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Conversion Factors

International System of Units to Inch/Pound

Multiply By To obtain
Length
angstrom (A) (0.1 nanometer) 0.003937 microinch
angstrom (A) (0.1 nanometer) 0.000003937 mil
micrometer (wm) [or micron] 0.03937 mil
millimeter (mm) 0.03937 inch (in.)
centimeter (cm) 0.3937 inch (in.)
meter (m) 3.281 foot (ft)
meter (m) 1.094 yard (yd)
kilometer (km) 0.6214 mile (mi)
Area
hectare (ha) 2471 acre
square kilometer (km?) 247.1 acre
square meter (m?) 10.76 square foot (ft?)
square centimeter (cm?) 0.1550 square inch (ft?)
square kilometer (km?) 0.3861 square mile (mi?)
Volume
milliliter (mL) 0.03381 ounce, fluid (fl. 0z)
liter (L) 33.81402 ounce, fluid (fl. 0z)
liter (L) 1.057 quart (qt)
liter (L) 0.2642 gallon (gal)
cubic meter (m?) 264.2 gallon (gal)
cubic centimeter (cm?) 0.06102 cubic inch (in®)
cubic meter (m?) 1.308 cubic yard (yd*)
cubic kilometer (km?) 0.2399 cubic mile (mi?®)
Mass
microgram (ug) 0.00000003527  ounce, avoirdupois (0z)
milligram (mg) 0.00003527 ounce, avoirdupois (0z)
gram (g) 0.03527 ounce, avoirdupois (0z)
gram (g) 0.03215075 ounce, troy
kilogram (kg) 32.15075 ounce, troy
kilogram (kg) 2.205 pound avoirdupois (Ib)
ton, metric (t) 1.102 ton, short [2,000 1b]
ton, metric (t) 0.9842 ton, long [2,240 1b]
Deposit grade
gram per metric ton (g/t) 0.0291667 ounce per short ton (2,000 1b) (0z/T)
Pressure
megapascal (MPa) 10 bar
gigapascal (GPa) 10,000 bar
Density
gram per cubic centimeter (g/cm?) 62.4220 pound per cubic foot (Ib/ft®)
milligram per cubic meter (mg/m?) 0.00000006243  pound per cubic foot (Ib/ft®)
Energy
joule (J) 0.0000002 kilowatthour (kWh)
joule (J) 6.241x 108 electronvolt (eV)
joule (J) 0.2388 calorie (cal)
kilojoule (kJ) 0.0002388 kilocalorie (kcal)




International System of Units to Inch/Pound

Multiply By To obtain
Radioactivity
becquerel (Bq) 0.00002703 microcurie (uCi)
kilobecquerel (kBq) 0.02703 microcurie (uCi)
Electrical resistivity
ohm meter (Q-m) 39.37 ohm inch (Q-in.)
ohm-centimeter (Q-cm) 0.3937 ohm inch (Q-in.)
Thermal conductivity
watt per centimeter per degree 693.1798 International British thermal unit
Celsius (watt/cm °C) inch per hour per square foot per
degree Fahrenheit (Btu in/h ft* °F)
watt per meter kelvin (W/m-K) 6.9318 International British thermal unit
inch per hour per square foot per
degree Fahrenheit (Btu in/h ft? °F)
Inch/Pound to International System of Units
Length
mil 25.4 micrometer (um) [or micron]
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
Volume
ounce, fluid (fl. 0z) 29.57 milliliter (mL)
ounce, fluid (fl. 0z) 0.02957 liter (L)
Mass
ounce, avoirdupois (0z) 28,350,000 microgram
ounce, avoirdupois (0z) 28,350 milligram
ounce, avoirdupois (0z) 28.35 gram (g)
ounce, troy 31.10 348 gram (g)
ounce, troy 0.03110348 kilogram (kg)
pound, avoirdupois (I1b) 0.4536 kilogram (kg)
ton, short (2,000 1b) 0.9072 ton, metric (t)
ton, long (2,240 Ib) 1.016 ton, metric (t)
Deposit grade
ounce per short ton (2,000 1b) (0z/T) 34.285714 gram per metric ton (g/t)
Energy
kilowatthour (kWh) 3,600,000 joule (J)
electronvolt (eV) 1.602x 107" joule ()
Radioactivity
microcurie (uCi) 37,000 becquerel (Bq)
microcurie (LCi) 37 kilobecquerel (kBq)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8x°C)+32

Temperature in degrees Celsius (°C) may be converted to kelvin (K) as follows:

K=°C+273.15

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8
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Datum

Unless otherwise stated, vertical and horizontal coordinate information is referenced to the
World Geodetic System of 1984 (WGS 84). Altitude, as used in this report, refers to distance
above the vertical datum.

Supplemental Information
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (uS/cm
at 25 °C).

Concentrations of chemical constituents in soils and (or) sediment are given in milligrams per
kilogram (mg/kg), parts per million (ppm), or parts per billion (ppb).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L),
micrograms per liter (pg/L), nanogams per liter (ng/L), nanomoles per kilogram (nmol/kg),
parts per million (ppm), parts per billion (ppb), or parts per trillion (ppt).

Concentrations of suspended particulates in water are given in micrograms per gram (pg/g),
milligrams per kilogram (mg/kg), or femtograms per gram (fg/g).

Concentrations of chemicals in air are given in units of the mass of the chemical (milligrams,
micrograms, nanograms, or picograms) per volume of air (cubic meter).

Activities for radioactive constituents in air are given in microcuries per milliliter (pCi/mL).

Deposit grades are commonly given in percent, grams per metric ton (g/t)—which is equivalent
to parts per million (ppm)—or troy ounces per short ton (0z/T).

Geologic ages are expressed in mega-annum (Ma, million years before present, or 10° years ago)
or giga-annum (Ga, billion years before present, or 10° years ago).

For ranges of years, “to” and (or) the en dash (“~") mean “up to and including.”
Concentration unit Equals
milligram per kilogram (mg/kg) part per million
microgram per gram (ng/g) part per million
microgram per kilogram (pg/kg) part per billion (10°)

Equivalencies

part per million (ppm): 1 ppm=1,000 ppb=1,000,000 ppt=0.0001 percent
part per billion (ppb): 0.001 ppm=1 ppb=1,000 ppt=0.0000001 percent

part per trillion (ppt): 0.000001 ppm=0.001 ppb=1 ppt=0.0000000001 percent

Metric system prefixes

tera- (T-) 102 1 trillion
giga-(G-)  10° 1 billion
mega- (M-)  10° 1 million
kilo- (k-) 10° 1 thousand
hecto- (h-) 102 1 hundred
deka- (da-) 10 1 ten

deci- (d-) 10" 1 tenth

centi- (c-) 102 1 hundredth
milli- (m-) 103 1 thousandth
micro- (u-) 10 1 millionth
nano- (n-) 10° 1 billionth
pico- (p-) 1012 1 trillionth
femto- (f-) 10" 1 quadrillionth
atto- (a-) 10" 1 quintillionth
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ICP-MS
kg
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km
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LIP

Ma
MSS
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Platinum-Group Elements

By Michael L. Zientek, Patricia J. Loferski, Heather L. Parks, Ruth F. Schulte, and Robert R. Seal Il

Abstract

The platinum-group elements (PGEs)—platinum, palla-

dium, rhodium, ruthenium, iridium, and osmium—are metals
that have similar physical and chemical properties and tend
to occur together in nature. PGEs are indispensable to many
industrial applications but are mined in only a few places.
The availability and accessibility of PGEs could be disrupted
by economic, environmental, political, and social events. The
United States net import reliance as a percentage of apparent
consumption is about 90 percent.

PGEs have many industrial applications. They are used in
catalytic converters to reduce carbon monoxide, hydrocarbon,
and nitrous oxide emissions in automobile exhaust. The
chemical industry requires platinum or platinum-rhodium
alloys to manufacture nitric oxide, which is the raw material
used to manufacture explosives, fertilizers, and nitric acid. In
the petrochemical industry, platinum-supported catalysts are
needed to refine crude oil and to produce aromatic compounds
and high-octane gasoline. Alloys of PGEs are exceptionally
hard and durable, making them the best known coating for
industrial crucibles used in the manufacture of chemicals and
synthetic materials. PGEs are used by the glass manufacturing
industry in the production of fiberglass and flat-panel and
liquid crystal displays. In the electronics industry, PGEs are
used in computer hard disks, hybridized integrated circuits,
and multilayer ceramic capacitors.

Aside from their industrial applications, PGEs are used
in such other fields as health, consumer goods, and finance.
Platinum, for example, is used in medical implants, such as pace-
makers, and PGEs are used in cancer-fighting drugs. Platinum
alloys are an ideal choice for jewelry because of their white
color, strength, and resistance to tarnish. Platinum, palladium,
and rhodium in the form of coins and bars are also used as
investment commodities, and various financial instruments
based on the value of these PGEs are traded on major exchanges.

PGEs are among the rarest metals; Earth’s upper crust
contains only about 0.0005 part per million (ppm) platinum.
Today, the average grade of PGEs in ores that are mined
primarily for their PGE concentrations varies from 5 to 15 ppm,
although the concentration of PGEs in hand-picked ore speci-
mens may range from tens to hundreds of parts per million.

More than 100 different minerals have one of the PGEs as
an essential component. PGE minerals occur as native metals.
They also occur as compounds with other transition metals
(copper, iron, mercury, nickel, and silver), post-transition
metals (bismuth, lead, and tin), metalloids (antimony, arsenic,
and tellurium), and nonmetals (selenium and sulfur).

From 1900 to 2011, approximately 14,200 metric tons of
PGEs was produced, and roughly 95 percent of that production
(13,500 metric tons) took place between 1960 and 2011. The
breakdown of production by country shows that, since 1900,
about 90 percent of the production came from South Africa
and Russia. The secondary supply of platinum, palladium,
and rhodium is obtained through the recycling of catalytic
converters from end-of-life vehicles, jewelry, and electronic
equipment. Recycled platinum, palladium, and rhodium
provide a significant proportion of the world’s total supply;
these secondary sources are sufficient to close the gap between
world mine production and consumption.

Exploration and mining companies report resources of
about 104,000 metric tons of PGEs (including minor amounts
of gold) in mineral deposits around the world that could be
developed. For PGEs, almost all the reported production
and identified resources are associated with deposits in three
geologic features—the Bushveld Complex, which is a layered
mafic to ultramafic intrusion in South Africa; the Great Dyke,
which is a layered mafic to ultramafic intrusion in Zimbabwe;
and sill-like intrusions associated with flood basalts in the
Noril’sk-Talnakh area of Russia.

The metallic forms of PGEs are generally considered to
be inert. PGEs pose a risk to human health only in cases where
individuals are occupationally exposed to synthetic PGE
compounds, especially workers in precious-metal refineries.
In the natural environment, background PGE concentrations
are low in water, sediment, soil, and plants. Anthropogenic
sources of PGEs in the environment include catalytic
converters used in modern automobiles, platinum-based
chemotherapy drugs, and smelter emissions.

The abundance of sulfide minerals defines the environ-
mental and geologic characteristics of PGE-enriched magmatic
sulfide deposits; those deposits with the highest amount of
sulfide minerals could have the highest environmental impact.
Acid rock drainage from reef-type and contact-type deposits
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is unlikely because the ores and their host rocks contain
low proportions of sulfide minerals. For some conduit-type
orebodies with massive ores, mineral-processing techniques
separate and produce concentrates of copper-, iron-, and
nickel-bearing sulfide minerals; those with copper and nickel
are processed to extract metal, but the iron-sulfide minerals,
mainly pyrrhotite, are discarded as waste. This results in waste
material with a high acid-generating potential.

The most significant primary source of PGEs in the
United States is a deposit in the Stillwater Complex, which
is a layered igneous intrusion in Montana. Approximately
305 metric tons of platinum and palladium have been
mined from the Stillwater Complex deposit since 1986.
Exploration and development drilling indicate that another
2,200 metric tons are present. Mining has progressed to depths
of 1,800 meters below the surface, but the bottom of the ore
deposit has not been reached; geologic estimates suggest that
another 1,000 to 6,200 metric tons of PGEs could be present at
depth. In the future, PGEs may be mined from deposits found
near the base of the Duluth Complex, which is a group of
igneous intrusions in Minnesota.

Introduction

The platinum-group elements (PGEs)—platinum,
palladium, rhodium, ruthenium, iridium, and osmium—are
chemical elements that have similar physical and chemical
properties and tend to occur together in nature. They are
transition metals, lying in Group 8B and periods 5 and 6 of the
periodic table of elements. Along with gold and silver, they are
also precious metals that have high economic value deter-
mined not only by their practical uses but also by their role as
investment instruments and as a store of value. The PGEs are
also known as the platinum-group metals (PGMs).

Pre-Columbian peoples found naturally occurring
platinum and platinum-rich alloys in stream deposits in
Colombia and Ecuador. In the 1500s, Spanish colonists also
found grains of these alloys mingled with gold nuggets they
recovered from stream deposits in the same area; they called
the metal “platina” (McDonald and Hunt, 1982). At that time,
the metal had no known use and was considered worthless.
The platinum-rich grains were a nuisance because they could
not be separated from gold nuggets by panning. Small samples
of platinum-enriched nuggets from South America reached
Europe during the 1740s. Platinum was described as a new
metal in 1750, followed by iridium and osmium in 1803,
palladium and rhodium in 1804, and ruthenium in 1807. The
unique properties of the metals were realized later in the
19th century.

PGEs are essential for important industrial applications
but are mined in only a limited number of places. Therefore,
the availability and accessibility of PGEs could be disrupted
by economic, environmental, political, and social events.
This is not a new development. During World War I, the
United States considered platinum a “vital war material”

needed for the production of amplifiers, magnetos, munitions,
shell primers, and sulfuric acid, and it was ranked second on
the “list of strategic raw material” for which the United States
was either entirely or partially dependent on foreign countries
(Lael and Killen, 1982). During World War II, these metals
had even greater strategic importance to science and industry,
and the United States was still dependent on sources in
foreign countries (DeMille, 1947; U.S. Bureau of Mines and
U.S. Geological Survey, 1947). Security of supply was also
a concern during the Cold War (U.S. Congress, Office of
Technology Assessment, 1985; Sutphin and Page, 1986). With
the dissolution of the Soviet Union and the peaceful transition
of government in South Africa in the early 1990s, import
vulnerability became less of an immediate concern. The
United States net import reliance as a percentage of apparent
consumption is still about 90 percent, however, and the main
sources of these elements are still limited to a few mineral
deposits in South Africa and Russia (Loferski, 2012a, b).
The potential restrictions on supplies of critical raw minerals,
such as the PGEs, have again become a topic for international
concern and discussion (National Research Council of
the National Academies, 2008; Buchert and others, 2009;
European Commission, 2010; American Physical Society
Panel on Public Affairs and Material Research Society, 2011;
British Geological Survey, 2012).

This chapter summarizes how the PGEs are used, gives
an overview of where PGEs are mined, and summarizes
how much mineralized material has been found by mineral
exploration companies. The geology of significant deposits is
described, and the assessment for undiscovered resources is
discussed, as are possible topics for future research. The report
also discusses environmental aspects of the PGEs, including
their sources and fate in the environment; mine waste charac-
teristics; and human health, ecological, and carbon footprint
concerns. Where indicated, data in tables 1 through 9 are
taken from data prepared by the authors in table 10 (back of
chapter).

Uses, Applications, and Consumption

The PGEs possess excellent catalytic and stable electrical
properties. PGEs are also highly resistant to wear, tarnishing,
and chemical attack, and can withstand high temperatures,
making them indispensable to many industrial applications.
Their leading use is as catalysts for oxidation and reduction
reactions that decrease hydrocarbon, carbon monoxide, and
nitrous oxide emissions in automobile exhaust (fig. N1).

The chemical industry requires either platinum or platinum-
rhodium alloy to manufacture nitric oxide, which is a raw
material used to manufacture explosives, fertilizers, and

nitric acid. PGEs are also used in the production of specialty
silicones, which, in turn, have many uses, such as in coatings
on automobile airbags, water repellent coatings, and adhesives
for sticky notes. In the petrochemical industry, platinum-
supported catalysts are needed to refine crude oil and to
produce high-octane gasoline and aromatic compounds.
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Alloys of PGEs are exceptionally hard and durable,
making them the best known coating for industrial crucibles
used in the manufacture of chemicals and synthetic
materials, such as high-purity single crystals used in the
production of light-emitting diodes (LEDs). PGEs are
used by the glass manufacturing industry in the production
of fiberglass and flat-panel and liquid crystal displays. In
the electronics industry, PGEs are used in computer hard
disks to increase storage capacity, and they are ubiquitous
in electronic devices, hybridized integrated circuits, and
multilayer ceramic capacitors. Platinum does not corrode
inside the body, and allergic reactions to platinum are
extremely rare; therefore, it is used in medical implants, such
as pacemakers. PGEs are also used in cancer-fighting drugs.
Other uses of PGEs include gas sensors in automobiles
and homes, spark plug tips, and additives to superalloys
(Impala Platinum Holdings Ltd., 2012; Loferski, 2013a;
Platinum Today, 2013a).

Their white color, strength, and resistance to
tarnish make platinum alloys an ideal choice for jewelry
(Platinum Today, 2013b). In parts of Ecuador and Colombia
before the Spanish conquest, platinum was used by indig-
enous peoples for the fabrication of small objects, as well
as sintered with gold, and incorporated into bimetallic and
platinum-clad articles (fig. N2; Scott and Bray, 1980; Meeks
and others, 2002; Noguez and others, 2006). Their master-
works reflect a high degree of technical innovation because
the high melting temperature of platinum (1,769 degrees
Celsius [°C]) requires sophisticated manufacturing tech-
niques and craftsmanship. The modern tradition of using
platinum for jewelry began in Europe in the 18th century.
The works produced by Cartier and Tiffany in the late
19th century and early 20th century created interest in
platinum jewelry, particularly in the United States. The Great
Depression of the 1930s and the advent of World War II
suppressed the platinum jewelry market in the United States.
In the 1960s, demand for platinum jewelry in Japan surged,
followed by a surge in demand in China in the mid-1990s.

Platinum, palladium, and rhodium are also used for
investment in the form of physical or financial assets.
Physical assets include platinum and palladium as collectible
coins, or as bullion coins, bars, or wafers. Financial assets
include stocks, mutual funds, and exchange-traded funds.
Financial assets allow investors to own platinum, palladium,
and rhodium without the difficulties associated with physi-
cally holding the metal.

Figure N2.

Photograph of gold mask with platinum highlights,
from the period of La Tolita culture, Ecuador. From Museo
Nacional del Banco Central del Ecuador collection.

Geology
Geochemistry

All chemical elements heavier than oxygen, including
the PGEs, are created by nuclear fusion and nucleosynthesis
processes during supernova explosions. The matter derived
from supernova explosions is dispersed into the interstellar
medium and enriches molecular clouds, which are sites of star
and planetary formation. Earth formed from the same cloud
of matter as the sun, so the bulk PGE composition of Earth is
thought to be similar to that of the solar system. Carbonaceous
meteorites of the Ivuna type (carbonaceous chondrites
[type 1], or C1 chondrites) are used to estimate solar system
abundances (Lodders, 2010). The Orgueil meteorite, which is
considered most representative of the C1 chondrites, contains
0.947 part per million (ppm) platinum.

Early in its evolution, Earth differentiated into a metallic
core, a silicate mantle, and a silicate crust. The segregation
processes affected the distribution of the PGEs and resulted in
concentrations progressively decreasing from core to mantle
to upper crust. The range of platinum concentration in samples
of iron meteorites, which are perhaps the best analogs for the
composition of Earth’s core, is 2.4 to 16 ppm (Wasson and
others, 1989). The average platinum concentrations of samples
of the upper mantle vary from about 0.002 to 0.005 ppm
(2 to 5 parts per billion [ppb]) (Maier and others, 2012).

In contrast, the upper crust is estimated to contain only
0.0005 ppm (0.5 ppb) platinum (Rudnick and Gao, 2003).
Today, the average grade of PGEs in ores that are mined
primarily for their PGE concentrations ranges from 5 to 15 ppm;
however, the concentration of PGEs in hand-picked ore speci-
mens may range from tens to hundreds of parts per million.



Mineralogy

The PGEs can occur as an essential component of the
crystal structure of a mineral (a naturally occurring inorganic
element or compound having a periodically repeating arrange-
ment of atoms and characteristic chemical composition,
resulting in distinctive physical properties). The Commission
on New Minerals, Nomenclature and Classification of the
International Mineralogical Association has recognized
more than 100 different minerals in which at least one of
the PGE:s is an essential component (Cabri, 2002); they are
called platinum-group minerals. Platinum-group minerals
include native-metal-minerals and compounds with other
transition metals (such as copper, iron, mercury, nickel, and
silver), post-transition metals (such as bismuth, lead, and tin),
metalloids (such as antimony, arsenic, and tellurium), and
nonmetals (such as selenium and sulfur) (table N1). In most
rocks, platinum-group minerals are fine-grained and range
in size from less than a micron to a few hundred microns
in diameter. Most geologists can spend a lifetime working
on rocks enriched in PGEs and never see a platinum-group
mineral in a hand specimen. Yet the platinum-group minerals
are important to characterize because information about their
mineralogy is needed to extract metals from their ore minerals
effectively and to understand ore-forming processes.

PGEs also occur in solid solution in base-metal sulfides
and sulfarsenides. In solid solution, different chemical elements
can substitute in specific atomic sites without changing a
mineral’s crystalline structure. For example, palladium can
substitute for nickel in pentlandite (Cabri, 1992); the amount
of substitution can be significant and is detectable by several
microanalytical techniques. PGEs also occur in solid solution in
nickeliferous cobaltite (nickel-iron sulfarsenide) in ores mined
at the Copper Cliff North Mine in Sudbury, Ontario, Canada
(Szentpéteri and others, 2002). Low-level concentrations of
PGEs in solid solution in base-metal sulfide minerals can be
assessed using laser-ablation inductively coupled plasma-mass
spectrometry (ICP-MS) (for example, Cabri and others, 2003;
Godel and others, 2007; Pagé and others, 2012). These studies
document that pentlandite is the principal base-metal sulfide
mineral that hosts PGEs. Pyrrhotite (Fe,_S) can contain some
iridium, osmium, rhodium, and ruthenium, but not palladium
or platinum. Chalcopyrite (CuFeS,) does not contain signifi-
cant amounts of PGEs in solid solution. Platinum and gold do
not partition into base-metal sulfide minerals.

Deposit Types

Mineral deposits can be classified into groups or types
based on common features and associations that ultimately
relate to the underlying geologic processes that formed the ore.
Each mineral deposit type has characteristic geometries, distri-
butions of tonnage and grade, and rock and mineral properties
that determine the potential value of the deposit. Each deposit
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type also has specific characteristics that determine how much
sampling will be required to delimit the deposit’s mineral
resources and in what manner the valuable material will be
mined and processed. Furthermore, each deposit type exerts a
specific impact on the environment, whether through natural
weathering processes or the result of mining.

At a basic level, economic geologists recognize the
following mineral deposit types: (a) magmatic—formed
during the cooling and crystallization of magma,

(b) hydrothermal—formed by the interaction of hot water
and rock, (c) sedimentary—formed by the precipitation or
settling of minerals directly from water in oceans or lakes,
(d) residual—formed by the intense weathering of rocks
under hot, humid conditions, and (e) placers—formed by the
physical concentration of heavy particles of rocks or minerals
by the action of moving water. PGE-enriched rocks can be
found in each of the deposit types listed above. The following
sections describe examples of PGE mineralization found in
each of these deposit types. More information is given for
magmatic deposits because they are the source of almost all
the PGEs recovered by mining. The locations of the world’s
major and minor PGE deposits are shown in figure N3.

Magmatic Deposits

PGEs are transferred from Earth’s mantle to its crust by
magnesium-rich magmas that were formed by the melting of
a high percentage of mantle material from which magma had
not been previously extracted. A high degree of partial melting
is needed to release PGEs into the melt from the small quanti-
ties of sulfide minerals or alloys that are present in the mantle.
Upon emplacement in the crust, the magnesium-rich magmas
cool to form mafic and ultramafic igneous rocks.

Magmatic deposits are concentrations of metallic
oxide or sulfide minerals that formed during the cooling and
crystallization of magma. Textural and experimental evidence
indicate that PGE-enriched mineralization forms when mafic
to ultramafic magma becomes saturated with sulfur and an
immiscible sulfide liquid exsolves from the silicate magma
(Barnes and others, 2008; Holwell and McDonald, 2010;
Naldrett, 2010a). The solubility of sulfur in mafic magmas is
affected by changes in the bulk composition of the magma,
the fugacity of sulfur and oxygen, temperature, and pressure
(Ripley, 1999). Processes that change the solubility of sulfur
and may cause an exsolution event include (a) fractional
crystallization of the silicate magma, (b) mixing of magmas,
(c) assimilation of additional sulfur from sources external to
the magma, and (d) modification of the magma composition
by bulk contamination, such as changing the silica content of
the magma (Mungall, 2005).

The silicate magma solidifies first, followed by the sulfide
liquid, which solidifies at temperatures in excess of 900 °C.
The textures and mineralogy of PGE ores record a prolonged
and complex process of solid-state transformation and
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Table N1. Chemical formulas for selected platinum-group minerals as well as other common rock-forming minerals mentioned
in this chapter.
[Sources: Deer and others (1966); Vaughan and Craig (1978); and Cabri (2002). Elements: Al, aluminum; As, arsenic; Bi, bismuth; C, carbon;

Ca, calcium; Cr, chromium; Cu, copper; Fe, iron; Hg, mercury; Ir, iridium; K, potassium; Mg, magnesium; Na, sodium; Ni, nickel; O, oxygen;
Os, osmium; Rh, rhodium; Ru, ruthenium; Pb, lead; Pd, palladium; Pt, platinum; S, sulfur; Sb, antimony; Si, silicon; Sn, tin; Te, tellurium]

Mineral name Chemical formula Mineral name Chemical formula
PLATINUM-GROUP MINERALS BASE-METAL SULFIDE MINERALS
Native metals Bornite Cu_FeS
5 4
Iridium Ir Chalcopyrite CuFeS,
Osmium Os .
Covellite CuS
Palladium Pd )
Platinum Pt Cubanite CuFe,S,
Rhodium Rh Marcasite FeS,
Ruthenium Ru Mooihoekite Cu,FeS,
Compounds with transition metals Nickeliferous cobaltite Co(Ni)AsS
Isoferroplatinum Pt,Fe Pentlandite (Fe,Ni),S,
Potarite PdHg Pyrite FeS,
Tulameenite PtFe, Cu, )
_ — —05 03 Pyrrhotite Fe S
Compounds with post-transition metals (Bi, Pb, and Sn) . )
Atokite PdSn Talnakhite Cu,(Fe, Ni),S
Froodite PdBi, Troilite FeS
Insizwaite PBi, OTHER ROCK-FORMING MINERALS
Rustenburgite Pt,Sn Calcite CaCoO,
Paolovite Pd,Sn Chlorite (Mg,Fe),(Si,Al),0,,(OH),*
Compounds with metalloids (Mg,Fe),(OH),
Genkinite (Pt,Pd),Sb, Chromite (Fe,Mg)(Cr,Al),O,
Geversite PtSb, Goethite FeO(OH)
Isomertieite Pd Sb,As, Gypsum Caso,
Kotulskite PdTe .
. Jarosite KFe(SO,),(OH),
Merenskyite PdTe, _
Moncheite PtTe, Magnetite Fe,0,
Sperrylite PtAs, Native sulfur S
Stibiopalladinite Pd, Sb, Olivine (Mg,Fe),SiO,
Stillwaterite PdAs, Plagioclase (Ca,Na)(Si,Al),O,
Sudburyite PdSb Pyroxene Ca(Mg,Fe)Si,0, to
Compounds with nonmetals Mg Si,0,
Braggite (Pt,Pd)S Serpentine (Mg,Fe),Si,0,(0OH),
Cooperite PtS Talc Mg,Si,0,,(OH),
Erlichmanite OsS,
Laurite RuS,
Vysotskite PdS
Other
Hollingworthite RhAsS
Maslovite PtBiTe
Michenerite PdBiTe
Ruarsite RuAsS
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recrystallization after solidification (Barnes and others, 2008;
Holwell and McDonald, 2010). At high temperature (about
1,000 °C), osmium, iridium, and ruthenium preferentially
partition from the immiscible sulfide liquid into a mineral
called monosulfide solid solution (MSS). Platinum, palladium,
and gold, on the other hand, behave as incompatible elements
with respect to MSS and instead are concentrated in residual
copper-rich sulfide liquids and associated with the minerals
that crystallize from the residual immiscible sulfide liquid.
Upon cooling, some of the PGEs held in sulfide crystal
structures are expelled, forming discrete minerals. The final
mineral assemblage consists of varied proportions of pyrrho-
tite, pentlandite, chalcopyrite, and bornite, with platinum and
gold occurring primarily in platinum-group minerals.

Magmatic sulfide minerals in mafic to ultramafic igneous
rocks do not always contain elevated concentrations of PGEs.
The metal content of immiscible sulfide liquids is a function
of the (a) amount of metal in the silicate magma; (b) relative
affinity for metals to occur in the sulfide or silicate liquid;
and (c) relative amounts of the two liquids (Campbell and
Naldrett, 1979; Barnes and Maier, 1999). Such elements
as copper, nickel, and PGEs originally in the silicate melt
preferentially concentrate into the sulfide liquid when it
exsolves. Concentration of these metals into the sulfide liquid
can, under some circumstances, deplete their concentration in
the silicate magma. If there is a large volume of sulfide liquid
compared with that of the silicate magma, the sulfide liquids
and the resulting ores will have lower concentrations of PGEs.
If the sulfide liquid effectively interacts with a large volume of
silicate magma, the sulfide liquids become enriched in PGEs,
resulting in high-grade ores.

Economic geologists who study magmatic processes
expend a lot of effort trying to understand how large mass
ratios are achieved. Proposed answers have included mixing
of magmas; the migration of interstitial melts (and “fluids”)
upward through crystal mush; and (or) the streaming of
magma over sulfide liquids in a channelized lava flow, sill,
or feeder dike (Barnes and Maier, 1999; Mathez, 1999;
Naldrett, 2010a).

Tectonic Setting of Magmatic Deposits
(Large Igneous Provinces)

As the theory of plate tectonics gained acceptance in the
1960s and its predictive power became evident, geologists,
including those working on magmatic ore deposits, tried to
understand magmatism and ore genesis in a plate-tectonic
context (Hutchison, 1983; Sawkins, 1984). For some mafic
and ultramafic rocks that are related to subduction zones and
mid-oceanic ridges, this conceptual framework provided
insight and clarity; however, for other types of mafic and
ultramafic rocks found in intraplate settings, which include
rocks that host most of the significant magmatic mineral
deposit types, it did not.

Most magmatic copper-nickel-PGE deposits occur
with continental flood basalts, aerially extensive mafic dike
swarms, sill provinces, and large layered ultramafic-to-mafic
intrusions, which are indicative of large igneous provinces
(LIPs) (Coffin and Eldholm, 1994). Bryan and Ernst proposed
that LIPs are magmatic provinces with areal extents greater
than 1x10° square kilometers (km?), igneous volumes greater
than 1x10° cubic kilometers (km*) and maximum lifespans
of about 50 million years (m.y.) that “have intraplate tectonic
settings or geochemical affinities, and are characterized
by igneous pulse(s) of short duration” (~1 to 5 m.y.),
during which time “a large proportion (>75 percent) of the
total igneous volume has been emplaced. [The LIPs] are
dominantly mafic, but also can have significant ultramafic
and silicic components, and some are dominated by silicic
magmatism” (Bryan and Ernst, 2008, p. 175). Unlike the
vast majority of igneous rocks that are associated with plate
tectonic processes at convergent or divergent tectonic plate
margins, LIP-related rocks usually occur in an intraplate
tectonic setting; the association of some LIPs with hotspot
tracks—for example, the North Atlantic Igneous Province and
the Iceland hotspot (Storey and others, 2007) is one reason
that LIPs are attributed to mantle plumes.

Types of Magmatic Deposits

Magmatic mined deposits associated with LIP-related
igneous intrusions are divided into types based on such
criteria as the lithology and form of associated igneous rocks,
the depth of emplacement, the abundance of sulfide minerals,
the relative proportion of metals, and the position of the ores
within the intrusion. In this chapter, we distinguish between
conduit-type deposits, which occur in intrusions that are part
of sill complexes and dike swarms, and reef-type and contact-
type deposits, which occur in layered intrusions (fig. N4). The
most significant and representative examples for the world and
the United States are the conduit-type deposits of the Noril’sk-
Talnakh area (Russia); the reef-type deposits in South Africa
(the Merensky Reef and the UG2 Chromitite), Zimbabwe
(the Main Sulphide Zone), and Montana (the J-M Reef); and
the contact-type deposits in South Africa (the Platreef) and
Minnesota (the Duluth Complex).

Conduit-Type Deposits

The conduit-type deposits of the Noril’sk-Talnakh area of
Russia are associated with an enormous outpouring of mafic
magma that formed the Siberian Traps—the largest conti-
nental flood basalt province on Earth (fig. N5). The magmas
erupted in a short period of time; the 3.5-kilometer (km)-thick
basalt succession at Noril’sk-Talnakh was emplaced between
248.7+0.6 and 250.3+1.1 mega-annum (Ma) (Reichow and
others, 2009). The flood basalts crop out on the Siberian
craton, covering an area of approximately 2.5 million km?
(Fedorenko and others, 1996). In addition, flood basalts
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Figure N4. Schematic block diagram showing changes in the form of igneous intrusions with depth and
the relative occurrence of conduit-type, contact-type, and reef-type magmatic ore deposits. Layered
igneous rocks with reef-type and contact-type deposits occur at depth in large layered intrusions. Sills and
dikes provide the conduits or pathways that magma follows as it rises upwards through the crust. Conduit-
type magmatic sulfide deposits can be localized in sills or dikes. Modified from Naus-Thijssen (2007).

are also found in the late Mesozoic fold and thrust belt in
the Taimyr Peninsula and under the West Siberian Basin
(Reichow and others, 2009).

A sill complex lies beneath the thick succession of
volcanic flows and is exposed where the flood basalts have
been removed by erosion (fig. N5). The sill complex consists
of thousands of intrusions that delineate the pathways along
which large volumes of magma were transported through
the crust (Arndt, 2005). Sills with major nickel-copper-PGE
deposits have been identified only in the Noril’sk-Talnakh
area; however, copper-nickel sulfide occurrences in sills
are distributed over a much larger area (fig. N5). All these
occurrences of volcanic rocks and associated sills make up
the Siberian Traps LIP (Ernst and Buchan, 2001).

In the Noril’sk-Talnakh area, plateaus covered by flood
basalts have been dissected by erosion and exposed the

underlying sill complex (fig. N6). More than 300 intrusions have
been mapped, but only 33 contain elevated sulfide concentrations.
Of these 33 intrusions, 16 contain relatively rich disseminated
ore and only 4 contain rich massive sulfide orebodies (Diakov
and others, 2002). High sulfur contents coupled with increasing
8*S values is consistent with the addition of crustally derived
34S-enriched sulfur to the magma of the ore-bearing intrusions
(Grinenko, 1985; Li and others, 2003).

The ore-bearing intrusions have an elongate, finger-like
shape; they may be up to 1 km wide by 500 meters (m) thick
and up to 15 km long. Most of the other sills form sheet-like
bodies that are tens of meters thick. Rock textures of sills
indicate crystallization and cooling at shallow depth. The ore-
bearing intrusions are internally differentiated, with magnesium
rocks and minerals concentrated towards the base of the sills;
the laterally continuous sills show less internal differentiation.
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The amount of massive sulfide ores associated with the
mineralized intrusions at Talnakh is astounding. The massive
sulfide ores, which are up to 45 m thick, underlie most of the
intrusions in the Talnakh area (fig. N74; Kunilov, 1994). The
ore-bearing sills contain, or are associated with, concentrations
of sulfide minerals that exceed the amount of sulfur that could
have been dissolved in the volume of magma now in the sills.
The sulfide mineralization also contains high concentrations
of PGEs, indicating a silicate-to-sulfide ratio that is larger than
the observed proportion of silicate minerals to sulfide minerals
in the sills. This suggests that at the time of ore formation,
the sulfide liquids equilibrated with a much larger volume of
magma than is now represented by the igneous rocks in the
sill. Field relations indicate lateral movement of immiscible
sulfide liquids during and after solidification of the silicate
igneous rocks.

In the Talnakh area, fractional crystallization of the
immiscible sulfide liquids formed mineralogically and
compositionally zoned orebodies (fig. N7B). Massive ores
formed by early crystallization of sulfides contain less copper
and PGEs than ores that formed from sulfide liquid that are the
end product of the fractional crystallization process (fig. N8).
The copper- and PGE-rich late-stage ores are the likely source
of most of the PGE production from the Talnakh deposits
(fig. N7C). Between 1960 and 2011, Russia (including all
the Soviet Union until 1991) produced about 5,000 metric
tons of PGEs, most of them from the Noril’sk-Talnakh area
(U.S. Bureau of Mines, 1933-96; U.S. Geological Survey,
1997-2016). Mining depths in the Noril’sk-Talnakh area
range from 300 to 1,500 m (Kunilov, 1994).

Reef-Type and Contact-Type Deposits

LIP-related layered mafic to ultramafic intrusions contain
most of the world’s resources of PGEs. Layered intrusions
form by crystallization of magma deep in Earth’s crust and
have sheet-like to dike-like shapes. They consist primarily
of cumulates, which are rocks that represent accumulations
(concentrations) of minerals that crystallize from magmas.
Cumulus rock textures are distinctive, as they record
nucleation and growth of crystals from the melt, enlargement
of crystals to form a touching framework (a crystal mesh),
solidification, and subsolidus grain boundary adjustments that
minimize grain boundary surface energies (Hunter, 1987).
Cumulus rocks are also distinctive in that they do not have the
composition of naturally occurring magmas but are instead a
mixture of early formed crystals with variable proportions of
trapped liquid.

As the magma crystallizes in these intrusions, layering
features develop that are recognized by the variations in
the modal proportions of the minerals, the rock textures,
the grain size, and the mineral compositions. Individual
layers range from laminations formed by the orientation of
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individual crystals that are millimeters in diameter to strata
that are tens to hundreds of meters thick and may extend for
hundreds of kilometers along strike. The layering features
are so pronounced and consistent that stratigraphic principles
developed for sedimentary rocks are applied to these igneous
rocks. Stratigraphic columns are measured through the
sequence of layered igneous rocks to define mappable units;
the thickness of the layered rocks in intrusions ranges from
hundreds of meters to as much as 10 km.

Layered intrusions have two significant styles of
magmatic sulfide mineralization—reef type and contact
type. The analogy with sedimentary rocks extends to the
terminology used for magmatic deposits in layered intrusions.
Some of the magmatic deposits are strata-bound, which means
that the deposit is confined to a stratigraphic unit, not to a
particular bed. Other magmatic deposits are stratiform, which
means that the deposit constitutes one or more of the igneous
layers; an example would be the chromium deposits in layered
intrusions (which correspond to igneous rock layers that are
composed primarily of the mineral chromite). Reef-type and
contact-type deposits are strata-bound, as described below.

Reef-type PGE deposits are disseminated copper-,
iron-, nickel-, and PGE-bearing minerals that are associated
with one or more strata within a layered igneous intrusion
(fig. N4). The mineralized rock unit almost always contains
disseminated magmatic sulfide minerals, but the rock layers
are dominated by silicate minerals or oxide minerals such
as chromite or magnetite. The modal abundance of sulfide
minerals is usually much less than a few percent. The term
“reef” is an Australian and South African mining term for a
relatively flat-lying, tabular orebody. Within a layered igneous
intrusion, reef-type mineralization is laterally persistent,
extending for the strike length of the intrusion, which is
typically tens to hundreds of kilometers. The mineralized
interval is thin (generally centimeters to meters thick),
however, relative to the total stratigraphic thickness of the
layers in the intrusion, which can vary from hundreds to
thousands of meters.

Copper-nickel-PGE contact-type deposits consist of
disseminated magmatic sulfide minerals found near the lower
contact or margin of mafic to ultramafic layered intrusions
(fig. N4). The host rocks for the disseminated sulfide minerals
are the igneous rocks of the intrusion and adjacent contact
metamorphosed country rocks. Some igneous lithologies are
cumulates, but other mineralized mafic and ultramafic igneous
rocks are texturally and lithologically heterogeneous, exhib-
iting changes in texture and mineral proportions at scales of
from centimeters to meters. Textures indicative of chilling or
unidirectional growth of silicate minerals may also be present.
Inclusions of autoliths and xenoliths are common; they are
surrounded by igneous rocks that have textural, mineralogical,
and isotopic features suggestive of reaction with the inclusions
(Iljina and Lee, 2005).
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Figure N8. Photograph of copper-rich massive
sulfide ore exposed in a stope in the Oktyabr'sk
Mine in the Talnakh area, Russia. The ore consists
of several iron-copper-sulfide minerals, such as
chalcopyrite (CuFeS, ), mooihoekite (Cu,Fe.S ),

and talnakhite (Cug(Fe, Ni),S, ). The mineragls]6

are brassy to golden yellow, but some develop
iridescent blue and maroon colors when exposed
to air. These ores represent the end product of

the fractional crystallization of immiscible sulfide
liquid and can contain tens to hundreds of parts per
million platinum-group elements. Photograph by

Michael L. Zientek, 1992.

Sulfide abundance in contact-type PGE deposits is
typically about 3 to 5 volume percent, although some net-
textured and (or) massive sulfide ores may be present. Erratic
variation in the distribution of sulfide minerals is typical,
although the concentration of sulfide minerals within the
intrusion generally increases towards the contact with adjacent
country rocks. The mineralization can be laterally persistent,
commonly extending for the entire strike length of the layered
igneous intrusion. The interval that can contain magmatic
sulfide minerals is generally tens to hundreds of meters in
thickness, however. The proportion of sulfide minerals varies
within the rock layers that can host ore; during exploration
and development, economic cutoff grades are used to define
the volume of rock within the igneous rock unit that could
be mined. Therefore, low-grade mineralization may occur
outside the cutoff limit that defines minable parts of deposits.
Examples of major reef-type (a—c) and contact-type (a and d)
deposits are discussed below.

(a) Merensky Reef, UG2 Chromitite, and Platreef,
Bushveld Complex, South Africa. The Paleoproterozoic
Bushveld Complex (2,054.4+1.3 Ma, using the uranium-
lead-zircon technique for determining age) is a large mass of
igneous rock that underlies an area of approximately 69,000 km?
in South Africa (fig. N9; Hall, 1932; von Gruenewaldt, 1977;
Scoates and Friedman, 2008). It is part of the Bushveld LIP
(Ernst and Buchan, 2001), which also includes the Molopo
Farms Complex (another large layered mafic to ultramafic
intrusion in Botswana and South Africa (Prendergast, 2012);
a large complex of sills related to the Bushveld Complex
(Sharpe, 1981; Sharpe and Hulbert, 1985); and the Dullstroom
basalts in South Africa (Buchanan and others, 1999).

The Bushveld Complex consists of several igneous suites.

The most important economically is the Rustenburg Layered
Suite, which is an approximately 8-km-thick layered sequence of
mafic to ultramafic cumulates (Vermaak and von Gruenewaldt,
1986; Walraven, 1986) that contain world-class deposits of
chromium, PGEs, and titanium-vanadium. The cumulates of the
Rustenburg Layered Suite are exposed intermittently around the
periphery of the Bushveld Complex in areas referred to as limbs.
Igneous layering dips gently towards the center of the Bushveld
Complex. Seismic surveys trace igneous units exposed at the
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surface to depths exceeding 6 km (Sargeant, 2001; Campbell,
2011). Gravity modeling indicates that the western and eastern
limbs of the Bushveld Complex are connected at depth (fig. N9,
cross section 4—A4"; Webb and others, 2004).

Two PGE-enriched reefs, the UG2 Chromitite (fig. N10)
and the Merensky Reef (fig. N11; Viljoen, 1999), each occur
near the base of different repetitive rock sequences (cyclic
units) and can be continuously traced onstrike for the full
extent of the eastern and western limbs of the complex. The
grade of the UG2 Chromitite deposit is about 5 grams per
metric ton (g/t) PGEs and gold; the grade of the Merensky
Reef is about 6 g/t in the western part of the complex and
about 4.2 g/t in the eastern part.

In the northern limb, varitextured pyroxenite, norite, and
gabbro are found near the lower contact of the complex with
metasedimentary rocks of the Transvaal Supergroup (van der
Merwe, 1976). These igneous rocks host the Bushveld
Complex’s contact-type copper-nickel-PGE deposits (known
as the Platreef). The combined PGE and gold grades for
the Platreef deposits range from 0.55 to 3.7 g/t. Since the
1920s, mining has recovered 7,200 metric tons of PGEs from
the Bushveld Complex (U.S. Bureau of Mines, 1933-34;
1933-96; U.S. Geological Survey, 1997-2016).

(b) Main Sulphide Zone, Great Dyke, Zimbabwe. The
Neoarchean Great Dyke (2575.4+0.7 Ma, age determined from
zircon using uranium-lead technique; Oberthiir and others,
2002) is a long (about 550 km) and narrow (about 11 km)
layered igneous intrusion in Zimbabwe. This intrusion and
some subparallel dikes are the geologic features associated
with the Great Dyke of Zimbabwe LIP (Ernst and Buchan,
2001). The rock types of the Great Dyke consist of layered
mafic to ultramafic cumulates that dip inwards from the sides
towards the center of the intrusion (fig. N12). Since the 1980s,
mining has recovered 107 metric tons of PGEs from a reef-
type PGE deposit within the Great Dyke—the Main Sulphide
Zone—which occurs 10 to 50 m below the contact between
the ultramafic and mafic sequences. The Main Sulphide Zone
is typically 2 to 3 m thick, and the grade of the deposit varies
from about 3.5 to 4 g/t PGEs and gold (U.S. Bureau of Mines,
1933-96; Wilson, 1996; U.S. Geological Survey, 1997-2016;
Wilson and Prendergast, 2001).
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Figure N10. Photograph of the UG2 Chromitite
at the Karee Mine in the western part of the
Bushveld Complex, South Africa. The black layer
at the base of the exposure is the main layer of
the UG2 Chromitite. It has an undulating contact
with the underlying, light-colored anorthosite
layer. Several thin chromitite seams overlie

the main chromitite layer. Most of the exposed
rock is brown pyroxenite associated with the
UG2 cyclic unit; a sharp contact separates the
pyroxenite layer from the overlying light-colored
anorthosite layer. Photograph by Wolfgang
Maier, University of Cardiff, Wales, United
Kingdom.
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Figure N11. The base of the Merensky cyclic unit, a pegmatoidal pyroxenite, which contains the platinum-group-element-rich
Merensky Reef. A, Photograph of the base of the Merensky cyclic unit on the Hackney farm property in the eastern part of the
Bushveld Complex, South Africa. The basal contact of the cyclic unit is annotated by the yellow line. B, Same photograph with
an overlay showing major features, including the dark, pegmatoidal pyroxenite cutting layering in the underlying lighter-colored
norites. Photograph by Wolfgang Maier, University of Cardiff, Wales, United Kingdom.



Geology N17

30°E 31°E 24° E
I I 10°8 EXPLANATION FOR CROSS SECTIONS
Musengezi ~ Musengezi Complex [[] Quartz gabbro/gabbronorite
subchamber i
- ol - Gabbronorite
EXPLANATION FOR MAP I Websterite and Main Sulphide Zone
Mafic sequence - Bronzitite
I uitramafic sequence, [ Serpentinite
P1 layer, and Main 20°8 [ Dunite/harzburgite
1705 Sulphide Zone ] l:l Granite
B uitramafic sequence, —— Fault
. Co SOUTH
A’ L_W“hfcvdt'_c units o5 g AFRICA - — - Bouguer gravity anomaly
fne of section -'g“ = ---- Gravity residual from model
o ©
£3
83 0 A 2T TN surface A’
= 1 -
2 2 400
£
< o 3
< 2 4 — 300
£ & =
= = o7 S
= = 6 —200 Z
Hartley Complex 7 - g
g 8 — — 100
9 —
0 - O U =
0 1 2 3 4KILOMETERS
)
£E 01 2 MIES
< ©
o<
22
]
19°S — — . B Land surface B’
| -
2 300
/
2 13- / y
& / \ -
S 4 / \ 200 =
2 \ 2
S 5 / =
Selukwe 3 65— / \ Lo &
Complex E = / \ p &
e 74 - \ 4
D © - N7
”n o g —| T P i —+10
B ~-10
l 0 1 2 3 4KILOMETERS
0 1 2 MILES
Wedza Complex T
C c’

Land surface

Wedza
subchamber

0 10 20 30 40KILOMETERS

KILOMETERS
=

0 10 20MILES

[

77 South chamber
l

|

1 2 3 4 KILOMETERS
| | | |

I I
1 2 MILES

o700

Figure N12. Geologic map and cross sections of the Great Dyke, Zimbabwe. Geologic mapping and geophysical studies show
that the intrusion has a dike-like form; however, igneous layering dips gently into the center of the intrusion. The Main Sulphide
Zone, which is a reef-type platinum-group-element deposit, is confined to the P1 layer of the ultramafic sequence (as shown on
the map) and to the corresponding websterite layer shown on cross section C—C". Geologic map generalized from Worst (1957);
geologic sections generalized from Podmore and Wilson (1987).



N18

(c) J-M Reef, Stillwater Complex, Montana. The
Neoarchean Stillwater Complex (2,704+5 Ma, using the
uranium-lead zircon technique for determining age; Premo and
others, 1990) is a mafic to ultramafic layered intrusion exposed
in south-central Montana (fig. N13; Zientek and others, 2002).
This intrusion is the only feature associated with the Stillwater
LIP (Ernst and Buchan, 2001). More than 5,500 m of layered
rocks are exposed, which can be traced for 48 km along strike.
The J-M Reef, which is a reef-type PGE deposit, consists of
0.5 to 3 volume percent magmatic sulfide minerals that are
associated with a distinctive olivine-bearing cyclic unit that
can be mapped both on the surface and underground. The
actual distribution of sulfide minerals within the cyclic unit
is determined by detailed mapping, drilling, and sampling,
however. The J-M Reef, which is open at depth, has been
traced for 42 km of the 48-km strike length of the complex
and at least 2 km down the dip of layering. The J-M Reef
is currently the sole source of primary PGE production and
reserves in the United States. Since 1986, the Stillwater
and East Boulder Mines (fig. N14) have produced roughly
305 metric tons of PGEs from the J-M Reef deposit. The
overall deposit grade is about 15 g/t palladium and platinum
(U.S. Bureau of Mines, 1933-96; U.S. Geological Survey,
1997-2016; Abbott and others, 2011).

(d) Contact-Type Deposits, Duluth Complex, Minnesota.
The Keweenawan LIP resulted from the eruption of lavas and
emplacement of igneous intrusions between 1,109 and 1,087 Ma
along a linear belt where Earth’s crust subsided (the Midcon-
tinent Rift). The rift extends for more than 2,500 km from
Kansas northward beneath Lake Superior and then southeast
through Michigan (fig. N15); however, exposures of rocks
related to the rift are found only in the Lake Superior region.
Igneous rocks associated with this LIP cover more than
160,000 km? (Ernst and Buchan, 2001). LIP and rift-related
igneous rocks exposed in the Lake Superior region include flood
basalts, mafic intrusions, and minor rhyolite lava flows. The
Mesoproterozoic Duluth Complex in Minnesota is composed
of several discrete intrusions formed from mafic to felsic
magmas that were emplaced between 1,108 and 1,098 Ma
into older rocks, which include Paleoproterozoic sedimentary
rocks and Archean granite-greenstone terranes (Peterson and
Severson, 2002), and coeval LIP and rift-related flood basalts
and hypabyssal (subvolcanic) intrusions.

Contact-type mineralization that includes a few percent
sulfide minerals is laterally extensive along the base of
some of the intrusions (mainly the South Kawishiwi and the
Partridge River intrusions) along the western margin of the
Duluth Complex. The mineralized interval of igneous rocks
along the contact varies from tens to hundreds of meters in
thickness. Mineral exploration studies since the early 1950s
indicate that about 4 billion metric tons of mineralized rock
containing 0.6 weight percent copper, 0.2 weight percent
nickel, and 0.655 g/t PGEs may be present (Listerud and
Meineke, 1977; Naldrett, 2010b). Because the proportion of
sulfide minerals varies along strike, economic cutoff grades
are used to define deposits along the contact zone.

Critical Mineral Resources of the United States—Platinum-Group Elements

Hydrothermal and Sedimentary Deposits

Anomalous concentrations of PGEs or the presence
of platinum-group minerals have been reported in a variety
of hydrothermal and sedimentary deposit types (table N2
at back of chapter; Wilde and others, 2003; Wilde, 2005).
Hydrothermal mineral deposits form by the interaction of
hot water and rock. Water is a good solvent and hot water,
called hydrothermal fluid, can efficiently move and deposit
materials that occur in some mineral deposits. Sedimentary
mineral deposits are economic concentrations of minerals
in sedimentary rocks that formed directly from water in
oceans, lakes, or in underground reservoirs. Although their
occurrence is tantalizing, “a world-class deposit in which
the PGE[s] are primary commodities and hydrothermal
[processes] were indisputably the primary mechanism of
concentration is yet to be discovered” (Wood, 2002, p. 233).
Nevertheless, economic deposits of hydrothermal platinum
and palladium may exist (Wilde and others, 2003).

Experimental and theoretical investigations by many
authors have helped to identify the constraints under
which the PGEs can be mobilized by fluids at relatively
low temperatures (that is, at approximately 300 °C or
less) (Wood and others, 1992; Gammons and Bloom,

1993; Wood, 2002; Hanley, 2005; Colombo and others
2008; Barnes and Liu, 2012; and references cited therein).
Significant concentrations of platinum and palladium can
dissolve into solution as chloride complexes only under
highly oxidizing or highly acidic conditions. Palladium and
platinum can be transported as bisulfide complexes in acidic
to neutral solutions under reduced and moderate oxidation
conditions. Hydroxide, thiosulfate, and organic complexes
may be the dominant forms of dissolved platinum and
palladium in low-temperature, near-surface environments.

Chloride complexes play a significant role in the
mass transfer of PGEs in (a) porphyry copper deposits,
especially the porphyry copper-gold subtype with island
arc affinities and those associated with alkaline igneous
rocks; (b) unconformity-related uranium-gold-platinum-
palladium deposits; and (c) sediment-hosted strata-bound
copper deposits (Wood, 2002). Bisulfide complexes may
be responsible for (a) transporting platinum, palladium, and
gold in the footwall copper-nickel-PGE ores at Sudbury,
Ontario, and in nickel-molybdenum-PGE-gold enriched
black shale deposits; (b) the remobilization of PGEs or
recrystallization of platinum-group minerals in ophiolites
and other ultramafic rocks during serpentinization and
metamorphism; and (c) the remobilization of PGEs from
mineralization of primary magmatic origin by deuteric or
hydrothermal processes (Wood, 2002).

Manganese crusts that precipitate on the sides of
seamounts are the definitive example of a sedimentary
deposit enriched in PGEs (table N2). These crusts take
millions of years to accumulate; the metals are extracted
from seawater by adsorption processes (Halbach and
others, 1989).
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Figure N14. Photograph of the Stillwater Mine in south-central Montana, looking southeast. The pond is the
tailings impoundment. The buildings in the lower left include the shaft, the mill complex, and offices. Photograph
by Michael L. Zientek, 2006.

Residual Deposits Formed By Weathering
and Laterites

In areas with tropical or forested warm to temperate
climates, weathered red subsoil rich in secondary oxides forms
on ultramafic rocks. These subsoils, or laterites, are a signifi-
cant source of nickel (the other significant source of nickel is
magmatic ore deposits). Laterites contain about 70 percent of
the world’s nickel resources, have been mined for more than
100 years, and account for about 40 percent of the world’s
nickel production (Gleeson and others, 2003; Dalvi and others,
2004; Mudd, 2010; Berger and others, 2011).

PGE enrichments are found in some laterites developed
on ultramafic rocks, and an ongoing debate among geologists
concerns whether this enrichment is related to the mobilization
of the PGEs during the laterization process or to the residual
accumulation of preexisting platinum-group minerals. Samples
of lateritized ophiolitic mantle harzburgite from the Pirogues
River area of New Caledonia contain up to 2 ppm (but average
500 ppb) platinum. The continuity of the PGE-enriched
laterite layers relative to the discontinuous distribution of
PGE-enriched chromitites in the ophiolites initially suggested
that the PGEs could be concentrated through the lateritization
process (Augé and Legendre, 1994); however, recent work
indicates that the PGE-enriched zones are the result of the

concentration of residual platinum-group mineral particles
that were present in the unweathered ultramafic rock (Traoré
and others, 2008). The PGE-enriched saprolitic horizon of the
Falcondo nickel-laterite deposit in the Dominican Republic
also appears to be a residue of primary platinum-group
minerals that were dispersed in ophiolite-related ultramafic
rocks (Proenza and others, 2010).

Another PGE-enriched laterite occurrence, the Syerston
nickel-cobalt-platinum deposit, overlies the dunitic core of
the easternmost of three plugs that make up the Tout Intrusive
Complex, which is a Uralian-type intrusion in the Fifield area
in New South Wales, Australia (Teluk, 2001). Preferential
weathering of the ovoid dunite body formed a slab-like laterite
body. The laterite extends to a depth of 40 m and has zones
of nickel-cobalt enrichment that average 10 m in thickness in
the middle of the weathering profile. An interval of residually
concentrated platinum largely coincides with the nickel-cobalt
enriched layers. Primary platinum enrichment in the host
dunite may explain the distribution of platinum in the Syerston
laterite profile, the exceptional grades (commonly in excess of
2.0 g/t platinum), and the coarse grains of the platinum-group
minerals. Published resources are 137 million metric tons
containing 0.24 g/t platinum; the planned nickel-cobalt open
pit area (high-grade goethite zone) accounts for 91.6 million
metric tons of the resource and contains 0.70 weight percent
nickel and 0.12 weight percent cobalt (Teluk, 2001).
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Platinum Placer Deposits

Erosion and weathering of rocks can form surficial
mineral deposits. Placer deposits form when heavy particles
of rocks or minerals are physically concentrated by the
action of moving water. Placer deposits can form in active
streams or rivers or along the shoreline of oceans or lakes.

In 1824, placer platinum deposits were discovered on the
Orulikha River, north of the Nizhny Tagil Massif in the central
Ural Mountains (Urals) of Russia (table N3; fig. N16; Duparc
and Tikonowitch, 1920; Pushkarev, 2001). From then until
1922, approximately 330 metric tons of metal was recovered
from placer deposits in the Urals. At least one company

is still exploring for paleoplacers that are buried beneath
younger deposits of sediment and for placers that may be

on river terraces along the Tylay and Kos’va Rivers in the
Urals (Eurasia Mining plc, 2012). So far, the company has
delineated resources in placers that contain 0.6 metric tons

of platinum; average grades range from 0.303 to 0.363 gram
per cubic meter (Eurasia Mining plc, 2011).

In the second half of the 20th century, platinum placer
deposits were discovered at Kondyor in eastern Siberia
(fig. N17; Shcheka and others, 2004) and in the Koryak area at
the northern end of the Kamchatka Peninsula in eastern Russia
(Tolstykh and others, 2004). The Kondyor placer deposits
produced about 85 metric tons of platinum from 1984 to 2011.
After a decade of mining, approximately 45 metric tons of
platinum was recovered in the Koryak area (Hurst, 2005).

The detrital platinum minerals in the placer deposits
in Russia are clearly derived from small mafic to ultramafic
plutons. The drainages surrounding the Nizhny Tagil Massif
contained some of the most productive placer deposits in the
Urals (fig. N16B). Placer mining near Nizhny Tagil began
around 1839. Platinum in bedrock was first discovered in 1892
at a deposit called Krutoy Log in the Nizhny Tagil Massif
(fig. N16B; Anikina and others, 2014). These plutons, which
are the sources of platinum placer deposits, are circular or
elliptical in plan view, pipe-like when viewed in profile (that
is, in a cross-sectional view), and generally range in areal
extent from about 10 to 40 km? (Johan, 2002). The rocks that
make up the plutons are a core of dunite that is concentrically
surrounded by borders of clinopyroxenite, hornblendite,
and gabbroic rocks. The zoned ultramafic complexes have
rock textures that are consistent with (a) crystallization from
magma at depth; (b) deformation, recrystallization, and
annealing at high temperature; and (c) metasomatic alteration
(Burg and others, 2009; Shmelev and Filippova, 2010).
Rocks in these small mafic to ultramafic plutons make up a
distinct rock association called Uralian-type complexes. These
complexes are enigmatic because lode occurrences of platinum
mineralization found in the plutons are inconsequential
compared with the amount of placer platinum minerals found
in the streams draining from the plutons.

Critical Mineral Resources of the United States—Platinum-Group Elements

Platinum mineralization in Uralian-type complexes is
closely associated with chromitite pods, vein-like bodies, or
schlieren within the dunite core of the plutons. In the Nizhny
Tagil Massif, more than 1,600 chromitite occurrences have
been mapped; most do not exceed 50 centimeters (cm) in
length and a few centimeters in thickness. Two types of
chromitite are distinguished: (a) massive chromitite that grades
into disseminated chromite in the dunite host, and (b) chromitite
marked by serpentine rims that has a sharp boundary with the
dunite host rock. The second type of chromitite is exception-
ally enriched in platinum (Pushkarev and Anikina, 2002).
Although the chromitites are small, the abundance of platinum
can be quite high. For example, at the Krutoy Log deposit,
chromite-platinum ore at the top of the orebody extended for
a distance of 2 m in one adit. From this small volume of rock,
about 30 kilograms (reported as 965 troy ounces) of native
platinum metals was recovered (Mertie, 1969).

The platinum-group minerals in the placer deposits
provide clues about the rocks from which they are derived.
The platinum-group minerals are dominated by platinum-iron
alloys but also contain some iridium and osmium alloys; few
minerals with palladium or rhodium are found. The platinum
nuggets in the placer deposits can be quite large (more than
10 cm in diameter and weighing up to several kilograms); by
comparison, in most contact- and reef-type PGE ore deposits,
the platinum-group minerals rarely exceed a few hundred
microns in diameter (1 micron equals 0.0001 cm) and weigh
less than 0.0000001 kilograms. Some of the detrital platinum-
group minerals have crystal faces that reflect their internal
crystalline structure (figs. N184 and N18B). Minerals that
display crystal faces usually grow from a liquid or a vapor.
Many nuggets contain inclusions of chromite and olivine
(fig. N18C), or in some cases, form a matrix interstitial to
these minerals. These textures suggest that platinum-iron
alloys formed from magmas that were crystallizing chromite
and olivine. Collectively, these observations indicate that
the platinum nuggets are not derived from concentrations
of magmatic sulfide minerals; rather, it appears that the
nuggets were crystallized directly from silicate melt or a
magmatic vapor.

Platinum placers are derived from similar ultramafic
plutons in Alaska; British Columbia, Canada; Colombia;
Ethiopia; and New South Wales, Australia (table N3). The
largest alluvial PGE resource in the United States occurs south
of Goodnews Bay in Alaska (fig. N19). The Goodnews Bay
placer deposits were discovered in 1926 and mined between
1927 and 1975. Approximately 18 metric tons of platinum was
recovered from the Salmon River and its tributaries (Johnston,
1962; Mertie, 1976; Barker, 1986; Tolstykh and others, 2002).
Significant placer resources may remain in the unmined,
deeply buried ground of the lower Salmon River Valley as
well as in waste material (tailings) from previous dredging
operations (Southworth and Foley, 1986).
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Table N3. Areas with significant placer platinum production, and estimates of cumulative production and grades.

[g/m?®, gram per cubic meter; km, kilometer; n.d., no data; PGE, platinum-group element]

Cumulative
Location production Dates Grade(s) Reference(s)
(metric tons)
Ural Mountains, 330 to 435 1824 to Initial tenors of placers in the Martian, Syssim, Lumb (1920); Eurasia
Russia present Tschauch, and Wyssim Rivers, which drain Mining plc (2011);
the Nizhniy Tagil area, were about 400 g/m?; Malitch and Thalham-
by World War I, the grades of placers in these mer (2002); Pushkarev
rivers were 0.41 to 35 g/m’. and Anikina (2002);
The average grade of the placers in the Nizhniy Tagil Pushkarev (2001);
district early in its history is estimated to be about Teluk (2001)
20 g/m’.
Grades currently estimated for the West Kitlim placer
deposit are 0.303 to 0.363 g/m’.
San Juan and Atrato 107 1778 to 1965 n.d. Mertie (1969)
Rivers districts,
Colombia
Kondyor, Russia 85 1984 to 2011 Average grade of the placer deposit is 1.6 g/m®* PGEs. Russian Platinum
Drainages within the intrusive body have grades of (2011a); Shcheka
4 g/m’. The grades 50 km downstream are about and others (2004)
0.5 g/m’.
Kamchatka, Russia 45 Approximately ~ The average mined grade is 0.28 g/m? platinum. Hurst (2005)
10 years of
mining beginning
after 1991
Goodnews Bay, 19to 22 1927 to 1975 At Squirrel Creek, high-grade placers contained Johnston (1962); Mertie
Alaska 4.1 g/m?, with an average tenor of 1.2 g/m’. (1976); Barker (1986);
At Clara Creek, early small-scale mining of placers Soutthorth.and Foley
with a grade of 3.25 g/m?, with an average tenor (1986); Pi.lClﬁC North
of 0.81 g/m’. West Capital Corp.
) (2006); Chatterjee and
A cleanup a short distance from the mouth of Bandopadhyay (2011)
Fox Gulch indicated grades of 0.81 to 1.2 g/m’.
Average grade of 470 samples is 0.192 g/m’, with
a maximum value of 1.6 g/m’.
Yubdo, Ethiopia 2.0 1926 to 1956 Eluvium—Grades were initially 0.3 to 0.5 g/m’ but Molly (1959)
decreased to 0.11 g/m® as mining moved away
from the core of the intrusion.
Alluvium—Grades were 0.25 to 0.83 g/m’ in test pits.
Tulameen district, 0.6 1885 to 1932 n.d. Mertie (1969)
British Columbia,
Canada
Fifield district, New 0.6 1893 to mid- n.d. Mertie (1969); Platina
South Wales, 1960s; most Resources Ltd. (2006)
Australia production from

first few years
of operation
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Khabarovsk. A, Geologic map of the massif, showing that the circular pluton consists of a central core of dunite, which is surrounded
by clinopyroxenite and gabbro. Emplacement of the pluton metamorphosed the surrounding sedimentary rocks, forming hornfels.
Geology simplified from Burg and others (2009). B, Oblique view of the Kondyor Massif showing the core of dunite surrounded by
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Platinum-iron Olivine

alloy

Chromite

Figure N18. Photograph and lithograph showing the morphology of platinum-iron-alloy nuggets derived from
Uralian-type intrusions. A, Photograph of silvery-gray nugget of isoferroplatinum from the Kondyor Massif, Russia.
The nugget, which is about 4 millimeters (mm) long, consists of two intergrown crystals of isoferroplatinum;

each crystal forms a cube with smooth crystal faces and sharp edges and corners (Photograph courtesy of
TreasureMountainMining.com). B, Sketch of the isoferroplatinum nugget illustrating the cube-shaped crystals.

C, Lithograph of a platinum nugget with olivine and octahedral chromite, from the Tulameen district, British Columbia,
Canada. The longest dimension on the nugget is about 10 mm. In this nugget, platinum-iron alloy occurs interstitial to
(in between) magmatic crystals of olivine and chromite. The texture implies that the platinum-iron alloy grew slightly
later than the earlier formed olivine and chromite. Image is from Kemp (1902).
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that could be the bedrock source of the platinum minerals found in the placers. Modified from Tolstykh and others (2002).
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Resources and Production

Discovered mineral resources include the total amount
of identified mineral resources that are in the ground as
well as the cumulative past production (U.S. Geological
Survey National Mineral Resource Assessment Team,
2000). This section begins with an overview of historic and
current primary and secondary production of PGEs. Primary
production is when metal that occurs in rocks is mined
and transferred to above-ground material stock; secondary
production is from recycled material or scrap. The section
also includes a discussion of the identified mineral resources
of PGEs. Identified mineral resources refer to the mineralized
material in the ground whose location, grade, quality, and
quantity are known or can be estimated from specific geologic
evidence (U.S. Bureau of Mines and U.S. Geological Survey,
1980). Identified mineral resources represent the current stock
of material in the ground (mineral inventory) that might be
mined. The amounts of identified resources discussed this
chapter were current as of 2012.

Production

Up to 1920, almost all of the world’s PGE production
came from placer deposits in Russia and Colombia. The
discovery of nickel deposits in solid rock in the Sudbury
area of Ontario, Canada, in the 1800s (Giblin, 1984) roughly
coincided with technological innovations that used nickel to
strengthen traditional steels. This technological innovation
led to extensive development of the Sudbury deposits; in the
first half of the 20th century, Sudbury produced approximately
80 percent of the world’s nickel (Prevec, 1997). PGEs were
recovered as a byproduct of nickel mining in Sudbury;
by 1934, Canada had become became the world’s leading
producer of PGEs.

Most of the PGEs produced today are from mineral
deposits that were discovered in the Noril’sk-Talnakh area
of Russia in 1919 (Kunilov, 1994; Likhachev, 1994) and
in South Africa in the 1920s (Wagner, 1929). Significant
development of these deposits did not begin until the 1960s
when industrial demands for PGEs increased. About the same
time that new and extraordinarily PGE-enriched deposits were
discovered in the Noril’sk-Talnakh area in Russia (Kunilov,
1994), Anglo American Platinum Ltd. gained a controlling
stake in the PGE industry in South Africa (Mattera, 2008)
and South Africa had an economic boom (Rouillard, 1997).

Critical Mineral Resources of the United States—Platinum-Group Elements

As a result, beginning in the 1960s, PGE production increased
in South Africa and the Soviet Union (Russia), such that
South Africa became, and still is, the leading producer of
platinum and rhodium, and Russia was and is the world’s
leading producer of palladium (fig. N20).

Approximately 14,200 metric tons of PGEs was
produced from 1900 to 2011, and roughly 95 percent of that
amount (about 13,500 metric tons) was produced from 1960
onward. The breakdown of production by country shows that
about 90 percent of production since 1900 has come from
South Africa and Russia; Canada, the United States, and
Zimbabwe accounted for 5 percent, 2 percent, and 1 percent
of production, respectively (fig. N21).

A secondary supply of platinum, palladium, and rhodium
is obtained through the recycling of catalytic converters
from end-of-life vehicles, jewelry, and electronic equipment.
Recycling volumes are sensitive to PGE prices; higher prices
typically lead to higher recycling volumes owing to the greater
incentive to recycle. Recycled platinum, palladium, and
rhodium provide a significant proportion of the total supply
and are sufficient to close the gap between mine production
and consumption. For example, in 2011, about 24 percent
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Figure N20. Graph showing world platinum-group-
element production, by country and year, from 1960 to 2011.
The layers of the graph are placed one above the other,
forming a cumulative total. Data are from U.S. Bureau

of Mines (1933-34, 1933-96) and U.S. Geological Survey
(1997-2016).
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of the total supply of platinum and palladium and about
27 percent of the total supply of rhodium were obtained
through recycling (Butler, 2012).

Identified Resources

Exploration and mining companies have delineated
approximately 100,000 metric tons of PGE (and minor
amounts of gold) resources in mineral deposits around the
world that remain to be developed (table N4). This estimate
was derived by compiling mineral inventory information about
in situ estimates of the tonnage and grade of mineralized rock
with “realistic prospects of eventual economic extraction”
(Weatherstone, 2008) published by exploration and mining
companies and geological surveys. To be considered an
identified resource for this compilation, the evaluation of
tonnage and grade of mineralized rock must be based on
(a) direct sampling of the ore, and (b) industry standard
resource estimation practices. The estimate of 100,000 metric
tons is comparable to the 91,000 metric tons recently
reported by Mudd (2012) (table N4). Most of the difference
is accounted for by the larger estimate for the Platreef deposit
of the Bushveld Complex in this chapter. For context, the
total net consumption of PGEs in 2012 was approximately
460 metric tons (Platinum Today, 2013c).

Table N4. Identified platinum-group-element and gold resources, summarized by deposit type and location.

[Data are from table N10 at the end of this chapter. Numbers may not add to totals because of rounding]

Deposit

PGE and gold resources

PGE and gold resources

Deposit compiled for this chapter  compiled by Mudd, 2012
Ue (metric tons) (metric tons)

Reef Merensky Reef and UG2 Chromitite, Bushveld 58,000 56,000
Complex, South Africa

Main Sulphide Zone, Great Dyke, Zimbabwe 8,200 8,700

J-M Reef, Stillwater Complex, Montana 2,200 620

Other areas 2,700 1,700

Total, reef-type deposits 71,000 67,000

Contact  Platreef, Bushveld Complex, South Africa 17,000 7,700

Other areas 3,100 1,600

Total, contact-type deposits 20,000 9,300

Conduit  Noril’sk-Talnakh area, Russia 10,000 11,000

Other areas 1,200 2,100

Total, conduit-type deposits 11,000 13,000

Other All other areas 990 1,200

Grand total, all three types of deposits 100,000 91,000
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Tonnage and Grade Relations for Magmatic
Ore Deposits

Tonnage and total PGE and gold grade relations for iden-
tified resources in magmatic deposits are shown in figure N22.
Estimates of total PGE and gold grade can vary over about
three orders of magnitude, whereas tonnage can vary over
five orders of magnitude. Tonnage and grade are not strongly
correlated, which is typical for mineral deposits of a given
type. Some conduit-type deposits have lower PGE and gold
grades than reef-type deposits because conduit-type deposits
are polymetallic deposits in which copper, nickel, PGEs, and
gold all contribute to the value of the ore. In reef-type deposits,
the value of the ore is primarily in the PGE and gold concen-
trations. In terms of contained metal, most deposits contain
more than 1 metric ton of PGEs and gold. For any values less
than 1 metric ton, it simply is not economic to determine the
tonnage and grade. In 2012, world mine production was about
450 metric tons of PGEs and world usage was about 615 metric
tons (Loferski, 2013b). The shaded area in figure N22
highlights those deposits that have more than 1 year’s worth
of contained PGEs, given current rates of production and
usage. Only a fraction of the deposits in the world have enough
contained metal to satisfy multiple years of world demand.

Critical Mineral Resources of the United States—Platinum-Group Elements

Mineral deposits occur rarely in Earth’s crust, and
large ones are especially uncommon (Singer, 1995).
Most of the known metal for many mineral commodities
is contained in a few, very large deposits (Singer and
DeYoung, 1980). For most types of mineral deposits, the
grade of the ore varies by about one order of magnitude and
the tonnage varies by several orders of magnitude among
deposits. As a result, contained metal correlates strongly
with tonnage. For porphyry copper deposits (which are the
world’s leading source of copper), for example, 10 percent
of the deposits accounts for approximately 60 percent of the
identified copper resource whereas the bottom 50 percent
of the deposits accounts for less than 5 percent of the
identified copper resources (fig. N234). For the PGEs,
this correlation is more pronounced. Ten percent of PGE
deposits account for more than 80 percent of identified
PGE resources whereas the bottom 50 percent of the PGE
deposits accounts for less than 1 percent of identified PGE
resources. Thirty percent of PGE deposits contain more
than 97 percent of the world’s identified PGE resources, and
almost all these deposits are associated with three areas—
the Bushveld Complex in South Africa, the Great Dyke
in Zimbabwe, and the Noril’sk-Talnakh area in Russia
(fig. N23B).

Concentration of platinum-group elements and gold, in grams per metric ton
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Figure N22.
reef-type, and other types of deposits enriched in platinum-group elements (PGEs). Diagonal lines are isolines
that show amounts of contained PGEs and gold in the deposits, in metric tons (t). Annual world production and
usage of PGEs, as of 2012, was about 450 metric tons. The shaded area on the figure highlights those deposits
that are large enough to contain more than 1 year’s worth of the world’s PGE needs.
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Figure N23. Graphs showing the percent of contained metal against percent of deposits for A, the
world’s platinum-group-element (PGE) and porphyry copper deposits, and B, the top 30 percent of the
world's PGE deposits. In A, the curves are derived from compilations of known deposits and show that
most of the contained metal in a given deposit type is associated with a small percentage of very large
deposits. Both deposit types show the effect, but it is more pronounced for PGE deposits. In B, the
curve focuses on the largest deposits, showing the data points and the name of the igneous intrusion
hosting the deposit. Most of the large deposits are associated with the Bushveld Complex in South
Africa, the Great Dyke in Zimbabwe, and sills in the Noril'sk-Talnakh area of Russia. Data for porphyry
copper are from Singer and others (2008). PGE data are from table N10 at the end of this chapter.
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Seventy-two percent of the world’s PGE resources are
found in reef-type and contact-type deposits in the Bushveld
Complex, South Africa (table N4). The conduit-type magmatic
deposits in the Noril’sk-Talnakh area, Russia, account
for 10 percent of the world’s identified PGE resources.
Eight percent of the world’s identified PGE resources are in
the Great Dyke, Zimbabwe. In fact, more than 97 percent
of all the world’s identified PGE resources are contained in
only 14 intrusions or intrusive complexes (table N5 at back
of chapter).

When considered by deposit type alone, 69 percent
of identified PGE resources are associated with reef-type
deposits, 20 percent are associated with contact-type deposits,
and 11 percent are associated with conduit-type deposits
(table N4). For reef-type deposits, 81 percent of identified
resources have been delineated in the Bushveld Complex
(South Africa); 12 percent in the Great Dyke (Zimbabwe);
and 3 percent in the Stillwater Complex (Alaska). For
contact-type deposits, 85 percent of the world’s identified
resources are found in the Bushveld Complex. For conduit-
type deposits, about 90 percent of the identified resources
are found in the Noril’sk-Talnakh area of Russia.

For simplicity, the previous discussion has focused on
total PGE production and resources; however, individual
PGEs do have different values and uses. For example,
platinum and rhodium are more valuable economically than
palladium, and the iridium market is much smaller than the
markets for platinum and palladium. The proportions of the
PGEs differ among deposits, however (fig. N24). The deposits
in South Africa and Zimbabwe have a higher proportion
of platinum than any other major deposit in the world. The
proportion of palladium is much higher in the deposits in the
Noril’sk-Talnakh area in Russia.

Critical Mineral Resources of the United States—Platinum-Group Elements

Undiscovered (Hypothetical and Speculative)
Resources (United States and Global)

In addition to the resources of PGEs that have been
discovered (identified), additional PGEs may be present as
undiscovered resources in areas adjacent to identified magmatic
deposits and in deposits that remain to be discovered.

Extensions to ldentified Deposits

Additional PGE resources may be present in areas
adjacent to or near deposits that now dominate world supply.
Although resources for reef-type and contact-type PGE
deposits are formally delineated in advance of mining,
the extent of the deposits is never completely delineated
because the upfront costs would be too great. Instead, mining
companies conduct enough research and work to ensure
that the deposit contains adequate resources to justify mine
development. It is possible, therefore, that some deposits are
larger than previously thought.

In the Bushveld Complex, South Africa, relatively
unexplored extensions of the Merensky Reef and the
UG2 Chromitite deposits could contain an additional
33,000 metric tons of platinum and 32,000 metric tons of
palladium to a depth of 3 km (Zientek and others, 2014).
These reef-type PGE deposits are in the form of vast sheet-
like orebodies. Mining has started at the surface and has
progressed to depths of 2 km in some regions (fig. N25).
Likewise, the Platreef in the Bushveld Complex could
contain an estimated 1,100 metric tons of platinum and
nearly 1,400 metric tons of palladium (based on a mean
estimate to a depth of 1 km). The Great Dyke of Zimbabwe
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Figure N25. Three-dimensional block diagram showing the Merensky Reef interpolated down to 2 kilometers in the southern
area of the western limb of the Bushveld Complex, South Africa. Mined out areas are shown in gray, and the Merensky Reef
trace is shown as a black line. The Merensky Reef continues at depth beyond what is shown in this illustration.

could contain up to 6,900 metric tons of undiscovered
platinum, palladium, and rhodium (Zientek and others, 2014).

Additional PGE resources in the Noril’sk-Talnakh area in
Russia are difficult to assess. The extent of the orebodies for
which resources are reported is not revealed in publicly acces-
sible technical information released by the mining company.
The northernmost mine in the Talnakh area, the Skalisty Mine,
appears to be midway along the axis of the intrusion that hosts
the massive sulfide orebodies (fig. N74). If existing maps,
similar to the one shown in figure N74, are approximately
correct, additional resources associated with massive sulfide
orebodies in the Talnakh area could be present.

Roughly 305 metric tons of platinum and palladium
have been produced from the J-M Reef in the Stillwater
Complex in Montana, and drill-based estimates indicate that
another 2,200 metric tons are present (U.S. Bureau of Mines,

1933-96; U.S. Geological Survey, 1997-2016; Abbott and
others, 2011). Mining has progressed to depths of 1,800 m
below the surface, but the bottom of the ore deposit has not
been reached. Rough geologic estimates suggest that another
1,000 to 6,200 metric tons of platinum and palladium could
be present at depth (Zientek, 1993; Zientek and others,
2002). As with the Bushveld Complex, the J-M Reef has
been traced for longer distances along strike than down dip.
The downdip projection of the J-M Reef is complicated

by structural deformation associated with the uplift of the
Beartooth Mountains. Gravity anomalies and inclusion
suites in younger, cross-cutting intrusions, however, demon-
strate that a portion of the complex is concealed at depth
(Brozdowski, 1985; Kleinkopf, 1985). As a result, structural
and geophysical models would be needed to constrain what
rocks may be present at depth.
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Undiscovered Reef-Type and Contact-Type Deposits

Based on literature research, there are at least 200 layered
intrusions in the world, although the actual number could
be two to three times higher. An intrusion does not have to
be large to have a reef-type deposit; intrusions as small as
a few tens of kilometers in length with as little as 500 m
of layered cumulates are known to host reef-type minerali-
zation (table N6 at back of chapter; fig. N26). Well-explored
intrusions have at the most 1- or 2-m-thick reef-type deposits
(and several subeconomic occurrences) that occur in thou-
sands of meters of layered rock. Many small intrusions could
be evaluated for their reef-type potential to assess whether
an economic deposit could be present.

For example, the identified PGE resources in Finland
are 91 metric tons of platinum and 237 metric tons of
palladium in seven reef-type and contact-type deposits. An
assessment by the Geological Survey of Finland estimates
that a mean number of 29 and 23 contact-type and reef-type
deposits, respectively, occur in Finland. They estimate that
the median contained metal contents would be 5,500 metric
tons of platinum and 12,000 metric tons of palladium in the
undiscovered contact-type and reef-type deposits (Rasilainen
and others, 2010).

Undiscovered magmatic mineral deposits could be
present in many areas of the United States and the world. The
intrusions of the Duluth Complex, United States, and other
smaller intrusive complexes of the Midcontinent Rift in the
Lake Superior region have high potential to contain undis-
covered copper-nickel-PGE sulfide deposits (fig. N15; Miller
and others, 2002). In fact, recent exploration has dramatically
expanded the mineral resource inventory of contact-type
deposits along the western margin of the Duluth Complex.
Exploration results have led to new exploration models,
which indicate additional areas that may have the potential for
undiscovered deposits. Furthermore, the Duluth Complex has
many large layered intrusions that may have the potential to
host reef-type PGE deposits. New models, new data, and tools
for integration and visualization could result in discoveries of
mineralized rocks.

Ernst and Buchan (2001) cataloged more than 300 LIP
events worldwide; they determined that more than 100 LIP
events have associated sill complexes or layered intrusions.
All are prospective for the occurrence of magmatic mineral
deposits. In the United States, Ernst and Buchan identified
about 25 LIP events, of which several have sill complexes and
layered intrusions. The obvious exploration targets for reef-
type deposits in the United States are the Stillwater Complex
in Montana and the dozens of intrusions that make up the
Duluth Complex in Minnesota and associated rocks of the
Keweenawan LIP. Other layered mafic intrusions with reef-
type potential occur in the Wichita Mountains of Oklahoma,
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which are part of a Cambrian LIP. The Lake Owens Complex
in Wyoming, which is a small layered intrusion, is also
reported to have reef-type mineralization (Loucks, 1991).
Other large layered intrusions are known from subsurface

oil and gas exploration in west Texas and New Mexico; at
present, they are too deep to be targets for mineral exploration
(Keller and others, 1989; Kargi and Barnes, 1995; Adams and
others, 1997).

To have a significant effect on global supply, a
large-tonnage deposit would first have to be discovered.
Large-tonnage reef-type deposits can occur only in large
layered intrusions. A survey of the literature shows there are
several large intrusions that do not have identified reef-type
mineralization (such as the Tete Complex, the Dufek intrusion,
the Molopo Farms Complex, the Windimurra Complex, and
so on) (table N6). Some of the intrusions are poorly exposed
and others have been intensely deformed and metamorphosed,
which makes them difficult to explore for deposits. The
economic risk associated with exploring these intrusions
would be relatively high compared with identifying additional
resources in extensions of known reef-type deposits.



Undiscovered Conduit-Type Deposits in the
United States—Nikolai Greenstone and
Eastern Wrangellia

Several LIPs with sill complexes occur in the
United States (Ernst and Buchan, 2001); however, one
in particular stands out for its potential for undiscovered
conduit-type nickel-copper-PGE mineralization (Hulbert,
1997; Hulbert and Stone, 2006; Schmidt and Rogers,

2007). The Wrangellia LIP is known from extensive flood
basalts and related rocks of the Middle to Late Triassic
Nikolai Greenstone that is part of the Wrangellia terrane
accreted to the western margin of North America (Berg

and others, 1972; Jones and others, 1972; Berg and others,
1978; Nokleberg and others, 1994; Plafker and Berg, 1994).
The Wrangellia terrane can be traced discontinuously for
more than 2,000 km from the Wrangell and Amphitheater
Mountains in southern Alaska through Canada’s southwestern
Yukon Territory, to the Queen Charlotte and Vancouver Islands
in British Columbia, Canada.

Sill-like mafic to ultramafic intrusive complexes in
Wrangellia are the remnants of subvolcanic magma chambers
that fed the thick, overlying flood basalts and picritic
pyroclastics of the Nikolai Greenstone. A conduit-type
deposit in the Wellgreen intrusion, Yukon Territory, contains
a resource of 461 million metric tons grading 0.32 weight
percent nickel, 0.26 weight percent copper, 0.4 ppm platinum,
0.34 ppm palladium, and 0.17 ppm gold (McCracken, 2011;
Carter and others, 2012).

Alaska’s Amphitheater Mountains and the area of south-
central Alaska are also underlain by several mafic to ultramafic
complexes that are part of the Nikolai LIP (fig. N27; Schmidt
and Rogers, 2007; Glen and others, 2011). The largest and
most exposed mafic to ultramafic sills include the Fish Lake
and Tangle (FL-T) Complexes, which occur along the flanks
of the Amphitheater Mountains synform. Smaller mafic to
ultramafic complexes include Canwell, Eureka, and Rainy.
The occurrence of picritic volcanic rocks (high-magnesium
olivine basalt) near some of the larger mineralized ultramafic
bodies is consistent with mineralized occurrences that have
high nickel-to-copper ratios and elevated PGE concentrations.
Grab samples from three different mafic to ultramafic
complexes have extremely high metal concentrations, as
follows: 2.0 weight percent nickel, 1.3 weight percent copper,
and 7.9 g/t PGE+gold+silver from Rainy; 13.6 weight percent
nickel, 2.9 weight percent copper, and 26.0 g/t PGEs from
Canwell; and 6.7 weight percent nickel, 1.0 weight percent
copper, and 1.5 g/t PGEs from Alpha (same as Fish Lake)
(Pure Nickel, Inc., 2013).
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Undiscovered Platinum Placer Deposits in Alaska

Undiscovered marine placer deposits could be associated
with paleochannels or beach deposits in the Goodnews Bay
region in Alaska. A geophysical survey indicates the presence
of ultramafic rocks offshore, which could be a source of placer
platinum (Barker and others, 1988; Barker and Lamal, 1989).
Seismic analysis indicates that the bottoms of the paleochan-
nels that drained these now-offshore ultramafic rocks are
about 20 to 40 m deep and covered with modern sediments
(Oommen, 2006; Oommen and others, 2008). Platinum may
have accumulated in marine sand bars that are aligned parallel
or subparallel to the current Alaskan coastline (Oommen,
2006; Oommen and others, 2008). Assuming that the sand bars
represent submerged paleobeaches exposed during periods of
glaciation in the Pleistocene Epoch, intensified wave sorting
and concentration of heavy minerals (including entrained
platinum grains) may have taken place. Spatial distribution
patterns of platinum and sediments offshore of the Goodnews
Bay Complex suggest relatively high platinum concentrations
near Goodnews Bay and Carter Bay (Oommen, 2006;
Oommen and others, 2008).

Schmidt and others (2007) delineated a permissive tract
(fig. N194) for placer PGE-gold deposits hosted in Quaternary
unconsolidated alluvial and marine sediments that includes
onshore regions and areas up to 10 km offshore that are
downstream of known mafic to ultramafic complexes within
the Goodnews Bay and Togiak terranes (Hoare and Coonrad,
1978; Decker and others, 1994). They estimate that the tract
has a 90 percent probability of containing at least 1 metric
ton of platinum and a 10 percent probability of containing
at least 17 metric tons; the mean and median estimates are
5 and 7 metric tons, respectively.

Metals in Stored Waste Products

PGEs may also be present in material discarded during
the mining and beneficiation of magmatic ore deposits. When
ore materials are processed to recover the PGEs, some losses
always occur; in other words, it is impossible to recover
100 percent of the metal in the mined material. For example,
tailings derived from processing ores from the Noril’sk-
Talnakh area in Russia may contain 800 to 1,000 metric
tons of PGEs; an additional 100 metric tons of PGEs may
be present in stored pyrrhotite concentrates and iron cakes
(Petrov and others, 2013). Some of the metals in stored waste
products could be recovered if appropriate technologies are
developed. For example, ultrafine grinding techniques are
currently being used to reprocess tailings from the Merensky
Reef mines in South Africa (Buys and others, 2013).
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Exploration for New Deposits

The methods of locating PGE deposits can vary. In very
rare cases, PGE-enriched sulfide mineralization has been
found by panning. For example, the Merensky Reef of the
Bushveld Complex, South Africa (fig. N9), was discovered
in 1924 as the result of panning in a dry river bed and finding
platinum minerals in the concentrate (Cawthorn, 1999).

In most cases, chemical analysis of samples is required to
identify PGE-enriched rocks. Because of the refractory nature
of PGEs and their low concentration in most materials, an
analytical technique that preconcentrates PGEs before analysis
and ensures complete digestion of the sample is required. The
preferred method to analyze for PGEs is fire assay.

A practical and effective exploration approach is to look
for anomalous concentrations of copper, platinum, and palla-
dium in residual or transported material derived from a larger
volume of rock, such as soil, stream sediments, and talus fines
(Cameron and Hattori, 2005). Soil chemistry has been used
to delineate mineralized rocks in the Platreef of the Bushveld
Complex (Frick, 1985). The J-M Reef of the Stillwater
Complex (fig. N13) was discovered in 1974 by analyzing
soil and talus fines for platinum and palladium (Conn, 1979;
Zientek and others, 2005). Contact-type mineralization in the
Duluth Complex (fig. N15) is currently being explored using
regional geochemical surveys of glacial till (Duluth Metals
Ltd., 2011).

Surface-water geochemistry led to the discovery of
the ore deposits in the Noril’sk-Talnakh area in Russia
(figs. N3 and N6; Kunilov, 1994). A surface water
geochemical survey showed elevated concentrations of SO,*
in samples from the Talnakh River. This led to the discovery
of mineralized boulders in the area, which were traced to the
base of the Kharayelakh Mountains. A study of talus along the
slope of Otdel’naya Mountain led to the discovery of mineral-
ized outcrops.

Geophysical methods used in PGE exploration map
physical property contrasts, which primarily indicate the
presence of magnetite, silicate minerals, and sulfide minerals
that may be associated with PGE mineralization (Balch,
2005). If the PGEs are associated with base-metal sulfide
minerals that have some degree of interconnection in the
rock (and are electrically conductive), airborne and ground
electromagnetics and induced polarization surveys can be used
to detect mineralized rocks. High-resolution acromagnetic
surveys can be used to map igneous layering and tectonic
structures (Campbell, 2006) but generally do not give direct
indication of mineralized rock. Gravity studies are used to
determine the subsurface extent of rocks with variable density
and are particularly well suited to map and model the extent
and volume of mafic and ultramafic igneous rocks (Webb
and others, 2004). Once a rock layer that contains reef-type
mineralization has been identified, seismic studies can be
used to map the subsurface extent of the rocks (Davison and
Chunnett, 1999; Chunnett and Rompel, 2004).
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Lithogeochemical studies can be used to focus explora-
tion activities (Maier and Barnes, 2005). For example, changes
in the ratio of PGEs to sulfur or copper in rocks can be used
to target specific intervals in cumulate stratigraphy where
reef-type PGE mineralization could be present. In layered
intrusions, nickel depletion in olivine is thought to indicate
indirectly the presence of magmatic sulfide mineralization.
Metal depletion in lavas flows is thought to indicate the
presence of sulfide mineralization in the sills and dikes that
served as feeders to the flows.

High-density drilling and sampling are required to
delineate mineral resources and reserves in PGE deposits.
For the J-M Reef, drilling on 15-m spacing is used to define
proven mineral reserves; probable mineral reserves are
delineated by projecting data 300 m from drill holes (Abbott
and others, 2011). In the reef-type deposits in the Bushveld
Complex, South Africa, measured mineral resources are
defined with holes spaced 250 to 300 m apart, indicated
resources are defined with holes spaced 500 to 600 m apart,
and inferred mineral resources are defined with holes spaced
800 to 2,000 m apart. By comparison, massive sulfide ores
in the Noril’sk-Talnakh area, Russia, are explored on a
32- by 60-m rectangular grid (Kunilov, 1994).

Environmental Considerations

The mineralogy of the ore and waste material associated
with reef-type, contact-type, and conduit-type deposits are
similar. Common sulfide minerals include chalcopyrite,
pentlandite, and pyrrhotite. Secondary phases that typi-
cally form from primary sulfide minerals include covellite,
goethite, gypsum, jarosite, marcasite, native sulfur, and
pyrite (McGregor and others, 1998; Johnson and others,
2000). Common primary gangue minerals include chromite,
olivine, plagioclase, and pyroxene. Alteration products include
chlorite, magnetite, serpentine, talc, and minor amounts of
carbonate and clay minerals.

The abundance of sulfide minerals defines the environ-
mental and geologic characteristics of PGE-enriched
magmatic sulfide deposits. The high proportion of sulfide
minerals distinguishes some conduit-type deposits from reef-
and contact-type deposits. The overall pyrrhotite content of
ore, waste rock, and tailings determines their acid-generating
potential. Acid generated by the oxidative weathering of
pyrrhotite can attack associated ore sulfide minerals and
gangue silicate minerals, releasing a variety of potentially
toxic elements—particularly cobalt, copper, iron, manganese,
nickel, and, to a lesser extent, aluminum, cadmium, chromium,
lead, and zinc to solution or to secondary solid phases
(McGregor and others, 1998; Johnson and others, 2000).
Massive ores characteristic of some conduit-type deposits
have greater than 50 volume percent sulfide minerals and
pose a greater challenge for mining and processing the ores
without causing environmental problems. Both the low-sulfide
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reef-type and contact-type deposits have significantly lower
sulfide contents, usually less than a few volume percent.
Therefore, acid generation in mine wastes is less of a chal-
lenge to manage.

Sources and Fate in the Environment

The abundance of PGEs in the upper continental crust
ranges from tens to hundreds of parts per trillion (ppt);
platinum is the most abundant, followed by palladium,
osmium, ruthenium, iridium, and rhodium (table N7; Taylor
and McLennan, 1995; Park and others, 2012). Background
PGE concentrations are also low in other environmental
media, such as water, sediment, soil, and plants.

Experimental studies suggest that the maximum solu-
bility of platinum in water at room temperature (25 °C) under
oxygenated conditions ranges between 0.02 and 195 ppb,
depending upon the pH of the water (Wood, 1991; Azaroual
and others, 2001). The solubility of palladium in water at
room temperature (25 °C) under oxygenated conditions ranges
between 1 and 3,400 ppb, depending upon the pH of the water
(Wood, 1991). Because of its greater solubility, palladium is
more mobile in the environment than platinum.

PGE concentrations in water are generally in the
102 ppt range. Rhodium (0.082 ppt) has the highest mean
concentration in seawater, followed by palladium (0.062 ppt),
platinum (0.026 ppt), and osmium (0.005 ppt); ruthenium
and iridium are present well below the ppt range (Bruland
and Lohan, 2003). Platinum concentrations range from
0.22 to 78,000 ppt in surface water and from 3 to 38 ppt
in groundwater (Ravindra and others, 2004).

Environmental baseline studies generally show low
concentrations of PGEs and trace elements in water near
undeveloped deposits. In the vicinity of the contact-type

Table N7.

[n.d., no data]
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NorthMet deposit in northern Minnesota, surface water
downstream of the deposit in the Partridge River watershed
has neutral pH (7.0), a low dissolved sulfate concentration
(7.2 ppm), and moderate alkalinity (31 ppm calcium carbonate
[CaCO,]) and hardness (30.3 ppm CaCO,). Dissolved platinum
and palladium concentration are below the detection limit
(<25 ppb), and the concentrations of other trace elements are
low (table N8 at back of chapter; Minnesota Department of
Natural Resources and the U.S. Army Corps of Engineers,
2009). Near the buried Eagle deposit, which is a conduit-type
deposit in northern Michigan, maximum concentrations of iron
(190 ppb), nickel (59 ppb), and zinc (88 ppb) in groundwater
near the deposit reflect the presence of the orebody, whereas
maximum concentrations of copper (<5 ppb) and cobalt

(<10 ppb) are below their detection limits. In contrast, the
concentrations of copper, nickel, and other trace elements in
surface waters over the buried deposit are indistinguishable
from those from regional water samples (Kennecott Eagle
Minerals Co., 2006).

In fluvial and pelagic-marine sediment away from any
known deposits, total PGE concentrations are less than a few
tens of ppb (table N7). Platinum and palladium are found in
higher concentrations than are (in decreasing order of abun-
dance) ruthenium, iridium, osmium, and rhodium.

Fuchs and Rose (1974) investigated the geochemical
behavior of platinum and palladium in the weathering cycle in
soils around the Stillwater Complex in Montana. They found
that palladium was depleted in the surface soil horizons but
was concentrated at depth, reaching a maximum concentration
of approximately 40 ppb. Platinum did not show systematic
trends with depth; a maximum concentration of approximately
180 ppb was recorded. The differences in the behavior of
palladium and platinum in soils reflects the higher solubility
of palladium in water compared with that of platinum in water
(Fuchs and Rose, 1974).

Platinum-group-element concentrations in samples of upper crust, loess, river sediment, and marine pelagic sediment.

5 Platinum Palladium  Ruthenium Iridium Osmium Rhodium
Material — Reference(s)
(part per billion)

Upper continental 0.599 0.526 0.03 0.022 0.05 0.018 Taylor and McLennan (1995);
crust Park and others (2012)

Loess (China) 0.751 0.546 0.03 0.023 n.d. 0.018 Park and others (2012)

River sediment <0.29 to 0.08 to <0.15to <0.03 to n.d. <0.11 to Ravindra and others (2004);
(Mélndal River, 53.9 38.7 3.73 2.69 9.4 Moldovan and others (2001);
Sweden, and de Vos and others (2002)
Stour River,

England)

Marine pelagic 0.4 to 1.2 to <0.2to <0.2 to <0.05 to n.d. Goldberg and Koide (1990)

sediment 21.9 9.4 22 1.2 0.81




The results of an exploration program illustrate the
natural background variation of platinum and palladium
in a layered intrusion that hosts a major reef-type deposit.
Following the studies by Fuchs and Rose, more than
10,900 samples of soil and talus fines were collected and
analyzed for platinum and palladium as part of the exploration
program that led to the discovery of the J-M Reef at the
Stillwater Complex (Conn, 1979; Zientek and others, 2005).
Palladium was below the detection limit for 14 percent of
the locations; almost one-half of the samples had platinum
concentrations that were below the detection limit. For most of
these samples, the detection limit for palladium and platinum
was 2 ppb and 20 ppb, respectively. The median values for
samples in the study above the detection limit were 8 ppb and
20 ppb for palladium and platinum, respectively. Maximum
values measured for palladium and platinum were 6.4 ppm and
5.76 ppm, respectively.

Platinum and palladium data are characterized by
positive-skewed, multimodal distributions. More than
95 percent of the samples belong to a population consisting of
unmineralized material with less than 30 to 40 ppb palladium
and less than 40 to 50 ppb platinum. The remaining approxi-
mately 460 samples appear to be made up of two populations.
The range of values for the largest population in the remaining
5 percent varies from about 40 ppb to 200 ppb palladium and
about 50 to about 200 ppb platinum. About 50 samples make
up the third population and consist of material with more than
200 ppb platinum or palladium.

Biogeochemical surveys show that platinum and
palladium can concentrate in plants near mineralized outcrops.
Riese and Arp (1983) conducted a geochemical orientation
survey of the J-M Reef in the Stillwater Complex and
found accumulations of platinum in stems of Douglas-fir
(Pseudotsuga menziesii) up to thousands of parts per billion
in ashed samples. In the northern forests of Saskatchewan,
Canada, platinum and palladium tend to be concentrated in
the twigs and trunks of black spruce (Picea mariana) and
jack pine (Pinus banksiana) and in the stems of Labrador tea
(Rhododendron groenlandicum). Spruce was sampled close to
a worked-out nickel-copper deposit in northern Saskatchewan
that contained 3,000 ppb platinum and 6,000 ppb palladium.
The ashed twigs yielded up to 880 ppb platinum and 1,350 ppb
palladium compared with background levels of below 10 ppb
platinum and 2 ppb palladium (Dunn, 1986). Coker and others
(1991) found greater enrichment of palladium than of platinum
in vegetation around several PGE deposits in Canada—some
that had been mined and some that had not been mined.

Anthropogenic sources of PGEs in the environment
include catalytic converters used in modern automobiles (Ek
and others, 2004; Ravindra and others, 2004; Wiseman and
Zereini, 2009), platinum-based chemotherapy drugs (Ravindra
and others, 2004), and smelter emissions (Chen and others,
2009). During the release of exhaust gases from automobile
engines, the catalytic converters are chemically and physically
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stressed and release PGE-containing particulate matter. Most
of the PGEs in the particles are in the metallic state, but about
1 percent is in an oxidized form that could be bioavailable
(Ravindra and others, 2004). Concentrations of PGE particles
are found in roadside dust, soils, and water. In platinum-
bearing drugs that are used to treat cancer, the platinum is
excreted by the patients following treatment and ends up in the
hospital sewage. The contribution of PGEs to the environment
through this method is minor, however, compared with that
from catalytic converters (Ravindra and others, 2004). Tiny
amounts of osmium (0.25 to 23 femtograms per gram of water;
1 femtogram is 10~'* grams) are found in rainwater and snow
from around the world (Chen and others, 2009). The most
likely sources of this metal are smelters that process PGE ores.
The osmium concentrations are so low that they are difficult to
analyze; however, it is possible that the global appearance of
osmium could someday be used as an environmental tracer.

Platinum-Group-Element Mining and Mineral-
Processing Methods

Selective underground mining techniques are used for
PGE deposits that occur in narrow reefs, such as those in the
Bushveld Complex (South Africa) and the Stillwater Complex
(Montana). The underground mining is performed by using
either handheld pneumatic drills or mechanized drills to bore
holes in the ore horizon, which are then filled with explosives.
After blasting, the ore is removed from the mining stope and
transported to the surface for further processing. Open pit
mining is used for deposits in which the PGEs occur in greater
thicknesses and at shallow depth, such as in the Lac des Iles
Mine in Canada and the Platreef of the Bushveld Complex.

After ore is removed from the mines, it is crushed and
ground to reduce the particle size and free the PGE-containing
minerals from the rock matrix. The ore is then concentrated
by using froth flotation circuits. For flotation, the ground rock
particles are mixed with water and various reagents and air
is pumped through the liquid, creating bubbles to which the
PGE-containing minerals adhere. These bubbles float to the
surface of the flotation vats and are removed as froth. The
material is reground and refloated to produce a concentrate
of nickel-iron-copper-PGE sulfide minerals for further
processing. The greatest losses of PGEs occur in the early
stages of processing, including crushing, milling, and froth
flotation, owing to the diversity of PGE mineralogy. Much
research is devoted to increasing PGE recovery rates in these
early stages.

The concentrate is dried and then smelted in an electric
arc furnace at temperatures that can exceed 1,500 °C. During
smelting, the concentrate forms a liquid, which separates into
two layers. A matte containing the valuable metals is separated
from a silicate- and oxide-rich slag, which is discarded. At
the Stillwater Mining Co. smelter, the gases released from
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smelting operations undergo a gas-to-liquid scrubbing process,
which removes approximately 99.8 percent of the sulfur
dioxide. The sulfur dioxide is converted to gypsum, which is
sold to local farmers for use as a soil amendment.

After smelting, the PGE-rich matte is transferred to
converters, through which air is blown to remove iron and
sulfur. The converter matte is processed at the base-metals
refinery to separate the base metals from the PGEs by selective
leach processing. The final stage is PGE refining by various
hydrometallurgical techniques, including solvent extraction,
precipitation, and dissolution using chloride solutions, in
which the six PGEs are separated from each other to a purity
of more than 99.99 percent. The refined PGEs can be produced
in various forms, including as ingots, grains, or a fine powder
known as “sponge.”

The chromium-rich ores of the Bushveld Complex’s
UG2 Chromitite present special difficulties for beneficiation.
The high chromium content of the ores requires especially
high temperatures for smelting, and the low sulfide content
both increases the matte viscosity and lowers the amount of
matte formed. A processing technique, known as ConRoast,
has been employed by some Bushveld processors specifi-
cally for use with high-chromium PGE ores. The ConRoast
technique removes sulfur from the concentrate by roasting the
ore at high temperatures in oxidizing conditions followed by
smelting in a direct-current arc furnace in reducing conditions,
which uses an iron-based alloy as a collector of cobalt, copper,
nickel, and PGEs. The ConRoast technique can be used for
concentrates containing any amount of chromite (Jones, 2002).

Ores from the Duluth Complex (Minnesota) present
another challenging processing problem. Their low-grade
nature makes smelting inefficient and uneconomic. A high-
temperature chloride-assisted pressure-leaching process,
known as PLATSOL™, has been developed to process the
Duluth ores. The PLATSOL™ process is an alternative to
smelting and is capable of processing low-grade PGE ores.
The nickel-copper-PGE ore concentrates are processed in
an autoclave in an oxidizing environment in which PGEs, as
well as gold, are solubilized and can be recovered directly
after leaching by adsorption or precipitation with sulfide ions.
Finally, base-metal sulfides are recovered either by precipi-
tation, ion exchange, or solvent extraction-electrowinning
(Baxter and others, 2005).

Mine Waste Characteristics

The majority of solid mine waste includes waste rock,
mill tailings, slag, and smelter dust. Waste rock is uneconomic
rock that must be removed to access the ore and is disposed
of on site. It can also be used for construction on site if tests
determine that it will not generate acid-rock drainage when it
is exposed to the atmosphere and water. Tailings, which is the
waste material from processing ore, can be pumped as slurry
or trucked dry to a tailings storage facility on site. Tailings
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storage facilities are typically impoundments surrounded by a
retaining dam. Tailings can also be disposed of underground
in mined-out portions of the mine. The crushing and milling
process increases the porosity of the solid waste and thus its
volume by a factor of approximately two, which means that
only about one-half of the waste from ore processing can be
returned underground. Smelter slag, which is glassy waste
matter separated from metals during the refining of ore, also
has both physical and chemical characteristics of environ-
mental concern and is typically held in storage facilities. Slag
is also used in some mining and construction applications.
Smelters produce gaseous emissions that may contain particu-
late material (smelter dust). If the emissions are not treated
before the gases are vented to the atmosphere, the particulate
material will settle near the smelter. For most modern smelting
facilities, the gaseous emissions are treated to remove particu-
lates, which are reprocessed to recover metals or put into a
storage system.

Waste rock and tailings are usually found at all mines,
but their proportions vary based on the mining method. The
amount of waste rock is significantly greater at open pit mines
than at underground mines. Reef-type deposits are generally
mined by underground methods because of the narrow width
of the ore horizon. Contact-type and conduit-type ores are
mined by either open pit or underground methods, depending
upon the geometry and depth of the orebodies.

Acid-Base Accounts

Metals and many other trace elements tend to be more
soluble at low pH than at neutral or high pH. Therefore, the
acid-generating or acid-neutralizing potentials of waste rock,
tailings, and other solid waste material help determine the
possible environmental risk of mineral resource development.
The balance between the acid-generating and the acid-
neutralizing potential of rocks and mine waste is expressed as
an “acid-base account” (Price, 2009; International Network
for Acid Prevention, 2011). The release of acid is primarily
related to the presence of pyrrhotite in the rocks and waste.
The presence of carbonate minerals, such as calcite, and some
silicate minerals, such as feldspar, olivine, or pyroxene, in
rocks and wastes can neutralize acidic solutions. Acid-base
accounting values are commonly expressed in terms of
kilograms of calcium carbonate per metric ton (kg CaCO,/t) of
waste material.

Acid-Base Accounts for Reef-Type and
Contact-Type Deposits

Acid rock drainage from reef-type and contact-type
deposits is unlikely because the ores and their host rocks
contain low proportions of sulfide minerals. Jambor and others
(2000) proposed a threshold of 0.3 weight percent sulfur
present in sulfide minerals for acid generation. The sulfur
content of ore in the J-M Reef at the Stillwater Complex



in Montana ranges from 0.13 to 0.49 weight percent, with
concentrations in tailings ranging from 0.05 to 0.08 weight
percent. The sulfur content of the waste rock ranges from
0.01 to 0.04 weight percent (table N9 at back of chapter).
Similarly, the ores and host rocks for the UG2 Chromitite,
the Merensky Reef, and the Platreef deposits have low sulfur
concentrations (Wilson and Chunnett, 2006; Naldrett and
others, 2009). Acid-base accounting studies, leach tests, and
site monitoring demonstrate that there is limited potential
for the generation of hazardous metal leachates from ores,
waste rocks, or tailings from most reef-type and contact-type
deposits (table NO9).

Acid-Base Accounts for Conduit-Type Deposits

For some conduit-type deposits with massive ores, the
ore is processed to separate out and produce concentrates of
iron-, copper-, and nickel-bearing sulfide minerals; the concen-
trated material is then further processed to extract the copper
and nickel metals, and the iron-bearing sulfide minerals,
mainly pyrrhotite, are discarded as waste. This process
results in waste material with high acid-generating potential;
the presence of minor amounts of carbonate minerals in the
ore assemblage and the lower reactivity of the neutralizing
minerals, such as olivine and pyroxene, offer minimal short-
term acid-neutralizing potential. The Eagle deposit in northern
Michigan has the potential to generate acid leachate similar to
that found in mineralogically similar tailings from Sudbury,
Ontario, Canada (McGregor and others, 1998; Johnson and
others, 2000). Johnson and others (2000) documented the
generation of low pH (down to 3) waters with high dissolved
concentrations of iron (up to 9,800 ppm), sulfate (up to
2,400 ppm), aluminum (up to 1,130 ppm), and nickel (up to
698 ppm) in groundwater in the tailings pile at the Nickel Rim
Mine at Sudbury, Ontario, Canada. Copper (up to 3.5 ppm)
and cobalt (up to 2.5 ppm) were also significant constituents.

Air Quality Assessments

An air quality assessment of the heavily industrialized
western part of the Bushveld Complex, where the Merensky
Reef and the UG2 Chromitite are mined, found that sulfur
dioxide, nitrous oxide, and carbon monoxide concentrations
are at acceptable levels using South African and European
air quality standards (Venter and others, 2012). The major
contributing sources were high-stack industry emissions for
sulfur dioxide (metallurgical complexes and smelters), and
household combustion for nitrous oxide and carbon monoxide.
The levels of ozone and PM; frequently exceeded standards
(PM,, refers to the total mass concentration of particulate
matter up to 10 micrometers [um] in size). Ozone is related
to regional sources (wildfires, and coal and wood combustion
for cooking and heating). The source of PM,  was identified
as local household combustion (Hirsikko and others, 2012;
Venter and others, 2012).
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Mining operations in the Noril’sk-Talnakh area of
Russia emit large amounts of sulfur dioxide and nickel and
other metals (Council on Ethics, 2009; Bellona Foundation,
2010). According to the Norwegian Government’s Council on
Ethics for the Government Pension Fund-Global, atmospheric
emissions of sulfur dioxide, which lead to acid rain, are about
2,000,000 metric tons per year, and atmospheric emissions
of copper, nickel, and cobalt are conservatively estimated to
be about 500, 450, and 50 metric tons per year, respectively.
Smelting operations release metals into the atmosphere in
the form of dust or particulates. Smelter emissions have been
shown to cause death or significant damage to vegetation up
to 200 km from the mining operations.

Human Health Concerns

The metallic forms of PGEs are generally considered
to be inert. Health hazards specifically related to PGEs
affect only individuals who are occupationally exposed to
manmade PGE compounds, especially workers in precious-
metal refineries. Platinum-based drugs, such as cisplatin and
carboplatin, are used in cancer treatment. Broader human
health effects of PGEs appear to be limited because of the low
concentrations of PGEs in the environment (Hoppstock and
Sures, 2004). Ravindra and others (2004) and Hoppstock and
Sures (2004) reviewed human health risks associated with
PGEs, and Kielhorn and others (2002) reviewed the human
health effects of palladium specifically. The more significant
human health risks associated with PGE mining are related to
the trace elements associated with PGE deposits.

As discussed in a previous section, the mining operations
at the Noril’sk-Talnakh area in Russia affect air quality;
surface and groundwater are also affected by the industrial
activities. Respiratory diseases and various forms of cancer
have been shown to be more prevalent in the local population
of the Noril’sk-Talnakh area than in other regions of Russia
(Council on Ethics, 2009). Industrial activity in this area has
been shown to be related to increased incidences of acute
respiratory illness and a higher prevalence of oncological
disease, particularly lung cancer, and may be related to other
possible negative health effects, such as weakening of the
immune system, reproductive health issues, an increase in
the rate of disease in children, and reduced life expectancy
(Council on Ethics, 2009).

Ecological Health Concerns

The risks to the ecosystem from mining PGEs and
associated minerals are mainly those related to acid mine
drainage, which primarily affects aquatic environments. The
surface water chemistry downstream from platinum mine
waste dumps in Zimbabwe was investigated by Meck and
others (2006). The surface water in the vicinity of platinum
dumps was found to be near neutral or to have slightly alkaline
pH and to contain concentrations of chromium, cobalt, copper,
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lead, and nickel that exceeded chronic surface-water criteria
established by the U.S. Environmental Protection Agency
(Suter, 1996; U.S. Environmental Protection Agency, 2009).
Differences between upstream and downstream sample sites
were most noticeable for nickel and approached a difference
of 500 ppb.

Ecological risks can also be associated with soils and mill
tailings. The toxicity of rehabilitated and nonrehabilitated
mill tailings from reef-type deposits in South Africa to earth-
worms (Eisenia fetdia) was investigated by Jubileus (2008)
and Maboeta and others (2008) using laboratory bioassay
techniques. Sublethal impairment of earthworms (that is,
effects on the growth and hatching success of cocoons) in
soil samples decreased with distance from the tailing storage
facilities. Anomalous concentrations of chromium, copper,
nickel, and zinc were found in the tailings relative to the
regional background soils. Wahl and others (2012) reached
similar conclusions based on mesofauna surveys from the
same tailing storage facilities.

Studies of soil and grass show anthropogenic platinum
enrichment near mines in the Bushveld Complex. Thousands
of soil and stream sediment samples collected at the Bushveld
Complex show anomalous concentrations of precious metals
related to bedrock sources and mining areas (Wilhelm and
others, 1997). The results of the soil and stream sediment
surveys mapped two bedrock sources of PGEs that are
concordant to magmatic layering in the Bushveld Complex.
The survey also mapped large anomalies near the locations
of the large PGE mines in the western part of the Bushveld
Complex; anomalies near the mines exceed 200 ppb PGEs.
Rauch and Fatoki (2013) found about 700 ppb platinum in
soils at a smelter. The maximum concentration in grass was
256 ppb platinum, again found at the smelter.

Carbon Footprint

The PGEs and their mining have several links to carbon
cycling in the environment. One of the most important uses
of PGEs is in catalytic converters (Loferski, 2012a, b), which
help to limit the amount of carbon and nitrogen gases and
other air pollutants that enter the environment through vehicle
exhaust. Fuel cells are an emerging energy technology. Proton
exchange membrane (PEM) fuel cells use hydrogen as fuel,
combining it with oxygen to form water; these fuel cells rely
on platinum catalysts (Mehta and Cooper, 2003).

The trend towards the mining of lower grade ore in
existing mines is expected to have a negative effect on
greenhouse gas emissions. Lower grade ores require more
energy to produce a unit of PGEs than do higher grade ores.
The trend towards increased greenhouse gas emissions per
unit of PGEs produced (measured in tons of carbon dioxide
[CO,] per kilogram of PGEs) over time is evident in data from
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South Africa that date back to 2002 (Glaister and Mudd, 2010).
In 2002, unit greenhouse gas emissions varied from about

20 to 40 metric tons for different mine properties. In 2008, the
range of values increased to about 30 to 65 metric tons.

The calcium- and magnesium-rich silicate minerals
common in mine wastes from PGE deposits represent an
important sink for atmospheric carbon dioxide because these
minerals react fairly readily with this greenhouse gas. The
potential for mineral carbonation of PGE tailings was evalu-
ated by Vogeli and others (2011). They ranked South African
PGE tailings in terms of their carbonation potential on the
basis of their mineralogy and the grain size and found that
finer-grained, more olivine-rich, and plagioclase-poor tailings
would be best for mineral carbonation. Although the mass
of PGE tailings globally is inadequate to reduce global
atmospheric carbon dioxide concentrations significantly,
the carbonation of calcium- and magnesium-rich tailings
can contribute to reducing the carbon footprint of individual
mining operations.

Mine Closure

The procedures used to close PGE mines depends
primarily on the method of mining and the character of the
waste material. Reef-type deposits are typically developed
using underground methods. Contact-type and conduit-type
deposits can be developed by underground or open pit methods,
depending upon the geometry of the orebody. For all these
deposit types, open pit mining results in at least three different
features after mining: the open pit, waste rock piles, and tailings
storage facilities. Because of the scale of typical PGE mining
activities, backfilling open pits is usually not practical. If the
water table is above the bottom of the pit, the pit will fill with
water and form a lake. The water quality of the lake will depend
upon a number of factors, including the nature of the wall rock,
the extent of interconnected underground mine workings that
open to the pit, the water level in the pit, the local hydrology,
and the climate, among others (Castendyk and Eary, 2009).

The long-term fate of tailing storage facilities depends
upon the nature of the tailings and the method of construction
of the facility. Some facilities can be regraded, capped, and
revegetated. Others are designed to have a water cover in
perpetuity to limit sulfide oxidation. Either type may have
seepage that may require some form of water treatment.

The long-term fate of waste rock piles may include
regrading, capping, and revegetation. Depending upon the
acid-generating potential of the material, some piles may
require some form of water treatment. An emerging issue for
historical PGE tailings and piles is that older ore-processing
techniques were not as efficient as those used today. As a
consequence, historical tailings and waste piles can carry
significant PGE grades.



Problems and Future Research

The supply of PGE from primary and secondary sources
currently meets society’s demand for these metals. Even if
demand increases (as it assuredly will), the in-ground identi-
fied mineral resources appear to be sufficient to supply the
world’s needs for several decades. The location of most of
the in-ground resources in a few big deposits in a few places
makes the primary production of PGE susceptible to supply
disruption, however. The following section discusses this
problem in more detail.

Future Demand and Possible Risks to Supply

The demand for PGEs continues to increase. PGE use
in automobile catalytic converters is expected to increase as
more-stringent automobile emission standards are adopted
worldwide. An emerging industrial use for platinum is in fuel
cells that provide electricity for automobiles, homes, and busi-
nesses. Fuel cells produce electricity through electrochemical
reactions by combining oxygen with a hydrogen-bearing fuel
over a catalyst, such as platinum, and produce only water and
carbon dioxide as emissions.

Various studies have compared anticipated demand for
the PGEs with the amount of PGE ore that has been positively
identified by mineral exploration. Along with the anticipated
supply of PGEs by recycling, the studies suggest that there
are sufficient PGE resources in the ground to meet projected
platinum demand well into the middle of the 21st century
(Tiax LLC, 2003; Wilburn and Bleiwas, 2004; Mudd, 2012;
Wilburn, 2012). Mineral reserves in the Bushveld Complex
would be sufficient to meet global platinum demand until
2040 (assuming an annual increase in platinum consumption
of 2 percent). The much larger volume of mineralized rock
that has been classified as mineral resources, coupled with the
potential for additional undiscovered resources to be found,
indicates that the potential amount of PGEs that could be mined
will not be a constraint to PGE supply for many decades.
Disruptions to the PGE supply are more likely to be affected
by social, environmental, political, and economic factors rather
than geologic issues or resource depletion (Mudd, 2012).

Variations in the annual average prices of the PGEs
during the past 40 years illustrate the types of events and
policies that could affect global supply and demand for
mineral commodities (fig. N28). Some events, such as the
oil embargo in the mid-1970s and the global recession that
began in 2008, affected all metal prices (not just the prices
of PGEs). Other effects can be specifically related to legisla-
tion passed by one or more Governments; for example, in
the mid-1970s, catalytic converters, which use PGEs as the
catalyst, were installed in automobiles to meet air standards
set in the Clean Air Act Amendments of 1970 (84 Stat. 1705,
P.L. 91-604; Gerard and Lave, 2005; McCarthy and others,
2011). Catalytic converters reduce harmful emissions from
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automobiles; the widespread adoption of catalytic converters,
first in the United States in the 1970s, then in the European
Union and Japan, increased demand for PGEs. Palladium
supply was disrupted in 1999 and 2000 because Russian
Government legislation temporarily blocked export of this
metal (United Nations Conference on Trade and Development,
undated). Other effects are related to problems with mineral
production; for example, problems with a refinery in
Rustenburg, South Africa, in 1989 caused a decrease in the
world supply of rhodium. The PGE supply was also affected
by work stoppages and miners’ strikes in South Africa in 1986,
2011, and 2012 (Yager and others, 2012).

Production of PGEs requires power and water, both
of which are in short supply in southern Africa. Africa
depends on imports of oil and on production of synthetic
fuels from coal to meet its fuel requirements (United Nations
Conference on Trade and Development Secretariat, 1995). In
January 2008, the South African mining industry briefly shut
down almost all its operations because of the unpredictability
of the power supply. Roughly one-quarter of the installed
generating capacity was not available owing to system
faults, planned maintenance, and a shortage of the coal used
in power stations. The country was subject to short-notice
blackouts, which made mining unsafe (Platinum Today, 2008).
Expanding the mining capacity at the Bushveld Complex in
South Africa is constrained by the power supply. Water is
required to mine, process ore, and refine metals; if the water
supply is restricted, then production is affected. In any country
that is water-stressed, mining companies must strive to
manage the supply and use of water to ensure continuation of
operations (Anglo American Platinum Ltd., 2012).

The ultimate constraint on the development of PGE
mineral resources may not be the presence of mineralized
rock but rather the rock temperature. For example, the contact
between the Main zone and the Lower Critical subzone in
the Bushveld Complex can be traced to depths of 6 km in
seismic surveys (Sargeant, 2001; Campbell, 2011), which
indicates that mineralization associated with the Merensky
Reef and the UG2 Chromitite may also be present at those
depths (Cawthorn, 2010). These reefs are currently being
mined at depths exceeding 2 km at the Northam Mine, where
virgin rock temperatures of 70 °C are measured at a depth
0f 2,176 m (Northam Platinum Ltd., 2008). Anglo American
Platinum Ltd., whose operations include several mines in
the Bushveld Complex, considers a virgin rock temperature
of 75 °C to be the limit of mining based on the anticipated
technology, metal prices, and energy costs (Anglo American
Platinum Ltd., 2011). By comparison, rock temperatures
within the ore-bearing intrusions at the Talnakh area of Russia
are up to 35 °C in the Taimyrsky Mine, 27 to 30 °C in the
Skalisty Mine, and are anticipated to be 43 to 47 °C in the
area that will be developed by the Gluboky Mine (Kunilov,
1994). The massive sulfide ores in these Russian mines are
highly reactive, however, and are prone to oxidation and
spontaneous combustion.
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Figure N28. Graphs showing platinum-group-element prices (in constant U.S. dollars referenced to 2010) for platinum (Pt),
palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) from 1880 to 2013. Major world events affecting pricing
are shown as vertical dashed lines. Other major events shown are (a) investor speculation, (b) catalytic converter use begins

and the Arab oil embargo, (c) shortfall of supplies of palladium from Russia, (d) disruption of supply because of problems at the
Rustenburg refinery in South Africa, (e) increased demand for autocatalysts in Asian markets, and (f) increased ruthenium usage in
electronics, especially in computer hard disk drives. National deflators are from the California Department of Finance (2012). Price
data are from Plunkert and Jones (1999); Reese (1996); Hilliard (1998, 2000, 2004); Loferski (2012b, 2013¢); and Platinum Today (2012).



Research Directions

Successful exploration strategies for PGEs have been
based on the magmatic deposit paradigm. This approach has
proven highly successful and will likely result in additional
discoveries. Its utility has a down side, however, in that other
geologic settings in which PGEs may be concentrated have
not been studied. Models strongly influence the observations
made in both research and mineral exploration. For example,
most economic geologists would not look for world-class
PGE deposits in ophiolites. The most common magmatic ore
type in ophiolites are chromitite deposits; all contain PGEs
but are enriched in iridium relative to platinum (Mungall,
2002; Finnigan and others, 2008). There are a few examples
of platinum-enriched chromitites in ophiolites, but these are
too small to be of any economic consequence. Therefore,
mineral exploration geologists have not searched for concen-
trations of magmatic sulfide minerals in ophiolites; however,
a small magmatic sulfide deposit in the Acoje ophiolite,
Philippines (Bacuta and others, 1990; Yumul, 2001), and
occurrences in cumulates of the Shetland Ophiolite Complex,
United Kingdom (Prichard and Lord, 1993), are examples that
indicate that sulfide exsolution and PGE enrichment can take
place in ophiolites. The examples of hydrothermal ore deposits
with elevated PGEs are other reminders that an economic PGE
deposit may be present in rocks that have not been explored.

Most researchers in the field of economic geology can
supply a list of research topics that could be undertaken to
alleviate concerns about the global availability of PGEs. One
approach to addressing concerns is to find more deposits, but
finding small deposits will not solve the problem. The deposits
must be large (like one or more of the giants that currently
dominate supply). Research to find new deposits can be basic,
in which known deposits are mapped and characterized in
order to understand how they form. The research can also be
applied, in which the search for PGE deposits is extended
into geologic settings where the deposits would be highly
weathered, highly metamorphosed, or largely concealed.
Additionally, research can focus on new ways to understand
and integrate information so that new hypotheses can be
proposed and tested. Research will be most effective if basic
and applied research is integrated. It will also be more fruitful
if expertise from many disciplines is involved in solving
the problem.
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	Figure N1. Graphs showing platinum and palladium consumption, by category of use, from 2000 to 2012 for the world (A and B ), North America (C and D ), and China (E and F ). The decrease in platinum consumption for North America is directly related to the
	Figure N2. Photograph of gold mask with platinum highlights, from the period of La Tolita culture, Ecuador. From Museo Nacional del Banco Central del Ecuador collection.
	Figure N3. World map showing locations of igneous intrusions and intrusive complexes that contain most of the world’s platinum-group-element (PGE) deposits, as well as the placer deposits that are mentioned in the text. On the map, intrusions and intrusiv
	Figure N4. Schematic block diagram showing changes in the form of igneous intrusions with depth and the relative occurrence of conduit-type, contact-type, and reef-type magmatic ore deposits. Layered igneous rocks with reef-type and contact-type deposits 
	Figure N5. Map showing the geology of the Siberian flood basalt province in Russia, which is the largest flood basalt province in the world. The province includes a large area of exposed lavas and sills. It also includes an equally large area of lavas tha
	Figure N6. Map showing the geology of the Noril’sk-Talnakh area and the location of nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits. Flood basalts crop out in the northeast and the southeast; in other areas, erosion has removed the lavas and exp
	Figure N7. Maps showing nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits in the Talnakh area, Russia. A, Extent of two elongate sill-like intrusions (Talnakh and Kharayelakh) and the distribution of massive sulfide ores that underlie them. B, Zon
	Figure N8. Photograph of copper-rich massive sulfide ore exposed in a stope in the Oktyabr’sk Mine in the Talnakh area, Russia. The ore consists of several iron-copper-sulfide minerals, such as chalcopyrite (CuFeS2 ), mooihoekite (Cu9Fe9S16 ), and talnakh
	Figure N9. Map showing the Rustenburg Layered Suite of the Bushveld Complex, South Africa, the surface trace of significant orebodies, and cross sections through the central area and northeastern limb. Cross section A–A’ is based on geophysical modeling a
	Figure N11. The base of the Merensky cyclic unit, a pegmatoidal pyroxenite, which contains the platinum-group-element-rich Merensky Reef. A, Photograph of the base of the Merensky cyclic unit on the Hackney farm property in the eastern part of the Bushvel
	Figure N12. Geologic map and cross sections of the Great Dyke, Zimbabwe. Geologic mapping and geophysical studies show that the intrusion has a dike-like form; however, igneous layering dips gently into the center of the intrusion. The Main Sulphide Zone,
	Figure N13. Geologic map and cross section of the Stillwater Complex, Montana. The layered cumulates that make up the complex have been tilted to the north, exposing a section through the entire intrusion, from the ultramafic rocks at its base (Ultramafic
	Figure N14. Photograph of the Stillwater Mine in south-central Montana, looking southeast. The pond is the tailings impoundment. The buildings in the lower left include the shaft, the mill complex, and offices. Photograph by Michael L. Zientek, 2006.
	Figure N15. Map showing the geology along the western margin of the Duluth Complex, Minnesota, with the surface projection of nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits and exploration targets. Exploration targets occur along the outer marg
	Figure N16. Maps illustrating the distribution of platinum deposits in the Ural Mountains, Russia. A, Generalized geology,
location of platinum placer districts, and platinum-producing areas in the Ural Mountains, Russia. Placer platinum deposits are deri
	Figure N17. Geology and imagery of the Uralian-type Kondyor Massif, which is located in eastern Siberia, Russia, north of the city of Khabarovsk. A, Geologic map of the massif, showing that the circular pluton consists of a central core of dunite, which i
	Figure N18. Photograph and lithograph showing the morphology of platinum-iron-alloy nuggets derived from Uralian-type intrusions. A, Photograph of silvery-gray nugget of isoferroplatinum from the Kondyor Massif, Russia. The nugget, which is about 4 millim
	Figure N19. Maps illustrating platinum-group-element (PGE) resources in southeastern Alaska. A, Location of the permissive tract assessed for undiscovered placer platinum resources and the major geologic provinces (terranes) it encompasses. The permissive
	Figure N20. Graph showing world platinum-group-element production, by country and year, from 1960 to 2011. The layers of the graph are placed one above the other, forming a cumulative total. Data are from U.S. Bureau of Mines (1933 –34, 1933 –96) and U.S.
	Figure N21. Pie chart showing world platinum-group-element (PGE) production from 1960 to 2011, by country and amount (in metric tons [t]) . Data are from U.S. Bureau of Mines (1933 –34,1933 –96) and U.S. Geological Survey (1997–2016). 
	Figure N22. Plot showing the relation between tonnage and grade of remaining resources for conduit-type, reef-type, and other types of deposits enriched in platinum-group elements (PGEs). Diagonal lines are isolines that show amounts of contained PGEs and
	Figure N23. Graphs showing the percent of contained metal against percent of deposits for A, the world’s platinum-group-element (PGE) and porphyry copper deposits, and B , the top 30 percent of the world’s PGE deposits. In A, the curves are derived from c
	Figure N24. Graph showing contained platinum-group element (PGE) and gold metal against the ratio of palladium to platinum for the major PGE deposits of the world. The only identified deposits in which platinum is the dominant metal are associated with  t
	Figure N25. Three-dimensional block diagram showing the Merensky Reef interpolated down to 2 kilometers in the southern area of the western limb of the Bushveld Complex, South Africa. Mined out areas are shown in gray, and the Merensky Reef trace is shown
	Figure N26. Graph illustrating the exposed area and stratigraphic thickness of cumulates in more than 200 intrusions from around the world. 
	Figure N27. Geologic map of the Amphitheater Mountains and south-central Alaska showing the location and names of mafic-ultramafic complexes that are part of the Nikolai large igneous province (Schmidt and Rogers, 2007). 
	Figure N28. Graphs showing platinum-group element prices (in constant U.S. dollars referenced to 2010) for platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) from 1880 to 2013. Major world events affecting pricing a
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