arc related to subduction of the ancestral Pacific Ocean plate. | | | | | Tumnin-
Anyui
(TA) | Porphyry Sn (Mopau);
Cassiterite-sulfide-silicate vein
and stockwork; Au-Ag
epithermal vein (Tumninskoye) | Russia, Far East | Veins and granitoids
related to the East
Sikhote-Alin volcanic-
plutonic belt that overlies
and intrudes the Kema,
Luzhkinsky, and Samarka
terranes. | Late Cretaceous and Paleocene. | Belt is interpreted as having formed during generation of granitoids along the East-Sikhote-Alin continental-margin arc related to oblique subduction of the ancestral Pacific Ocean plate. | | | | | Upper
Uydoma
(UY) | Cassiterite-sulfide-silicate vein
and stockwork (Khoron);
Polymetallic Pb-Zn ± Cu (±Ag,
Au) vein and stockwork; Sn-W
greisen, stockwork, and quartz
vein; Porphyry Mo (±W, Sn,
Bi) | Russia, East-
Central Yakutia
(Verkhoyansk
area) | Veins and replacements related to the Okhotsk-Chukotka volcanic-plutonic belt that intrudes and overlies the Verkhoyansk (North Asian) craton margin. | Late Cretaceous. | Belt is interpreted as having formed during generation of granitoids along the Okhotsk-Chukotka continental margin arc that was related to oblique subduction of the ancestral Pacific Ocean plate. | | | | | | | Major Met | allogenic Belts, Maastrichtia | n through Oligocene (72 to 24 Ma) | | | | | | Kema
(KM) | Ag-Au epithermal vein
(Glinyanoe, Tayozhnoe 1);
Porphyry Cu-Mo (±Au, Ag)
Sukhoi Creek; Porphyry Cu
(±Au) Verkhnezolotoe);
Porphyry Mo (±W, Sn, Bi) | Russia, Far East | Veins related to the East
Sikhote-Alin volcanic-
plutonic belt that intrudes
and overlies the Kema
terrane (part of the
Honshu-Sikhote-Alin
collage). | Early Tertiary. | Belt is interpreted as having formed during generation of granitoids along the East-Sikhote-Alin continental-margin arc that is related to subduction of ancestral Pacific Ocean plate. | | | | | Lower
Amur
(LA) | Au-Ag epithermal vein (Mnogovershinnoe);
Epithermal quartz-alunite (Iskinskoe); Porphyry Au;
Porphyry Cu (±Au); Sn-W greisen, stockwork, and quartz vein | Russia, Far East | Veins and granitoids related to the East Sikhote-Alin volcanic-plutonic belt that intrudes and overlies Amur River and Kiselyovka-Manoma subduction-zone terranes (both part of Honshu-Sikhote-Alin collage). | Late Cretaceous and Paleocene.
K-Ar isotopic deposit ages are 49-
69 Ma. | Belt is interpreted as having formed during generation of granitoids along the East-Sikhote-Alin continental-margin arc that is related to subduction of ancestral Pacific Ocean plate. | |-------------------------------|--|-----------------------------|--|---|--| | Popigay
(PP) | Impact diamond (Popigay) | Russia, northern
Yakutia | Astrobleme formed on North Asian craton. | Eocene. Tagamite and impact glasses have ⁴⁰ Ar- ³⁹ Ar isotopic ages of 35.7 Ma. | Belt is hosted in the Popigay ring structure that is interpreted as resulting from meteoritic impact with formation of pseudotachylites, high-grade shock metamorphic minerals, and allogenic breccia. | | | | Major I | Metallogenic Belts, Miocene | through Quaternary (24-0 Ma) | | | Hokuriku-
Sanin
(HS) | Au-Ag epithermal vein
(Omori); Polymetallic Pb-Zn ±
Cu (±Ag, Au) vein and
stockwork (Taishu); Ag-Sb
vein; Clastic-sediment-hosted
U | Japan | Veins and replacements related to the Neogene Japan sedimentary basin that overlies and intrudes the Hiroshima granitic plutonic belt, and the Akiyoshi-Maizuru and Mino-Tamba-Chichibu terranes (both part of the Honshu-Sikhote-Alin collage). | Miocene and Pleistocene. | Belt is interpreted as having formed along an island arc during back-arc rifting or axial part of the Japan arc that is tectonically related to subduction of Philippine Sea plate beneath the East Asia continental margin. | | Kyushu
(KY) | Au-Ag epithermal vein
(Hishikari, Kushikino, Taio) | Japan | Veins and replacements related to the Quaternary Japan volcanic belt and the Neogene Japan sedimentary basin that overlie and intrude the Akiyoshi-Maizuru, Shimanto, and Mino-Tamba-Chichibu terranes (both part of the Honshu-Sikhote-Alin collage). | Pliocene through Quaternary. | Belt is interpreted as having formed during hydrothermal activitiy along the Japan arc in either back-arc rifting or the axial part of the arc. Arc is tectonically related to subduction of the Pacific Ocean and Philippine Sea plates beneath the East Asia continental margin. | | Northeast
Hokkaido
(NH) | Au-Ag epithermal vein
(Konomai); Volcanic-hosted
Hg (Itomuka); Hg-Sb-W vein
and stockwork (Ryushoden);
Clastic sediment-hosted Hg±Sb | Japan | Veins and replacements in
the Quaternary Japan
volcanic belt and the
Neogene Japan
sedimentary basin that
overlies and intrudes the
Hidaka zone of the
Shimanto accretionarry
wedge terrane (part of the
Honshu-Sikhote-Alin
collage). | Miocene through Quaternary.
Two ages of deposits: early stage
(14.4-11.2 Ma); and late stage
(8.1-0.3 Ma). | Belt is interpreted as having formed along the Japan arc that is tectonically related to subduction of the Pacific Ocean and Philippine Sea plates beneath the East Asia continental margin. | | Name
(symbol) | Mineral deposit types
(major deposits) | Country, region | Unit or structure related to origin of belt | Age range | Tectonic event for origin of metallogenic belt | |--|---|-----------------|---|---|---| | Northeast
Japan
(NJ) | Volcanogenic Zn-Pb-Cu massive sulfide (Kuroko, Altai types) (Kosaka, Shakanai); Au-Ag epithermal vein (Sado, Hosokura, Toyoha); Polymetallic (Pb, Zn±Cu, Ba, Ag, Au) volcanic-hosted metasomatite; Sulfur-sulfide (S, FeS2) (Horobetsu); Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork (Ashio); Mn vein; Volcanogenic-sedimentary Mn (Kinjo); Chemical-sedimentary Fe-Mn; Limonite from spring water (Gumma) | Japan | Layers and veins in the Quaternary Japan volcanic belt and Neogene Japan sedimentary basin that overlie and intrude the Hiroshima granitic plutonic belt, and the Mino-Tamba-Chichibu and South Kitakami terranes (both part of the Honshu-Sikhote-Alin collage). | Miocene through Quaternary. Many Kuroko-type deposits were formed in the middle Miocene, at about 13 Ma. K-Ar ages of vein deposits
suggest two stages of formation: early stage (15-10 Ma); and late stage (8-2 Ma). Sulfur-sulfide (S, FeS ₂) and limonite deposits formed on flanks of Quaternary volcanoes. | Volcanogenic massive sulfide deposits are interpreted as having formed in the back-arc and axial regions of the Japan arc that is tectonically related to subduction of the Pacific Ocean and Philippine Sea plates beneath the East Asia continental margin. | | Outer Zone
Southwest
Japan
(OS) | Sn skarn; Sn-W greisen, stockwork, and quartz vein; Polymetallic Pb-Zn ± Cu (±Ag, Au) vein and stockwork; Clastic-sediment-hosted Sb-Au; Au-Ag epithermal vein (Kishu); Volcanic-hosted Hg; Ag-Sb vein; Zn-Pb (±Ag, Cu, W) skarn (Chichibu); W-Mo-Be greisen, stockwork, and quartz vein; Hg-Sb-W vein and stockwork (Yamatosuigin); Cassiterite-sulfide-silicate vein and stockwork (Obira); Clastic-sediment-hosted Sb-Au | Japan | Veins and replacements related to the Neogene Japan sedimentary basin that overlies and intrudes the Hiroshima granitic plutonic belt, and Sambagawa, Shimanto, and Mino-Tamba-Chichibu terranes (both part of the Honshu-Sikhote-Alin collage). | Middle Miocene. Isotopic age of 15.5 Ma-13 Ma age for host siliceous igneous rocks. | Belt is interpreted as having formed in the back-arc rifting or axial part of the Japan arc that is tectonically related to subduction of the Pacific Ocean and Philippine Sea plates beneath the East Asia continental margin. | # **References Cited** - Ariunbileg, S., Biryul'kin, G.V., Byamba, J., Davydov, Y.V., Dejidmaa, G.,, Distanov, E.G., Dorjgotov, G., G.N., Gerel, O., Fridovskiy, V.Yu., Gotovsuren, A., Hwang, Duk Hwan, Kochnev, A.P., Kostin, A.V., Kuzmin, M.I., Letunov, S.A., Li, Jiliang, Li, Xujun, Malceva, G.D., Melnikov, V.D., Nikitin, V.M., Obolenskiy, A.A., Ogasawara, M., Orolmaa, D., Parfenov, L.M., Popov, N.V., Prokopiev, A.V., Ratkin, V.V., Rodionov, S.M., Seminskiy, Z.V., Shpikerman, V.I., Smelov, A.P., Sotnikov, V.I., Spiridonov, A.V., Stogniy, V.V., Sudo, S., Sun, Fengyue, Sun, Jiapeng, Sun, Weizhi, Supletsov, V.M., Timofeev, V.F., Tyan, O.A., Vetluzhskikh, V.G., Xi, Aihua, Yakovlev, Y.V., Yan, Hongquan, Zhizhin, V.I., Zinchuk, N.N., and Zorina, L.M., 2003, Significant metalliferous and selected non-metalliferous lode deposits, and selected placer districts of Northeast Asia: U.S. Geological Survey Open-File Report 03-220, 422 p. [CD-ROM]. - Naumova, V.V., Miller, R.M., Patuk, M.I., Kapitanchuk, M.U., Nokleberg, W.J., Khanchuk, A.I., Parfenov, L.M., and Rodionov, S.M., 2006, Geographic information systems (GIS) spatial data compilation of geodynamic, tectonic, metallogenic, mineral deposit, and geophysical maps and associated descriptive data for Northeast Asia, U.S. Geological Survey Open-File Report 2006-1150 [CD-ROM]. - Nokleberg, W.J., Badarch, G., Berzin, N.A., Diggles, M.F., Hwang, Duk Hwan, Khanchuk, A.I., Miller, R.J. Naumova, V.V., Obolenskiy, A.A., Ogasawara, M., Parfenov, L.M., Prokopiev. A.V., Rodionov, S.M., and Hongquan, Yan, eds., 2004, Digital files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps, stratigraphic columns, descriptions of map units, and descriptions of metallogenic belts: U.S. Geological Survey Open-File Report 2004-1252 [CD-ROM]. - Rodionov, S.M., Obolenskiy, A.A., Dejidmaa, G., Gerel, O., Hwang, D.H., Miller, R.J., Nokleberg, W.J., Ogasawara, M., Smelov, A.P., Yan, H., and Seminskiy, Z.V., 2004, Descriptions of metallogenic belts, methodology, and definitions for Northeast Asia mineral deposit location and metallogenic belt maps: *in* Nokleberg, W.J., Badarch, Gombosuren, Berzin, N.A., Diggles, M.F., Hwang, Duk Hwan, Khanchuk, A.I., Miller, R.J. Naumova, V.V., Obolenskiy, A.A., Ogasawara, M., Parfenov, L.M., Prokopiev. A.V., Rodionov, S.M., and Hongquan, Yan, eds., Digital files for Northeast Asia geodynamics, mineral deposit location, and metallogenic belt maps, stratigraphic columns, descriptions of map units, and descriptions of metallogenic belts: U.S. Geological Survey Open-File Report 2004-1252, 442 p. [CD-ROM].