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Conversion Factors
International System of Units to Inch/Pound

Multiply By To obtain

Length
angstrom (Å) (0.1 nanometer) 0.003937 microinch
angstrom (Å) (0.1 nanometer) 0.000003937 mil
micrometer (µm) [or micron] 0.03937 mil
millimeter (mm) 0.03937 inch (in.)
centimeter (cm) 0.3937 inch (in.)
meter (m) 3.281 foot (ft) 
meter (m) 1.094 yard (yd) 
kilometer (km) 0.6214 mile (mi)

Area
hectare (ha) 2.471 acre
square kilometer (km2) 247.1 acre
square meter (m2) 10.76 square foot (ft2) 
square centimeter (cm2) 0.1550 square inch (ft2) 
square kilometer (km2) 0.3861 square mile (mi2)

Volume
milliliter (mL) 0.03381 ounce, fluid (fl. oz)
liter (L) 33.81402 ounce, fluid (fl. oz)
liter (L) 1.057 quart (qt)
liter (L) 0.2642 gallon (gal)
cubic meter (m3) 264.2 gallon (gal) 
cubic centimeter (cm3) 0.06102 cubic inch (in3) 
cubic meter (m3) 1.308 cubic yard (yd3) 
cubic kilometer (km3) 0.2399 cubic mile (mi3) 

Mass

microgram (μg) 0.00000003527 ounce, avoirdupois (oz)
milligram (mg) 0.00003527 ounce, avoirdupois (oz)
gram (g) 0.03527 ounce, avoirdupois (oz)
gram (g) 0.03215075 ounce, troy
kilogram (kg) 32.15075 ounce, troy
kilogram (kg) 2.205 pound avoirdupois (lb)
ton, metric (t) 1.102 ton, short [2,000 lb]
ton, metric (t) 0.9842 ton, long [2,240 lb]

Deposit grade
gram per metric ton (g/t) 0.0291667 ounce per short ton (2,000 lb) (oz/T)

Pressure
megapascal (MPa) 10 bar
gigapascal (GPa) 10,000 bar

Density
gram per cubic centimeter (g/cm3) 62.4220 pound per cubic foot (lb/ft3) 
milligram per cubic meter (mg/m3) 0.00000006243 pound per cubic foot (lb/ft3)

Energy
joule (J) 0.0000002 kilowatthour (kWh)
joule (J) 6.241 × 1018 electronvolt (eV)
joule (J) 0.2388 calorie (cal)
kilojoule (kJ) 0.0002388 kilocalorie (kcal)
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International System of Units to Inch/Pound

Multiply By To obtain

Radioactivity
becquerel (Bq) 0.00002703 microcurie (μCi)
kilobecquerel (kBq) 0.02703 microcurie (μCi)

Electrical resistivity
ohm meter (Ω-m) 39.37 ohm inch (Ω-in.)
ohm-centimeter (Ω-cm) 0.3937 ohm inch (Ω-in.)

Thermal conductivity
watt per centimeter per degree 

Celsius (watt/cm °C)
693.1798 International British thermal unit 

inch per hour per square foot per 
degree Fahrenheit (Btu in/h ft2 °F)

watt per meter kelvin (W/m-K) 6.9318 International British thermal unit 
inch per hour per square foot per 
degree Fahrenheit (Btu in/h ft2 °F)

Inch/Pound to International System of Units

Length
mil 25.4 micrometer (µm) [or micron]
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Volume
ounce, fluid (fl. oz) 29.57 milliliter (mL)
ounce, fluid (fl. oz) 0.02957 liter (L) 

Mass
ounce, avoirdupois (oz) 28,350,000 microgram
ounce, avoirdupois (oz) 28,350 milligram
ounce, avoirdupois (oz) 28.35 gram (g) 
ounce, troy 31.10 348 gram (g)
ounce, troy 0.03110348 kilogram (kg)
pound, avoirdupois (lb) 0.4536 kilogram (kg) 
ton, short (2,000 lb) 0.9072 ton, metric (t) 
ton, long (2,240 lb) 1.016 ton, metric (t) 

Deposit grade
ounce per short ton (2,000 lb) (oz/T) 34.285714 gram per metric ton (g/t)

Energy
kilowatthour (kWh) 3,600,000 joule (J)
electronvolt (eV) 1.602 × 10–19 joule (J)

Radioactivity
microcurie (μCi) 37,000 becquerel (Bq)
microcurie (μCi) 37 kilobecquerel (kBq)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
	 °F = (1.8 × °C) + 32

Temperature in degrees Celsius (°C) may be converted to kelvin (K) as follows:
	 K = °C + 273.15

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
	 °C = (°F – 32) / 1.8
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Datum
Unless otherwise stated, vertical and horizontal coordinate information is referenced to the 
World Geodetic System of 1984 (WGS 84). Altitude, as used in this report, refers to distance 
above the vertical datum.

Supplemental Information
Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm  
at 25 °C).

Concentrations of chemical constituents in soils and (or) sediment are given in milligrams per 
kilogram (mg/kg), parts per million (ppm), or parts per billion (ppb).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L), 
micrograms per liter (µg/L), nanogams per liter (ng/L), nanomoles per kilogram (nmol/kg),  
parts per million (ppm), parts per billion (ppb), or parts per trillion (ppt).

Concentrations of suspended particulates in water are given in micrograms per gram (µg/g), 
milligrams per kilogram (mg/kg), or femtograms per gram (fg/g).

Concentrations of chemicals in air are given in units of the mass of the chemical (milligrams, 
micrograms, nanograms, or picograms) per volume of air (cubic meter).

Activities for radioactive constituents in air are given in microcuries per milliliter (μCi/mL).

Deposit grades are commonly given in percent, grams per metric ton (g/t)—which is equivalent 
to parts per million (ppm)—or troy ounces per short ton (oz/T).

Geologic ages are expressed in mega-annum (Ma, million years before present, or 10 6 years ago) 
or giga-annum (Ga, billion years before present, or 10 9 years ago).

For ranges of years, “to” and (or) the en dash (“–”) mean “up to and including.”

Concentration unit Equals

milligram per kilogram (mg/kg) part per million
microgram per gram (µg/g) part per million
microgram per kilogram (μg/kg) part per billion (109)

Equivalencies
part per million (ppm): 1 ppm = 1,000 ppb = 1,000,000 ppt = 0.0001 percent
part per billion (ppb): 0.001 ppm = 1 ppb = 1,000 ppt = 0.0000001 percent
part per trillion (ppt): 0.000001 ppm = 0.001 ppb = 1 ppt = 0.0000000001 percent

Metric system prefixes

tera- (T-) 1012 1 trillion
giga- (G-) 109 1 billion
mega- (M-) 106 1 million
kilo- (k-) 103 1 thousand
hecto- (h-) 102 1 hundred
deka- (da-) 10 1 ten
deci- (d-) 10–1 1 tenth
centi- (c-) 10–2 1 hundredth
milli- (m-) 10–3 1 thousandth
micro- (µ-) 10–6 1 millionth
nano- (n-) 10–9 1 billionth
pico- (p-) 10–12 1 trillionth
femto- (f-) 10–15 1 quadrillionth
atto- (a-) 10–18 1 quintillionth
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By Michael L. Zientek, Patricia J. Loferski, Heather L. Parks, Ruth F. Schulte, and Robert R. Seal II

Abstract
The platinum-group elements (PGEs)—platinum, palla-

dium, rhodium, ruthenium, iridium, and osmium—are metals 
that have similar physical and chemical properties and tend 
to occur together in nature. PGEs are indispensable to many 
industrial applications but are mined in only a few places. 
The availability and accessibility of PGEs could be disrupted 
by economic, environmental, political, and social events. The 
United States net import reliance as a percentage of apparent 
consumption is about 90 percent.

PGEs have many industrial applications. They are used in 
catalytic converters to reduce carbon monoxide, hydrocarbon, 
and nitrous oxide emissions in automobile exhaust. The 
chemical industry requires platinum or platinum-rhodium 
alloys to manufacture nitric oxide, which is the raw material 
used to manufacture explosives, fertilizers, and nitric acid. In 
the petrochemical industry, platinum-supported catalysts are 
needed to refine crude oil and to produce aromatic compounds 
and high-octane gasoline. Alloys of PGEs are exceptionally 
hard and durable, making them the best known coating for 
industrial crucibles used in the manufacture of chemicals and 
synthetic materials. PGEs are used by the glass manufacturing 
industry in the production of fiberglass and flat-panel and 
liquid crystal displays. In the electronics industry, PGEs are 
used in computer hard disks, hybridized integrated circuits, 
and multilayer ceramic capacitors.

Aside from their industrial applications, PGEs are used 
in such other fields as health, consumer goods, and finance. 
Platinum, for example, is used in medical implants, such as pace-
makers, and PGEs are used in cancer-fighting drugs. Platinum 
alloys are an ideal choice for jewelry because of their white 
color, strength, and resistance to tarnish. Platinum, palladium, 
and rhodium in the form of coins and bars are also used as 
investment commodities, and various financial instruments 
based on the value of these PGEs are traded on major exchanges.

PGEs are among the rarest metals; Earth’s upper crust 
contains only about 0.0005 part per million (ppm) platinum. 
Today, the average grade of PGEs in ores that are mined 
primarily for their PGE concentrations varies from 5 to 15 ppm, 
although the concentration of PGEs in hand-picked ore speci-
mens may range from tens to hundreds of parts per million.

More than 100 different minerals have one of the PGEs as 
an essential component. PGE minerals occur as native metals. 
They also occur as compounds with other transition metals 
(copper, iron, mercury, nickel, and silver), post-transition 
metals (bismuth, lead, and tin), metalloids (antimony, arsenic, 
and tellurium), and nonmetals (selenium and sulfur).

From 1900 to 2011, approximately 14,200 metric tons of 
PGEs was produced, and roughly 95 percent of that production 
(13,500 metric tons) took place between 1960 and 2011. The 
breakdown of production by country shows that, since 1900, 
about 90 percent of the production came from South Africa 
and Russia. The secondary supply of platinum, palladium, 
and rhodium is obtained through the recycling of catalytic 
converters from end-of-life vehicles, jewelry, and electronic 
equipment. Recycled platinum, palladium, and rhodium 
provide a significant proportion of the world’s total supply; 
these secondary sources are sufficient to close the gap between 
world mine production and consumption.

Exploration and mining companies report resources of 
about 104,000 metric tons of PGEs (including minor amounts 
of gold) in mineral deposits around the world that could be 
developed. For PGEs, almost all the reported production 
and identified resources are associated with deposits in three 
geologic features—the Bushveld Complex, which is a layered 
mafic to ultramafic intrusion in South Africa; the Great Dyke, 
which is a layered mafic to ultramafic intrusion in Zimbabwe; 
and sill-like intrusions associated with flood basalts in the 
Noril’sk-Talnakh area of Russia.

The metallic forms of PGEs are generally considered to 
be inert. PGEs pose a risk to human health only in cases where 
individuals are occupationally exposed to synthetic PGE 
compounds, especially workers in precious-metal refineries. 
In the natural environment, background PGE concentrations 
are low in water, sediment, soil, and plants. Anthropogenic 
sources of PGEs in the environment include catalytic 
converters used in modern automobiles, platinum-based 
chemotherapy drugs, and smelter emissions.

The abundance of sulfide minerals defines the environ
mental and geologic characteristics of PGE-enriched magmatic 
sulfide deposits; those deposits with the highest amount of 
sulfide minerals could have the highest environmental impact. 
Acid rock drainage from reef-type and contact-type deposits 
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is unlikely because the ores and their host rocks contain 
low proportions of sulfide minerals. For some conduit-type 
orebodies with massive ores, mineral-processing techniques 
separate and produce concentrates of copper-, iron-, and 
nickel-bearing sulfide minerals; those with copper and nickel 
are processed to extract metal, but the iron-sulfide minerals, 
mainly pyrrhotite, are discarded as waste. This results in waste 
material with a high acid-generating potential.

The most significant primary source of PGEs in the 
United States is a deposit in the Stillwater Complex, which 
is a layered igneous intrusion in Montana. Approximately 
305 metric tons of platinum and palladium have been 
mined from the Stillwater Complex deposit since 1986. 
Exploration and development drilling indicate that another 
2,200 metric tons are present. Mining has progressed to depths 
of 1,800 meters below the surface, but the bottom of the ore 
deposit has not been reached; geologic estimates suggest that 
another 1,000 to 6,200 metric tons of PGEs could be present at 
depth. In the future, PGEs may be mined from deposits found 
near the base of the Duluth Complex, which is a group of 
igneous intrusions in Minnesota.

Introduction
The platinum-group elements (PGEs)—platinum, 

palladium, rhodium, ruthenium, iridium, and osmium—are 
chemical elements that have similar physical and chemical 
properties and tend to occur together in nature. They are 
transition metals, lying in Group 8B and periods 5 and 6 of the 
periodic table of elements. Along with gold and silver, they are 
also precious metals that have high economic value deter-
mined not only by their practical uses but also by their role as 
investment instruments and as a store of value. The PGEs are 
also known as the platinum-group metals (PGMs).

Pre-Columbian peoples found naturally occurring 
platinum and platinum-rich alloys in stream deposits in 
Colombia and Ecuador. In the 1500s, Spanish colonists also 
found grains of these alloys mingled with gold nuggets they 
recovered from stream deposits in the same area; they called 
the metal “platina” (McDonald and Hunt, 1982). At that time, 
the metal had no known use and was considered worthless. 
The platinum-rich grains were a nuisance because they could 
not be separated from gold nuggets by panning. Small samples 
of platinum-enriched nuggets from South America reached 
Europe during the 1740s. Platinum was described as a new 
metal in 1750, followed by iridium and osmium in 1803, 
palladium and rhodium in 1804, and ruthenium in 1807. The 
unique properties of the metals were realized later in the 
19th century.

PGEs are essential for important industrial applications 
but are mined in only a limited number of places. Therefore, 
the availability and accessibility of PGEs could be disrupted 
by economic, environmental, political, and social events. 
This is not a new development. During World War I, the 
United States considered platinum a “vital war material” 

needed for the production of amplifiers, magnetos, munitions, 
shell primers, and sulfuric acid, and it was ranked second on 
the “list of strategic raw material” for which the United States 
was either entirely or partially dependent on foreign countries 
(Lael and Killen, 1982). During World War II, these metals 
had even greater strategic importance to science and industry, 
and the United States was still dependent on sources in 
foreign countries (DeMille, 1947; U.S. Bureau of Mines and 
U.S. Geological Survey, 1947). Security of supply was also 
a concern during the Cold War (U.S. Congress, Office of 
Technology Assessment, 1985; Sutphin and Page, 1986). With 
the dissolution of the Soviet Union and the peaceful transition 
of government in South Africa in the early 1990s, import 
vulnerability became less of an immediate concern. The 
United States net import reliance as a percentage of apparent 
consumption is still about 90 percent, however, and the main 
sources of these elements are still limited to a few mineral 
deposits in South Africa and Russia (Loferski, 2012a, b). 
The potential restrictions on supplies of critical raw minerals, 
such as the PGEs, have again become a topic for international 
concern and discussion (National Research Council of 
the National Academies, 2008; Buchert and others, 2009; 
European Commission, 2010; American Physical Society 
Panel on Public Affairs and Material Research Society, 2011; 
British Geological Survey, 2012).

This chapter summarizes how the PGEs are used, gives 
an overview of where PGEs are mined, and summarizes 
how much mineralized material has been found by mineral 
exploration companies. The geology of significant deposits is 
described, and the assessment for undiscovered resources is 
discussed, as are possible topics for future research. The report 
also discusses environmental aspects of the PGEs, including 
their sources and fate in the environment; mine waste charac-
teristics; and human health, ecological, and carbon footprint 
concerns. Where indicated, data in tables 1 through 9 are 
taken from data prepared by the authors in table 10 (back of 
chapter).

Uses, Applications, and Consumption
The PGEs possess excellent catalytic and stable electrical 

properties. PGEs are also highly resistant to wear, tarnishing, 
and chemical attack, and can withstand high temperatures, 
making them indispensable to many industrial applications. 
Their leading use is as catalysts for oxidation and reduction 
reactions that decrease hydrocarbon, carbon monoxide, and 
nitrous oxide emissions in automobile exhaust (fig. N1). 
The chemical industry requires either platinum or platinum-
rhodium alloy to manufacture nitric oxide, which is a raw 
material used to manufacture explosives, fertilizers, and 
nitric acid. PGEs are also used in the production of specialty 
silicones, which, in turn, have many uses, such as in coatings 
on automobile airbags, water repellent coatings, and adhesives 
for sticky notes. In the petrochemical industry, platinum-
supported catalysts are needed to refine crude oil and to 
produce high-octane gasoline and aromatic compounds.
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Figure N1.  Graphs showing platinum and palladium consumption, 
by category of use, from 2000 to 2012 for the world (A and B ), 
North America (C and D ), and China (E and F ). The decrease in platinum 
consumption for North America is directly related to the decreased 
production of cars and trucks during the same period (Organisation 
Internationale des Constructeurs d’Automobiles, 2013). The graphs 
also illustrate how consumption of platinum jewelry varies by region. 
In each graph, the layers are placed one above the other, forming a 
cumulative total. Created from data in Platinum Today (2013c).
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Alloys of PGEs are exceptionally hard and durable, 
making them the best known coating for industrial crucibles 
used in the manufacture of chemicals and synthetic 
materials, such as high-purity single crystals used in the 
production of light-emitting diodes (LEDs). PGEs are 
used by the glass manufacturing industry in the production 
of fiberglass and flat-panel and liquid crystal displays. In 
the electronics industry, PGEs are used in computer hard 
disks to increase storage capacity, and they are ubiquitous 
in electronic devices, hybridized integrated circuits, and 
multilayer ceramic capacitors. Platinum does not corrode 
inside the body, and allergic reactions to platinum are 
extremely rare; therefore, it is used in medical implants, such 
as pacemakers. PGEs are also used in cancer-fighting drugs. 
Other uses of PGEs include gas sensors in automobiles 
and homes, spark plug tips, and additives to superalloys 
(Impala Platinum Holdings Ltd., 2012; Loferski, 2013a; 
Platinum Today, 2013a).

Their white color, strength, and resistance to 
tarnish make platinum alloys an ideal choice for jewelry 
(Platinum Today, 2013b). In parts of Ecuador and Colombia 
before the Spanish conquest, platinum was used by indig-
enous peoples for the fabrication of small objects, as well 
as sintered with gold, and incorporated into bimetallic and 
platinum-clad articles (fig. N2; Scott and Bray, 1980; Meeks 
and others, 2002; Noguez and others, 2006). Their master-
works reflect a high degree of technical innovation because 
the high melting temperature of platinum (1,769 degrees 
Celsius [ºC]) requires sophisticated manufacturing tech-
niques and craftsmanship. The modern tradition of using 
platinum for jewelry began in Europe in the 18th century. 
The works produced by Cartier and Tiffany in the late 
19th century and early 20th century created interest in 
platinum jewelry, particularly in the United States. The Great 
Depression of the 1930s and the advent of World War II 
suppressed the platinum jewelry market in the United States. 
In the 1960s, demand for platinum jewelry in Japan surged, 
followed by a surge in demand in China in the mid-1990s.

Platinum, palladium, and rhodium are also used for 
investment in the form of physical or financial assets. 
Physical assets include platinum and palladium as collectible 
coins, or as bullion coins, bars, or wafers. Financial assets 
include stocks, mutual funds, and exchange-traded funds. 
Financial assets allow investors to own platinum, palladium, 
and rhodium without the difficulties associated with physi-
cally holding the metal.

Figure N2.  Photograph of gold mask with platinum highlights, 
from the period of La Tolita culture, Ecuador. From Museo 
Nacional del Banco Central del Ecuador collection.

Geology
Geochemistry

All chemical elements heavier than oxygen, including 
the PGEs, are created by nuclear fusion and nucleosynthesis 
processes during supernova explosions. The matter derived 
from supernova explosions is dispersed into the interstellar 
medium and enriches molecular clouds, which are sites of star 
and planetary formation. Earth formed from the same cloud 
of matter as the sun, so the bulk PGE composition of Earth is 
thought to be similar to that of the solar system. Carbonaceous 
meteorites of the Ivuna type (carbonaceous chondrites 
[type 1], or C1 chondrites) are used to estimate solar system 
abundances (Lodders, 2010). The Orgueil meteorite, which is 
considered most representative of the C1 chondrites, contains 
0.947 part per million (ppm) platinum.

Early in its evolution, Earth differentiated into a metallic 
core, a silicate mantle, and a silicate crust. The segregation 
processes affected the distribution of the PGEs and resulted in 
concentrations progressively decreasing from core to mantle 
to upper crust. The range of platinum concentration in samples 
of iron meteorites, which are perhaps the best analogs for the 
composition of Earth’s core, is 2.4 to 16 ppm (Wasson and 
others, 1989). The average platinum concentrations of samples 
of the upper mantle vary from about 0.002 to 0.005 ppm 
(2 to 5 parts per billion [ppb]) (Maier and others, 2012). 
In contrast, the upper crust is estimated to contain only 
0.0005 ppm (0.5 ppb) platinum (Rudnick and Gao, 2003). 
Today, the average grade of PGEs in ores that are mined 
primarily for their PGE concentrations ranges from 5 to 15 ppm; 
however, the concentration of PGEs in hand-picked ore speci-
mens may range from tens to hundreds of parts per million.
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Mineralogy

The PGEs can occur as an essential component of the 
crystal structure of a mineral (a naturally occurring inorganic 
element or compound having a periodically repeating arrange-
ment of atoms and characteristic chemical composition, 
resulting in distinctive physical properties). The Commission 
on New Minerals, Nomenclature and Classification of the 
International Mineralogical Association has recognized 
more than 100 different minerals in which at least one of 
the PGEs is an essential component (Cabri, 2002); they are 
called platinum-group minerals. Platinum-group minerals 
include native-metal-minerals and compounds with other 
transition metals (such as copper, iron, mercury, nickel, and 
silver), post-transition metals (such as bismuth, lead, and tin), 
metalloids (such as antimony, arsenic, and tellurium), and 
nonmetals (such as selenium and sulfur) (table N1). In most 
rocks, platinum-group minerals are fine-grained and range 
in size from less than a micron to a few hundred microns 
in diameter. Most geologists can spend a lifetime working 
on rocks enriched in PGEs and never see a platinum-group 
mineral in a hand specimen. Yet the platinum-group minerals 
are important to characterize because information about their 
mineralogy is needed to extract metals from their ore minerals 
effectively and to understand ore-forming processes.

PGEs also occur in solid solution in base-metal sulfides 
and sulfarsenides. In solid solution, different chemical elements 
can substitute in specific atomic sites without changing a 
mineral’s crystalline structure. For example, palladium can 
substitute for nickel in pentlandite (Cabri, 1992); the amount 
of substitution can be significant and is detectable by several 
microanalytical techniques. PGEs also occur in solid solution in 
nickeliferous cobaltite (nickel-iron sulfarsenide) in ores mined 
at the Copper Cliff North Mine in Sudbury, Ontario, Canada 
(Szentpéteri and others, 2002). Low-level concentrations of 
PGEs in solid solution in base-metal sulfide minerals can be 
assessed using laser-ablation inductively coupled plasma-mass 
spectrometry (ICP–MS) (for example, Cabri and others, 2003; 
Godel and others, 2007; Pagé and others, 2012). These studies 
document that pentlandite is the principal base-metal sulfide 
mineral that hosts PGEs. Pyrrhotite (Fe1-xS) can contain some 
iridium, osmium, rhodium, and ruthenium, but not palladium 
or platinum. Chalcopyrite (CuFeS2) does not contain signifi-
cant amounts of PGEs in solid solution. Platinum and gold do 
not partition into base-metal sulfide minerals.

Deposit Types

Mineral deposits can be classified into groups or types 
based on common features and associations that ultimately 
relate to the underlying geologic processes that formed the ore. 
Each mineral deposit type has characteristic geometries, distri-
butions of tonnage and grade, and rock and mineral properties 
that determine the potential value of the deposit. Each deposit 

type also has specific characteristics that determine how much 
sampling will be required to delimit the deposit’s mineral 
resources and in what manner the valuable material will be 
mined and processed. Furthermore, each deposit type exerts a 
specific impact on the environment, whether through natural 
weathering processes or the result of mining.

At a basic level, economic geologists recognize the 
following mineral deposit types: (a) magmatic—formed 
during the cooling and crystallization of magma, 
(b) hydrothermal—formed by the interaction of hot water 
and rock, (c) sedimentary—formed by the precipitation or 
settling of minerals directly from water in oceans or lakes, 
(d) residual—formed by the intense weathering of rocks 
under hot, humid conditions, and (e) placers—formed by the 
physical concentration of heavy particles of rocks or minerals 
by the action of moving water. PGE-enriched rocks can be 
found in each of the deposit types listed above. The following 
sections describe examples of PGE mineralization found in 
each of these deposit types. More information is given for 
magmatic deposits because they are the source of almost all 
the PGEs recovered by mining. The locations of the world’s 
major and minor PGE deposits are shown in figure N3.

Magmatic Deposits

PGEs are transferred from Earth’s mantle to its crust by 
magnesium-rich magmas that were formed by the melting of 
a high percentage of mantle material from which magma had 
not been previously extracted. A high degree of partial melting 
is needed to release PGEs into the melt from the small quanti-
ties of sulfide minerals or alloys that are present in the mantle. 
Upon emplacement in the crust, the magnesium-rich magmas 
cool to form mafic and ultramafic igneous rocks.

Magmatic deposits are concentrations of metallic 
oxide or sulfide minerals that formed during the cooling and 
crystallization of magma. Textural and experimental evidence 
indicate that PGE-enriched mineralization forms when mafic 
to ultramafic magma becomes saturated with sulfur and an 
immiscible sulfide liquid exsolves from the silicate magma 
(Barnes and others, 2008; Holwell and McDonald, 2010; 
Naldrett, 2010a). The solubility of sulfur in mafic magmas is 
affected by changes in the bulk composition of the magma, 
the fugacity of sulfur and oxygen, temperature, and pressure 
(Ripley, 1999). Processes that change the solubility of sulfur 
and may cause an exsolution event include (a) fractional 
crystallization of the silicate magma, (b) mixing of magmas, 
(c) assimilation of additional sulfur from sources external to 
the magma, and (d) modification of the magma composition 
by bulk contamination, such as changing the silica content of 
the magma (Mungall, 2005).

The silicate magma solidifies first, followed by the sulfide 
liquid, which solidifies at temperatures in excess of 900 °C. 
The textures and mineralogy of PGE ores record a prolonged 
and complex process of solid-state transformation and 
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Table N1. Chemical formulas for selected platinum-group minerals as well as other common rock-forming minerals mentioned 
in this chapter.

[Sources: Deer and others (1966); Vaughan and Craig (1978); and Cabri (2002). Elements: Al, aluminum; As, arsenic; Bi, bismuth; C, carbon; 
Ca, calcium; Cr, chromium; Cu, copper; Fe, iron; Hg, mercury; Ir, iridium; K, potassium; Mg, magnesium; Na, sodium; Ni, nickel; O, oxygen; 
Os, osmium; Rh, rhodium; Ru, ruthenium; Pb, lead; Pd, palladium; Pt, platinum; S, sulfur; Sb, antimony; Si, silicon; Sn, tin; Te, tellurium]

Mineral name Chemical formula

PLATINUM-GROUP MINERALS

Native metals

Iridium Ir
Osmium Os
Palladium Pd
Platinum Pt
Rhodium Rh
Ruthenium Ru

Compounds with transition metals

Isoferroplatinum Pt3Fe
Potarite PdHg
Tulameenite PtFe0.5Cu0.5

Compounds with post-transition metals (Bi, Pb, and Sn)

Atokite Pd3Sn
Froodite PdBi2

Insizwaite PtBi2

Rustenburgite Pt3Sn
Paolovite Pd2Sn

Compounds with metalloids 

Genkinite (Pt,Pd)4Sb3

Geversite PtSb2

Isomertieite Pd11Sb2As2

Kotulskite PdTe
Merenskyite PdTe2

Moncheite PtTe2

Sperrylite PtAs2

Stibiopalladinite Pd5+xSb2-x

Stillwaterite Pd8As3

Sudburyite PdSb
Compounds with nonmetals

Braggite (Pt,Pd)S
Cooperite PtS
Erlichmanite OsS2

Laurite RuS2

Vysotskite PdS
Other

Hollingworthite RhAsS
Maslovite PtBiTe
Michenerite PdBiTe
Ruarsite RuAsS

Mineral name Chemical formula

BASE-METAL SULFIDE MINERALS

Bornite Cu5FeS4

Chalcopyrite CuFeS2

Covellite CuS

Cubanite CuFe2S3

Marcasite FeS2

Mooihoekite Cu9Fe9S16

Nickeliferous cobaltite Co(Ni)AsS

Pentlandite (Fe,Ni)9S8

Pyrite FeS2

Pyrrhotite Fe(1-x)S

Talnakhite Cu9(Fe, Ni)8S16

Troilite FeS

OTHER ROCK-FORMING MINERALS

Calcite CaCO3

Chlorite (Mg,Fe)3(Si,Al)4O10(OH)2 •  
(Mg,Fe)3(OH)6 

Chromite (Fe,Mg)(Cr,Al)2O4

Goethite FeO(OH)

Gypsum CaSO4

Jarosite KFe(SO4)2(OH)6

Magnetite Fe3O4

Native sulfur S

Olivine (Mg,Fe)2SiO4

Plagioclase (Ca,Na)(Si,Al)4O8

Pyroxene Ca(Mg,Fe)Si2O6 to 
Mg2Si2O6

Serpentine (Mg,Fe)3Si2O5 (OH)4

Talc Mg3Si4O10 (OH)2
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recrystallization after solidification (Barnes and others, 2008; 
Holwell and McDonald, 2010). At high temperature (about 
1,000 °C), osmium, iridium, and ruthenium preferentially 
partition from the immiscible sulfide liquid into a mineral 
called monosulfide solid solution (MSS). Platinum, palladium, 
and gold, on the other hand, behave as incompatible elements 
with respect to MSS and instead are concentrated in residual 
copper-rich sulfide liquids and associated with the minerals 
that crystallize from the residual immiscible sulfide liquid. 
Upon cooling, some of the PGEs held in sulfide crystal 
structures are expelled, forming discrete minerals. The final 
mineral assemblage consists of varied proportions of pyrrho-
tite, pentlandite, chalcopyrite, and bornite, with platinum and 
gold occurring primarily in platinum-group minerals.

Magmatic sulfide minerals in mafic to ultramafic igneous 
rocks do not always contain elevated concentrations of PGEs. 
The metal content of immiscible sulfide liquids is a function 
of the (a) amount of metal in the silicate magma; (b) relative 
affinity for metals to occur in the sulfide or silicate liquid; 
and (c) relative amounts of the two liquids (Campbell and 
Naldrett, 1979; Barnes and Maier, 1999). Such elements 
as copper, nickel, and PGEs originally in the silicate melt 
preferentially concentrate into the sulfide liquid when it 
exsolves. Concentration of these metals into the sulfide liquid 
can, under some circumstances, deplete their concentration in 
the silicate magma. If there is a large volume of sulfide liquid 
compared with that of the silicate magma, the sulfide liquids 
and the resulting ores will have lower concentrations of PGEs. 
If the sulfide liquid effectively interacts with a large volume of 
silicate magma, the sulfide liquids become enriched in PGEs, 
resulting in high-grade ores.

Economic geologists who study magmatic processes 
expend a lot of effort trying to understand how large mass 
ratios are achieved. Proposed answers have included mixing 
of magmas; the migration of interstitial melts (and “fluids”) 
upward through crystal mush; and (or) the streaming of 
magma over sulfide liquids in a channelized lava flow, sill, 
or feeder dike (Barnes and Maier, 1999; Mathez, 1999; 
Naldrett, 2010a).

Tectonic Setting of Magmatic Deposits  
(Large Igneous Provinces)

As the theory of plate tectonics gained acceptance in the 
1960s and its predictive power became evident, geologists, 
including those working on magmatic ore deposits, tried to 
understand magmatism and ore genesis in a plate-tectonic 
context (Hutchison, 1983; Sawkins, 1984). For some mafic 
and ultramafic rocks that are related to subduction zones and 
mid-oceanic ridges, this conceptual framework provided 
insight and clarity; however, for other types of mafic and 
ultramafic rocks found in intraplate settings, which include 
rocks that host most of the significant magmatic mineral 
deposit types, it did not.

Most magmatic copper-nickel-PGE deposits occur  
with continental flood basalts, aerially extensive mafic dike 
swarms, sill provinces, and large layered ultramafic-to-mafic 
intrusions, which are indicative of large igneous provinces 
(LIPs) (Coffin and Eldholm, 1994). Bryan and Ernst proposed 
that LIPs are magmatic provinces with areal extents greater 
than 1×105 square kilometers (km2), igneous volumes greater 
than 1×105 cubic kilometers (km3) and maximum lifespans 
of about 50 million years (m.y.) that “have intraplate tectonic 
settings or geochemical affinities, and are characterized 
by igneous pulse(s) of short duration” (~1 to 5 m.y.), 
during which time “a large proportion (>75 percent) of the 
total igneous volume has been emplaced. [The LIPs] are 
dominantly mafic, but also can have significant ultramafic 
and silicic components, and some are dominated by silicic 
magmatism” (Bryan and Ernst, 2008, p. 175). Unlike the 
vast majority of igneous rocks that are associated with plate 
tectonic processes at convergent or divergent tectonic plate 
margins, LIP-related rocks usually occur in an intraplate 
tectonic setting; the association of some LIPs with hotspot 
tracks—for example, the North Atlantic Igneous Province and 
the Iceland hotspot (Storey and others, 2007) is one reason 
that LIPs are attributed to mantle plumes.

Types of Magmatic Deposits
Magmatic mined deposits associated with LIP-related 

igneous intrusions are divided into types based on such 
criteria as the lithology and form of associated igneous rocks, 
the depth of emplacement, the abundance of sulfide minerals, 
the relative proportion of metals, and the position of the ores 
within the intrusion. In this chapter, we distinguish between 
conduit-type deposits, which occur in intrusions that are part 
of sill complexes and dike swarms, and reef-type and contact-
type deposits, which occur in layered intrusions (fig. N4). The 
most significant and representative examples for the world and 
the United States are the conduit-type deposits of the Noril’sk-
Talnakh area (Russia); the reef-type deposits in South Africa 
(the Merensky Reef and the UG2 Chromitite), Zimbabwe 
(the Main Sulphide Zone), and Montana (the J–M Reef); and 
the contact-type deposits in South Africa (the Platreef) and 
Minnesota (the Duluth Complex).

Conduit-Type Deposits

The conduit-type deposits of the Noril’sk-Talnakh area of 
Russia are associated with an enormous outpouring of mafic 
magma that formed the Siberian Traps—the largest conti-
nental flood basalt province on Earth (fig. N5). The magmas 
erupted in a short period of time; the 3.5-kilometer (km)-thick 
basalt succession at Noril’sk-Talnakh was emplaced between 
248.7± 0.6 and 250.3±1.1 mega-annum (Ma) (Reichow and 
others, 2009). The flood basalts crop out on the Siberian 
craton, covering an area of approximately 2.5 million km2 
(Fedorenko and others, 1996). In addition, flood basalts 
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are also found in the late Mesozoic fold and thrust belt in 
the Taimyr Peninsula and under the West Siberian Basin 
(Reichow and others, 2009).

A sill complex lies beneath the thick succession of 
volcanic flows and is exposed where the flood basalts have 
been removed by erosion (fig. N5). The sill complex consists 
of thousands of intrusions that delineate the pathways along 
which large volumes of magma were transported through 
the crust (Arndt, 2005). Sills with major nickel-copper-PGE 
deposits have been identified only in the Noril’sk-Talnakh 
area; however, copper-nickel sulfide occurrences in sills 
are distributed over a much larger area (fig. N5). All these 
occurrences of volcanic rocks and associated sills make up 
the Siberian Traps LIP (Ernst and Buchan, 2001).

In the Noril’sk-Talnakh area, plateaus covered by flood 
basalts have been dissected by erosion and exposed the 

underlying sill complex (fig. N6). More than 300 intrusions have 
been mapped, but only 33 contain elevated sulfide concentrations. 
Of these 33 intrusions, 16 contain relatively rich disseminated 
ore and only 4 contain rich massive sulfide orebodies (Diakov 
and others, 2002). High sulfur contents coupled with increasing 
δ34S values is consistent with the addition of crustally derived 
34S-enriched sulfur to the magma of the ore-bearing intrusions 
(Grinenko, 1985; Li and others, 2003).

The ore-bearing intrusions have an elongate, finger-like 
shape; they may be up to 1 km wide by 500 meters (m) thick 
and up to 15 km long. Most of the other sills form sheet-like 
bodies that are tens of meters thick. Rock textures of sills 
indicate crystallization and cooling at shallow depth. The ore-
bearing intrusions are internally differentiated, with magnesium 
rocks and minerals concentrated towards the base of the sills; 
the laterally continuous sills show less internal differentiation.
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The amount of massive sulfide ores associated with the 
mineralized intrusions at Talnakh is astounding. The massive 
sulfide ores, which are up to 45 m thick, underlie most of the 
intrusions in the Talnakh area (fig. N7A; Kunilov, 1994). The 
ore-bearing sills contain, or are associated with, concentrations 
of sulfide minerals that exceed the amount of sulfur that could 
have been dissolved in the volume of magma now in the sills. 
The sulfide mineralization also contains high concentrations 
of PGEs, indicating a silicate-to-sulfide ratio that is larger than 
the observed proportion of silicate minerals to sulfide minerals 
in the sills. This suggests that at the time of ore formation, 
the sulfide liquids equilibrated with a much larger volume of 
magma than is now represented by the igneous rocks in the 
sill. Field relations indicate lateral movement of immiscible 
sulfide liquids during and after solidification of the silicate 
igneous rocks.

In the Talnakh area, fractional crystallization of the 
immiscible sulfide liquids formed mineralogically and 
compositionally zoned orebodies (fig. N7B). Massive ores 
formed by early crystallization of sulfides contain less copper 
and PGEs than ores that formed from sulfide liquid that are the 
end product of the fractional crystallization process (fig. N8). 
The copper- and PGE-rich late-stage ores are the likely source 
of most of the PGE production from the Talnakh deposits 
(fig. N7C ). Between 1960 and 2011, Russia (including all 
the Soviet Union until 1991) produced about 5,000 metric 
tons of PGEs, most of them from the Noril’sk-Talnakh area 
(U.S. Bureau of Mines, 1933–96; U.S. Geological Survey, 
1997–2016). Mining depths in the Noril’sk-Talnakh area  
range from 300 to 1,500 m (Kunilov, 1994).

Reef-Type and Contact-Type Deposits

LIP-related layered mafic to ultramafic intrusions contain 
most of the world’s resources of PGEs. Layered intrusions 
form by crystallization of magma deep in Earth’s crust and 
have sheet-like to dike-like shapes. They consist primarily 
of cumulates, which are rocks that represent accumulations 
(concentrations) of minerals that crystallize from magmas. 
Cumulus rock textures are distinctive, as they record 
nucleation and growth of crystals from the melt, enlargement 
of crystals to form a touching framework (a crystal mesh), 
solidification, and subsolidus grain boundary adjustments that 
minimize grain boundary surface energies (Hunter, 1987). 
Cumulus rocks are also distinctive in that they do not have the 
composition of naturally occurring magmas but are instead a 
mixture of early formed crystals with variable proportions of 
trapped liquid.

As the magma crystallizes in these intrusions, layering 
features develop that are recognized by the variations in 
the modal proportions of the minerals, the rock textures, 
the grain size, and the mineral compositions. Individual 
layers range from laminations formed by the orientation of 

individual crystals that are millimeters in diameter to strata 
that are tens to hundreds of meters thick and may extend for 
hundreds of kilometers along strike. The layering features 
are so pronounced and consistent that stratigraphic principles 
developed for sedimentary rocks are applied to these igneous 
rocks. Stratigraphic columns are measured through the 
sequence of layered igneous rocks to define mappable units; 
the thickness of the layered rocks in intrusions ranges from 
hundreds of meters to as much as 10 km.

Layered intrusions have two significant styles of 
magmatic sulfide mineralization—reef type and contact 
type. The analogy with sedimentary rocks extends to the 
terminology used for magmatic deposits in layered intrusions. 
Some of the magmatic deposits are strata-bound, which means 
that the deposit is confined to a stratigraphic unit, not to a 
particular bed. Other magmatic deposits are stratiform, which 
means that the deposit constitutes one or more of the igneous 
layers; an example would be the chromium deposits in layered 
intrusions (which correspond to igneous rock layers that are 
composed primarily of the mineral chromite). Reef-type and 
contact-type deposits are strata-bound, as described below.

Reef-type PGE deposits are disseminated copper-, 
iron-, nickel-, and PGE-bearing minerals that are associated 
with one or more strata within a layered igneous intrusion 
(fig. N4). The mineralized rock unit almost always contains 
disseminated magmatic sulfide minerals, but the rock layers 
are dominated by silicate minerals or oxide minerals such 
as chromite or magnetite. The modal abundance of sulfide 
minerals is usually much less than a few percent. The term 
“reef” is an Australian and South African mining term for a 
relatively flat-lying, tabular orebody. Within a layered igneous 
intrusion, reef-type mineralization is laterally persistent, 
extending for the strike length of the intrusion, which is 
typically tens to hundreds of kilometers. The mineralized 
interval is thin (generally centimeters to meters thick), 
however, relative to the total stratigraphic thickness of the 
layers in the intrusion, which can vary from hundreds to 
thousands of meters.

Copper-nickel-PGE contact-type deposits consist of 
disseminated magmatic sulfide minerals found near the lower 
contact or margin of mafic to ultramafic layered intrusions 
(fig. N4). The host rocks for the disseminated sulfide minerals 
are the igneous rocks of the intrusion and adjacent contact 
metamorphosed country rocks. Some igneous lithologies are 
cumulates, but other mineralized mafic and ultramafic igneous 
rocks are texturally and lithologically heterogeneous, exhib-
iting changes in texture and mineral proportions at scales of 
from centimeters to meters. Textures indicative of chilling or 
unidirectional growth of silicate minerals may also be present. 
Inclusions of autoliths and xenoliths are common; they are 
surrounded by igneous rocks that have textural, mineralogical, 
and isotopic features suggestive of reaction with the inclusions 
(Iljina and Lee, 2005).
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Figure N8.  Photograph of copper-rich massive 
sulfide ore exposed in a stope in the Oktyabr’sk 
Mine in the Talnakh area, Russia. The ore consists 
of several iron-copper-sulfide minerals, such as 
chalcopyrite (CuFeS2 ), mooihoekite (Cu9Fe9S16 ), 
and talnakhite (Cu9(Fe, Ni)8S16 ). The minerals 
are brassy to golden yellow, but some develop 
iridescent blue and maroon colors when exposed 
to air. These ores represent the end product of 
the fractional crystallization of immiscible sulfide 
liquid and can contain tens to hundreds of parts per 
million platinum-group elements. Photograph by 
Michael L. Zientek, 1992.

Sulfide abundance in contact-type PGE deposits is 
typically about 3 to 5 volume percent, although some net-
textured and (or) massive sulfide ores may be present. Erratic 
variation in the distribution of sulfide minerals is typical, 
although the concentration of sulfide minerals within the 
intrusion generally increases towards the contact with adjacent 
country rocks. The mineralization can be laterally persistent, 
commonly extending for the entire strike length of the layered 
igneous intrusion. The interval that can contain magmatic 
sulfide minerals is generally tens to hundreds of meters in 
thickness, however. The proportion of sulfide minerals varies 
within the rock layers that can host ore; during exploration 
and development, economic cutoff grades are used to define 
the volume of rock within the igneous rock unit that could 
be mined. Therefore, low-grade mineralization may occur 
outside the cutoff limit that defines minable parts of deposits. 
Examples of major reef-type (a–c) and contact-type (a and d) 
deposits are discussed below.

(a) Merensky Reef, UG2 Chromitite, and Platreef, 
Bushveld Complex, South Africa. The Paleoproterozoic 
Bushveld Complex (2,054.4±1.3 Ma, using the uranium- 
lead-zircon technique for determining age) is a large mass of 
igneous rock that underlies an area of approximately 69,000 km2 
in South Africa (fig. N9; Hall, 1932; von Gruenewaldt, 1977; 
Scoates and Friedman, 2008). It is part of the Bushveld LIP 
(Ernst and Buchan, 2001), which also includes the Molopo 
Farms Complex (another large layered mafic to ultramafic 
intrusion in Botswana and South Africa (Prendergast, 2012);  
a large complex of sills related to the Bushveld Complex 
(Sharpe, 1981; Sharpe and Hulbert, 1985); and the Dullstroom 
basalts in South Africa (Buchanan and others, 1999).

The Bushveld Complex consists of several igneous suites. 
The most important economically is the Rustenburg Layered 
Suite, which is an approximately 8-km-thick layered sequence of 
mafic to ultramafic cumulates (Vermaak and von Gruenewaldt, 
1986; Walraven, 1986) that contain world-class deposits of 
chromium, PGEs, and titanium-vanadium. The cumulates of the 
Rustenburg Layered Suite are exposed intermittently around the 
periphery of the Bushveld Complex in areas referred to as limbs. 
Igneous layering dips gently towards the center of the Bushveld 
Complex. Seismic surveys trace igneous units exposed at the 

surface to depths exceeding 6 km (Sargeant, 2001; Campbell, 
2011). Gravity modeling indicates that the western and eastern 
limbs of the Bushveld Complex are connected at depth (fig. N9, 
cross section A–A’; Webb and others, 2004).

Two PGE-enriched reefs, the UG2 Chromitite (fig. N10) 
and the Merensky Reef (fig. N11; Viljoen, 1999), each occur 
near the base of different repetitive rock sequences (cyclic 
units) and can be continuously traced onstrike for the full 
extent of the eastern and western limbs of the complex. The 
grade of the UG2 Chromitite deposit is about 5 grams per 
metric ton (g/t) PGEs and gold; the grade of the Merensky 
Reef is about 6 g/t in the western part of the complex and 
about 4.2 g/t in the eastern part.

In the northern limb, varitextured pyroxenite, norite, and 
gabbro are found near the lower contact of the complex with 
metasedimentary rocks of the Transvaal Supergroup (van der 
Merwe, 1976). These igneous rocks host the Bushveld 
Complex’s contact-type copper-nickel-PGE deposits (known 
as the Platreef). The combined PGE and gold grades for 
the Platreef deposits range from 0.55 to 3.7 g/t. Since the 
1920s, mining has recovered 7,200 metric tons of PGEs from 
the Bushveld Complex (U.S. Bureau of Mines, 1933–34; 
1933–96; U.S. Geological Survey, 1997–2016).

(b) Main Sulphide Zone, Great Dyke, Zimbabwe. The 
Neoarchean Great Dyke (2575.4±0.7 Ma, age determined from 
zircon using uranium-lead technique; Oberthür and others, 
2002) is a long (about 550 km) and narrow (about 11 km) 
layered igneous intrusion in Zimbabwe. This intrusion and 
some subparallel dikes are the geologic features associated 
with the Great Dyke of Zimbabwe LIP (Ernst and Buchan, 
2001). The rock types of the Great Dyke consist of layered 
mafic to ultramafic cumulates that dip inwards from the sides 
towards the center of the intrusion (fig. N12). Since the 1980s, 
mining has recovered 107 metric tons of PGEs from a reef-
type PGE deposit within the Great Dyke—the Main Sulphide 
Zone—which occurs 10 to 50 m below the contact between 
the ultramafic and mafic sequences. The Main Sulphide Zone 
is typically 2 to 3 m thick, and the grade of the deposit varies 
from about 3.5 to 4 g/t PGEs and gold (U.S. Bureau of Mines, 
1933–96; Wilson, 1996; U.S. Geological Survey, 1997–2016; 
Wilson and Prendergast, 2001).
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Figure N10.  Photograph of the UG2 Chromitite 
at the Karee Mine in the western part of the 
Bushveld Complex, South Africa. The black layer 
at the base of the exposure is the main layer of 
the UG2 Chromitite. It has an undulating contact 
with the underlying, light-colored anorthosite 
layer. Several thin chromitite seams overlie 
the main chromitite layer. Most of the exposed 
rock is brown pyroxenite associated with the 
UG2 cyclic unit; a sharp contact separates the 
pyroxenite layer from the overlying light-colored 
anorthosite layer. Photograph by Wolfgang 
Maier, University of Cardiff, Wales, United 
Kingdom.
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Figure N11.  The base of the Merensky cyclic unit, a pegmatoidal pyroxenite, which contains the platinum-group-element-rich 
Merensky Reef. A, Photograph of the base of the Merensky cyclic unit on the Hackney farm property in the eastern part of the 
Bushveld Complex, South Africa. The basal contact of the cyclic unit is annotated by the yellow line. B, Same photograph with 
an overlay showing major features, including the dark, pegmatoidal pyroxenite cutting layering in the underlying lighter-colored 
norites. Photograph by Wolfgang Maier, University of Cardiff, Wales, United Kingdom. 



30° E 31° E

17° S

19° S

21° S

N
or

th
 c

ha
m

be
r

So
ut

h 
ch

am
be

r

subchamber

Da
rw

en
da

le
su

bc
ha

m
be

r
Se

ba
kw

e
su

bc
ha

m
be

r
W

ed
za

su
bc

ha
m

be
r

Se
lu

kw
e

su
bc

ha
m

be
r

Musengezi

Hartley Complex

Selukwe
Complex

Wedza Complex

Musengezi Complex

C

B

ZAMBIA

DRC

SOUTH
AFRICA

Map area

36° E24° E
10° S

20° S

0 10 20 KILOMETERS

0 10 MILES

30 40

20

PGE fig N12 GreatDyke with cross sections.ai

C C'

B B'

A A'

C'

B'

A'A

0 1 2 KILOMETERS

0 1 MILES

3 4

2

0

VERTICAL EXAGGERATION ×2

1 2 KILOMETERS

0 1 MILES

3 4

2

0.5

0

1.0

1.5KI
LO

M
ET

ER
S

KI
LO

M
ET

ER
S

KI
LO

M
ET

ER
S

+10
–10

100

200

300

Gr
av

ity
 u

ni
t

Gr
av

ity
 u

ni
t

1

0

2

3

4

5

6

7

8

1
0

2
3
4
5
6
7
8

+10
–10

100

200

300

400

9
10

0 1 2 KILOMETERS

0 1 MILES

3 4

2

EXPLANATION FOR CROSS SECTIONS

Gabbronorite

Bronzitite

Serpentinite

Dunite/harzburgite

Granite

Quartz gabbro/gabbronorite

Websterite and Main Sulphide Zone

Fault
Bouguer gravity anomaly
Gravity residual from model

ZIMBABWE

Land surface

Land surface

surfaceLand

EXPLANATION FOR MAP

Mafic sequence
Ultramafic sequence,
   P1 layer, and Main
   Sulphide Zone

Ultramafic sequence, 
   with cyclic units
Line of sectionA A'

Geology    N17

Figure N12.  Geologic map and cross sections of the Great Dyke, Zimbabwe. Geologic mapping and geophysical studies show 
that the intrusion has a dike-like form; however, igneous layering dips gently into the center of the intrusion. The Main Sulphide 
Zone, which is a reef-type platinum-group-element deposit, is confined to the P1 layer of the ultramafic sequence (as shown on 
the map) and to the corresponding websterite layer shown on cross section C–C’. Geologic map generalized from Worst (1957); 
geologic sections generalized from Podmore and Wilson (1987).
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(c) J–M Reef, Stillwater Complex, Montana. The 
Neoarchean Stillwater Complex (2,704±5 Ma, using the 
uranium-lead zircon technique for determining age; Premo and 
others, 1990) is a mafic to ultramafic layered intrusion exposed 
in south-central Montana (fig. N13; Zientek and others, 2002). 
This intrusion is the only feature associated with the Stillwater 
LIP (Ernst and Buchan, 2001). More than 5,500 m of layered 
rocks are exposed, which can be traced for 48 km along strike. 
The J–M Reef, which is a reef-type PGE deposit, consists of 
0.5 to 3 volume percent magmatic sulfide minerals that are 
associated with a distinctive olivine-bearing cyclic unit that 
can be mapped both on the surface and underground. The 
actual distribution of sulfide minerals within the cyclic unit 
is determined by detailed mapping, drilling, and sampling, 
however. The J–M Reef, which is open at depth, has been 
traced for 42 km of the 48-km strike length of the complex 
and at least 2 km down the dip of layering. The J–M Reef 
is currently the sole source of primary PGE production and 
reserves in the United States. Since 1986, the Stillwater 
and East Boulder Mines (fig. N14) have produced roughly 
305 metric tons of PGEs from the J–M Reef deposit. The 
overall deposit grade is about 15 g/t palladium and platinum 
(U.S. Bureau of Mines, 1933–96; U.S. Geological Survey, 
1997–2016; Abbott and others, 2011).

(d) Contact-Type Deposits, Duluth Complex, Minnesota. 
The Keweenawan LIP resulted from the eruption of lavas and 
emplacement of igneous intrusions between 1,109 and 1,087 Ma 
along a linear belt where Earth’s crust subsided (the Midcon
tinent Rift). The rift extends for more than 2,500 km from 
Kansas northward beneath Lake Superior and then southeast 
through Michigan (fig. N15); however, exposures of rocks 
related to the rift are found only in the Lake Superior region. 
Igneous rocks associated with this LIP cover more than 
160,000 km2 (Ernst and Buchan, 2001). LIP and rift-related 
igneous rocks exposed in the Lake Superior region include flood 
basalts, mafic intrusions, and minor rhyolite lava flows. The 
Mesoproterozoic Duluth Complex in Minnesota is composed 
of several discrete intrusions formed from mafic to felsic 
magmas that were emplaced between 1,108 and 1,098 Ma 
into older rocks, which include Paleoproterozoic sedimentary 
rocks and Archean granite-greenstone terranes (Peterson and 
Severson, 2002), and coeval LIP and rift-related flood basalts 
and hypabyssal (subvolcanic) intrusions.

Contact-type mineralization that includes a few percent 
sulfide minerals is laterally extensive along the base of 
some of the intrusions (mainly the South Kawishiwi and the 
Partridge River intrusions) along the western margin of the 
Duluth Complex. The mineralized interval of igneous rocks 
along the contact varies from tens to hundreds of meters in 
thickness. Mineral exploration studies since the early 1950s 
indicate that about 4 billion metric tons of mineralized rock 
containing 0.6 weight percent copper, 0.2 weight percent 
nickel, and 0.655 g/t PGEs may be present (Listerud and 
Meineke, 1977; Naldrett, 2010b). Because the proportion of 
sulfide minerals varies along strike, economic cutoff grades 
are used to define deposits along the contact zone.

Hydrothermal and Sedimentary Deposits

Anomalous concentrations of PGEs or the presence 
of platinum-group minerals have been reported in a variety 
of hydrothermal and sedimentary deposit types (table N2 
at back of chapter; Wilde and others, 2003; Wilde, 2005). 
Hydrothermal mineral deposits form by the interaction of 
hot water and rock. Water is a good solvent and hot water, 
called hydrothermal fluid, can efficiently move and deposit 
materials that occur in some mineral deposits. Sedimentary 
mineral deposits are economic concentrations of minerals 
in sedimentary rocks that formed directly from water in 
oceans, lakes, or in underground reservoirs. Although their 
occurrence is tantalizing, “a world-class deposit in which 
the PGE[s] are primary commodities and hydrothermal 
[processes] were indisputably the primary mechanism of 
concentration is yet to be discovered” (Wood, 2002, p. 233). 
Nevertheless, economic deposits of hydrothermal platinum 
and palladium may exist (Wilde and others, 2003).

Experimental and theoretical investigations by many 
authors have helped to identify the constraints under 
which the PGEs can be mobilized by fluids at relatively 
low temperatures (that is, at approximately 300 °C or 
less) (Wood and others, 1992; Gammons and Bloom, 
1993; Wood, 2002; Hanley, 2005; Colombo and others 
2008; Barnes and Liu, 2012; and references cited therein). 
Significant concentrations of platinum and palladium can 
dissolve into solution as chloride complexes only under 
highly oxidizing or highly acidic conditions. Palladium and 
platinum can be transported as bisulfide complexes in acidic 
to neutral solutions under reduced and moderate oxidation 
conditions. Hydroxide, thiosulfate, and organic complexes 
may be the dominant forms of dissolved platinum and 
palladium in low-temperature, near-surface environments.

Chloride complexes play a significant role in the 
mass transfer of PGEs in (a) porphyry copper deposits, 
especially the porphyry copper-gold subtype with island 
arc affinities and those associated with alkaline igneous 
rocks; (b) unconformity-related uranium-gold-platinum-
palladium deposits; and (c) sediment-hosted strata-bound 
copper deposits (Wood, 2002). Bisulfide complexes may 
be responsible for (a) transporting platinum, palladium, and 
gold in the footwall copper-nickel-PGE ores at Sudbury, 
Ontario, and in nickel-molybdenum-PGE-gold enriched 
black shale deposits; (b) the remobilization of PGEs or 
recrystallization of platinum-group minerals in ophiolites 
and other ultramafic rocks during serpentinization and 
metamorphism; and (c) the remobilization of PGEs from 
mineralization of primary magmatic origin by deuteric or 
hydrothermal processes (Wood, 2002).

Manganese crusts that precipitate on the sides of 
seamounts are the definitive example of a sedimentary 
deposit enriched in PGEs (table N2). These crusts take 
millions of years to accumulate; the metals are extracted 
from seawater by adsorption processes (Halbach and 
others, 1989).
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Figure N14.  Photograph of the Stillwater Mine in south-central Montana, looking southeast. The pond is the 
tailings impoundment. The buildings in the lower left include the shaft, the mill complex, and offices. Photograph 
by Michael L. Zientek, 2006.

Residual Deposits Formed By Weathering  
and Laterites

In areas with tropical or forested warm to temperate 
climates, weathered red subsoil rich in secondary oxides forms 
on ultramafic rocks. These subsoils, or laterites, are a signifi-
cant source of nickel (the other significant source of nickel is 
magmatic ore deposits). Laterites contain about 70 percent of 
the world’s nickel resources, have been mined for more than 
100 years, and account for about 40 percent of the world’s 
nickel production (Gleeson and others, 2003; Dalvi and others, 
2004; Mudd, 2010; Berger and others, 2011).

PGE enrichments are found in some laterites developed 
on ultramafic rocks, and an ongoing debate among geologists 
concerns whether this enrichment is related to the mobilization 
of the PGEs during the laterization process or to the residual 
accumulation of preexisting platinum-group minerals. Samples 
of lateritized ophiolitic mantle harzburgite from the Pirogues 
River area of New Caledonia contain up to 2 ppm (but average 
500 ppb) platinum. The continuity of the PGE-enriched 
laterite layers relative to the discontinuous distribution of 
PGE-enriched chromitites in the ophiolites initially suggested 
that the PGEs could be concentrated through the lateritization 
process (Augé and Legendre, 1994); however, recent work 
indicates that the PGE-enriched zones are the result of the 

concentration of residual platinum-group mineral particles 
that were present in the unweathered ultramafic rock (Traoré 
and others, 2008). The PGE-enriched saprolitic horizon of the 
Falcondo nickel-laterite deposit in the Dominican Republic 
also appears to be a residue of primary platinum-group 
minerals that were dispersed in ophiolite-related ultramafic 
rocks (Proenza and others, 2010).

Another PGE-enriched laterite occurrence, the Syerston 
nickel-cobalt-platinum deposit, overlies the dunitic core of 
the easternmost of three plugs that make up the Tout Intrusive 
Complex, which is a Uralian-type intrusion in the Fifield area 
in New South Wales, Australia (Teluk, 2001). Preferential 
weathering of the ovoid dunite body formed a slab-like laterite 
body. The laterite extends to a depth of 40 m and has zones 
of nickel-cobalt enrichment that average 10 m in thickness in 
the middle of the weathering profile. An interval of residually 
concentrated platinum largely coincides with the nickel-cobalt 
enriched layers. Primary platinum enrichment in the host 
dunite may explain the distribution of platinum in the Syerston 
laterite profile, the exceptional grades (commonly in excess of 
2.0 g/t platinum), and the coarse grains of the platinum-group 
minerals. Published resources are 137 million metric tons 
containing 0.24 g/t platinum; the planned nickel-cobalt open 
pit area (high-grade goethite zone) accounts for 91.6 million 
metric tons of the resource and contains 0.70 weight percent 
nickel and 0.12 weight percent cobalt (Teluk, 2001).
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Platinum Placer Deposits

Erosion and weathering of rocks can form surficial 
mineral deposits. Placer deposits form when heavy particles 
of rocks or minerals are physically concentrated by the 
action of moving water. Placer deposits can form in active 
streams or rivers or along the shoreline of oceans or lakes. 
In 1824, placer platinum deposits were discovered on the 
Orulikha River, north of the Nizhny Tagil Massif in the central 
Ural Mountains (Urals) of Russia (table N3; fig. N16; Duparc 
and Tikonowitch, 1920; Pushkarev, 2001). From then until 
1922, approximately 330 metric tons of metal was recovered 
from placer deposits in the Urals. At least one company 
is still exploring for paleoplacers that are buried beneath 
younger deposits of sediment and for placers that may be 
on river terraces along the Tylay and Kos’va Rivers in the 
Urals (Eurasia Mining plc, 2012). So far, the company has 
delineated resources in placers that contain 0.6 metric tons 
of platinum; average grades range from 0.303 to 0.363 gram 
per cubic meter (Eurasia Mining plc, 2011).

In the second half of the 20th century, platinum placer 
deposits were discovered at Kondyor in eastern Siberia 
(fig. N17; Shcheka and others, 2004) and in the Koryak area at 
the northern end of the Kamchatka Peninsula in eastern Russia 
(Tolstykh and others, 2004). The Kondyor placer deposits 
produced about 85 metric tons of platinum from 1984 to 2011. 
After a decade of mining, approximately 45 metric tons of 
platinum was recovered in the Koryak area (Hurst, 2005).

The detrital platinum minerals in the placer deposits 
in Russia are clearly derived from small mafic to ultramafic 
plutons. The drainages surrounding the Nizhny Tagil Massif 
contained some of the most productive placer deposits in the 
Urals (fig. N16B). Placer mining near Nizhny Tagil began 
around 1839. Platinum in bedrock was first discovered in 1892 
at a deposit called Krutoy Log in the Nizhny Tagil Massif 
(fig. N16B; Anikina and others, 2014). These plutons, which 
are the sources of platinum placer deposits, are circular or 
elliptical in plan view, pipe-like when viewed in profile (that 
is, in a cross-sectional view), and generally range in areal 
extent from about 10 to 40 km2 (Johan, 2002). The rocks that 
make up the plutons are a core of dunite that is concentrically 
surrounded by borders of clinopyroxenite, hornblendite, 
and gabbroic rocks. The zoned ultramafic complexes have 
rock textures that are consistent with (a) crystallization from 
magma at depth; (b) deformation, recrystallization, and 
annealing at high temperature; and (c) metasomatic alteration 
(Burg and others, 2009; Shmelev and Filippova, 2010). 
Rocks in these small mafic to ultramafic plutons make up a 
distinct rock association called Uralian-type complexes. These 
complexes are enigmatic because lode occurrences of platinum 
mineralization found in the plutons are inconsequential 
compared with the amount of placer platinum minerals found 
in the streams draining from the plutons.

Platinum mineralization in Uralian-type complexes is 
closely associated with chromitite pods, vein-like bodies, or 
schlieren within the dunite core of the plutons. In the Nizhny 
Tagil Massif, more than 1,600 chromitite occurrences have 
been mapped; most do not exceed 50 centimeters (cm) in 
length and a few centimeters in thickness. Two types of 
chromitite are distinguished: (a) massive chromitite that grades 
into disseminated chromite in the dunite host, and (b) chromitite 
marked by serpentine rims that has a sharp boundary with the 
dunite host rock. The second type of chromitite is exception-
ally enriched in platinum (Pushkarev and Anikina, 2002). 
Although the chromitites are small, the abundance of platinum 
can be quite high. For example, at the Krutoy Log deposit, 
chromite-platinum ore at the top of the orebody extended for 
a distance of 2 m in one adit. From this small volume of rock, 
about 30 kilograms (reported as 965 troy ounces) of native 
platinum metals was recovered (Mertie, 1969).

The platinum-group minerals in the placer deposits 
provide clues about the rocks from which they are derived. 
The platinum-group minerals are dominated by platinum-iron 
alloys but also contain some iridium and osmium alloys; few 
minerals with palladium or rhodium are found. The platinum 
nuggets in the placer deposits can be quite large (more than 
10 cm in diameter and weighing up to several kilograms); by 
comparison, in most contact- and reef-type PGE ore deposits, 
the platinum-group minerals rarely exceed a few hundred 
microns in diameter (1 micron equals 0.0001 cm) and weigh 
less than 0.0000001 kilograms. Some of the detrital platinum-
group minerals have crystal faces that reflect their internal 
crystalline structure (figs. N18A and N18B). Minerals that 
display crystal faces usually grow from a liquid or a vapor. 
Many nuggets contain inclusions of chromite and olivine 
(fig. N18C), or in some cases, form a matrix interstitial to 
these minerals. These textures suggest that platinum-iron 
alloys formed from magmas that were crystallizing chromite 
and olivine. Collectively, these observations indicate that 
the platinum nuggets are not derived from concentrations 
of magmatic sulfide minerals; rather, it appears that the 
nuggets were crystallized directly from silicate melt or a 
magmatic vapor.

Platinum placers are derived from similar ultramafic 
plutons in Alaska; British Columbia, Canada; Colombia; 
Ethiopia; and New South Wales, Australia (table N3). The 
largest alluvial PGE resource in the United States occurs south 
of Goodnews Bay in Alaska (fig. N19). The Goodnews Bay 
placer deposits were discovered in 1926 and mined between 
1927 and 1975. Approximately 18 metric tons of platinum was 
recovered from the Salmon River and its tributaries (Johnston, 
1962; Mertie, 1976; Barker, 1986; Tolstykh and others, 2002). 
Significant placer resources may remain in the unmined, 
deeply buried ground of the lower Salmon River Valley as 
well as in waste material (tailings) from previous dredging 
operations (Southworth and Foley, 1986).
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Table N3.  Areas with significant placer platinum production, and estimates of cumulative production and grades.

[g/m3, gram per cubic meter; km, kilometer; n.d., no data; PGE, platinum-group element]

Location
Cumulative 
production 

(metric tons)
Dates Grade(s) Reference(s)

Ural Mountains, 
Russia

330 to 435 1824 to  
present

Initial tenors of placers in the Martian, Syssim, 
Tschauch, and Wyssim Rivers, which drain  
the Nizhniy Tagil area, were about 400 g/m3;  
by World War I, the grades of placers in these  
rivers were 0.41 to 35 g/m3.

The average grade of the placers in the Nizhniy Tagil 
district early in its history is estimated to be about 
20 g/m3.

Grades currently estimated for the West Kitlim placer 
deposit are 0.303 to 0.363 g/m3.

Lumb (1920); Eurasia 
Mining plc (2011); 
Malitch and Thalham-
mer (2002); Pushkarev 
and Anikina (2002); 
Pushkarev (2001); 
Teluk (2001)

San Juan and Atrato 
Rivers districts, 
Colombia

107 1778 to 1965 n.d. Mertie (1969)

Kondyor, Russia 85 1984 to 2011 Average grade of the placer deposit is 1.6 g/m3 PGEs. 
Drainages within the intrusive body have grades of 
4 g/m3. The grades 50 km downstream are about 
0.5 g/m3.

Russian Platinum 
(2011a); Shcheka  
and others (2004)

Kamchatka, Russia 45 Approximately  
10 years of  

mining beginning 
after 1991

The average mined grade is 0.28 g/m3 platinum. Hurst (2005)

Goodnews Bay, 
Alaska

19 to 22 1927 to 1975 At Squirrel Creek, high-grade placers contained 
4.1 g/m3, with an average tenor of 1.2 g/m3.

At Clara Creek, early small-scale mining of placers 
with a grade of 3.25 g/m3, with an average tenor 
 of 0.81 g/m3.

A cleanup a short distance from the mouth of  
Fox Gulch indicated grades of 0.81 to 1.2 g/m3.

Average grade of 470 samples is 0.192 g/m3, with  
a maximum value of 1.6 g/m3.

Johnston (1962); Mertie 
(1976); Barker (1986); 
Southworth and Foley 
(1986); Pacific North 
West Capital Corp. 
(2006); Chatterjee and 
Bandopadhyay (2011)

Yubdo, Ethiopia 2.0 1926 to 1956 Eluvium—Grades were initially 0.3 to 0.5 g/m3 but 
decreased to 0.11 g/m3 as mining moved away 
from the core of the intrusion.

Alluvium—Grades were 0.25 to 0.83 g/m3 in test pits.

Molly (1959)

Tulameen district, 
British Columbia, 
Canada

0.6 1885 to 1932 n.d. Mertie (1969)

Fifield district, New 
South Wales, 
Australia

0.6 1893 to mid-
1960s; most 

production from 
first few years  
of operation

n.d. Mertie (1969); Platina  
Resources Ltd. (2006)
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Figure N16.  Maps illustrating the distribution of platinum deposits in the Ural Mountains, Russia. A, Generalized geology, 
location of platinum placer districts, and platinum-producing areas in the Ural Mountains, Russia. Placer platinum 
deposits are derived from pyroxenitic and dunitic intrusions; the platinum-iron alloy derived from the Veresovoborsky 
Massif and the Svetloborsky Massif occurs in placer deposits that extend about 100 kilometers downstream along the 
Is and Tura Rivers. Modified from Zonenshain and others (1988), Anderson and Martineau (2002), and Petrov and others 
(2007). B, Geology of the Uralian-type Nizhny Tagil Massif and the location of the Krutoy Log, where the first bedrock 
source of the platinum deposit was discovered. Platinum minerals were concentrated in chromitites that occur in the 
dunitic core of the lithologically zoned pluton. Modified from Levin and others (2010). 
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Figure N17.  Geology and imagery of the Uralian-type Kondyor Massif, which is located in eastern Siberia, Russia, north of the city of 
Khabarovsk. A, Geologic map of the massif, showing that the circular pluton consists of a central core of dunite, which is surrounded 
by clinopyroxenite and gabbro. Emplacement of the pluton metamorphosed the surrounding sedimentary rocks, forming hornfels. 
Geology simplified from Burg and others (2009). B, Oblique view of the Kondyor Massif showing the core of dunite surrounded by 
clinopyroxenites. This circular intrusion is about 10 kilometers in diameter; the prominent topographic ridge, which is up to 600 meters 
high, is underlain by contact metamorphosed rocks that surround the intrusion. The intrusion is the source of coarse crystals of 
platinum-iron alloy coated with gold that are recovered in streams that drain from the complex. An example of a coarse platinum 
nugget recovered from the Kondyor Massif is shown in the black-and-white picture. This view was created by draping a simulated 
natural color Advanced Spaceborne Thermal Emission and Reflection Radiometer ASTER composite image over an ASTER-derived 
digital elevation model; the image was acquired on June 10, 2006. Photograph courtesy of NASA/GSFC/METI/Japan Space Systems, 
and U.S./Japan ASTER Science Team. The image of the platinum nugget is from Malitch (1999).
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PGE Fig N18 (plate 2 from USGS bulletin 193 cropped.ai)

Chromite
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alloy
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C

Figure N18.  Photograph and lithograph showing the morphology of platinum-iron-alloy nuggets derived from 
Uralian-type intrusions. A, Photograph of silvery-gray nugget of isoferroplatinum from the Kondyor Massif, Russia. 
The nugget, which is about 4 millimeters (mm) long, consists of two intergrown crystals of isoferroplatinum; 
each crystal forms a cube with smooth crystal faces and sharp edges and corners (Photograph courtesy of 
TreasureMountainMining.com). B, Sketch of the isoferroplatinum nugget illustrating the cube-shaped crystals. 
C, Lithograph of a platinum nugget with olivine and octahedral chromite, from the Tulameen district, British Columbia, 
Canada. The longest dimension on the nugget is about 10 mm. In this nugget, platinum-iron alloy occurs interstitial to 
(in between) magmatic crystals of olivine and chromite. The texture implies that the platinum-iron alloy grew slightly 
later than the earlier formed olivine and chromite. Image is from Kemp (1902). 
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that could be the bedrock source of the platinum minerals found in the placers. Modified from Tolstykh and others (2002). 
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Resources and Production
Discovered mineral resources include the total amount 

of identified mineral resources that are in the ground as 
well as the cumulative past production (U.S. Geological 
Survey National Mineral Resource Assessment Team, 
2000). This section begins with an overview of historic and 
current primary and secondary production of PGEs. Primary 
production is when metal that occurs in rocks is mined 
and transferred to above-ground material stock; secondary 
production is from recycled material or scrap. The section 
also includes a discussion of the identified mineral resources 
of PGEs. Identified mineral resources refer to the mineralized 
material in the ground whose location, grade, quality, and 
quantity are known or can be estimated from specific geologic 
evidence (U.S. Bureau of Mines and U.S. Geological Survey, 
1980). Identified mineral resources represent the current stock 
of material in the ground (mineral inventory) that might be 
mined. The amounts of identified resources discussed this 
chapter were current as of 2012.

Production

Up to 1920, almost all of the world’s PGE production 
came from placer deposits in Russia and Colombia. The 
discovery of nickel deposits in solid rock in the Sudbury 
area of Ontario, Canada, in the 1800s (Giblin, 1984) roughly 
coincided with technological innovations that used nickel to 
strengthen traditional steels. This technological innovation 
led to extensive development of the Sudbury deposits; in the 
first half of the 20th century, Sudbury produced approximately 
80 percent of the world’s nickel (Prevec, 1997). PGEs were 
recovered as a byproduct of nickel mining in Sudbury; 
by 1934, Canada had become became the world’s leading 
producer of PGEs.

Most of the PGEs produced today are from mineral 
deposits that were discovered in the Noril’sk-Talnakh area 
of Russia in 1919 (Kunilov, 1994; Likhachev, 1994) and 
in South Africa in the 1920s (Wagner, 1929). Significant 
development of these deposits did not begin until the 1960s 
when industrial demands for PGEs increased. About the same 
time that new and extraordinarily PGE-enriched deposits were 
discovered in the Noril’sk-Talnakh area in Russia (Kunilov, 
1994), Anglo American Platinum Ltd. gained a controlling 
stake in the PGE industry in South Africa (Mattera, 2008) 
and South Africa had an economic boom (Rouillard, 1997). 

As a result, beginning in the 1960s, PGE production increased 
in South Africa and the Soviet Union (Russia), such that 
South Africa became, and still is, the leading producer of 
platinum and rhodium, and Russia was and is the world’s 
leading producer of palladium (fig. N20).

Approximately 14,200 metric tons of PGEs was 
produced from 1900 to 2011, and roughly 95 percent of that 
amount (about 13,500 metric tons) was produced from 1960 
onward. The breakdown of production by country shows that 
about 90 percent of production since 1900 has come from 
South Africa and Russia; Canada, the United States, and 
Zimbabwe accounted for 5 percent, 2 percent, and 1 percent 
of production, respectively (fig. N21).

A secondary supply of platinum, palladium, and rhodium 
is obtained through the recycling of catalytic converters 
from end-of-life vehicles, jewelry, and electronic equipment. 
Recycling volumes are sensitive to PGE prices; higher prices 
typically lead to higher recycling volumes owing to the greater 
incentive to recycle. Recycled platinum, palladium, and 
rhodium provide a significant proportion of the total supply 
and are sufficient to close the gap between mine production 
and consumption. For example, in 2011, about 24 percent 
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Figure N20.  Graph showing world platinum-group-
element production, by country and year, from 1960 to 2011. 
The layers of the graph are placed one above the other, 
forming a cumulative total. Data are from U.S. Bureau 
of Mines (1933 –34, 1933 –96) and U.S. Geological Survey 
(1997 –2016).
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PGE fig N21Figure N21.  Pie chart showing world platinum-
group-element (PGE) production from 1960 to 2011, 
by country and amount (in metric tons [t]) . Data are 
from U.S. Bureau of Mines (1933 –34,1933 –96) and 
U.S. Geological Survey (1997–2016). 

of the total supply of platinum and palladium and about 
27 percent of the total supply of rhodium were obtained 
through recycling (Butler, 2012).

Identified Resources

Exploration and mining companies have delineated 
approximately 100,000 metric tons of PGE (and minor 
amounts of gold) resources in mineral deposits around the 
world that remain to be developed (table N4). This estimate 
was derived by compiling mineral inventory information about 
in situ estimates of the tonnage and grade of mineralized rock 
with “realistic prospects of eventual economic extraction” 
(Weatherstone, 2008) published by exploration and mining 
companies and geological surveys. To be considered an 
identified resource for this compilation, the evaluation of 
tonnage and grade of mineralized rock must be based on 
(a) direct sampling of the ore, and (b) industry standard 
resource estimation practices. The estimate of 100,000 metric 
tons is comparable to the 91,000 metric tons recently 
reported by Mudd (2012) (table N4). Most of the difference 
is accounted for by the larger estimate for the Platreef deposit 
of the Bushveld Complex in this chapter. For context, the 
total net consumption of PGEs in 2012 was approximately 
460 metric tons (Platinum Today, 2013c).

Table N4.  Identified platinum-group-element and gold resources, summarized by deposit type and location.

[Data are from table N10 at the end of this chapter. Numbers may not add to totals because of rounding]

Deposit 
type

Deposit
PGE and gold resources 

compiled for this chapter
(metric tons)

PGE and gold resources 
compiled by Mudd, 2012  

(metric tons)

Reef Merensky Reef and UG2 Chromitite, Bushveld 
Complex, South Africa 

58,000 56,000

Main Sulphide Zone, Great Dyke, Zimbabwe 8,200 8,700
J–M Reef, Stillwater Complex, Montana 2,200 620
Other areas 2,700 1,700
  Total, reef-type deposits 71,000 67,000

Contact Platreef, Bushveld Complex, South Africa 17,000 7,700
Other areas 3,100 1,600
  Total, contact-type deposits 20,000 9,300

Conduit Noril’sk-Talnakh area, Russia 10,000 11,000
Other areas 1,200 2,100
  Total, conduit-type deposits 11,000 13,000

Other All other areas 990 1,200
  Grand total, all three types of deposits 100,000 91,000
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Tonnage and Grade Relations for Magmatic  
Ore Deposits

Tonnage and total PGE and gold grade relations for iden
tified resources in magmatic deposits are shown in figure N22. 
Estimates of total PGE and gold grade can vary over about 
three orders of magnitude, whereas tonnage can vary over 
five orders of magnitude. Tonnage and grade are not strongly 
correlated, which is typical for mineral deposits of a given 
type. Some conduit-type deposits have lower PGE and gold 
grades than reef-type deposits because conduit-type deposits 
are polymetallic deposits in which copper, nickel, PGEs, and 
gold all contribute to the value of the ore. In reef-type deposits, 
the value of the ore is primarily in the PGE and gold concen
trations. In terms of contained metal, most deposits contain 
more than 1 metric ton of PGEs and gold. For any values less 
than 1 metric ton, it simply is not economic to determine the 
tonnage and grade. In 2012, world mine production was about 
450 metric tons of PGEs and world usage was about 615 metric 
tons (Loferski, 2013b). The shaded area in figure N22 
highlights those deposits that have more than 1 year’s worth 
of contained PGEs, given current rates of production and 
usage. Only a fraction of the deposits in the world have enough 
contained metal to satisfy multiple years of world demand.

Mineral deposits occur rarely in Earth’s crust, and 
large ones are especially uncommon (Singer, 1995). 
Most of the known metal for many mineral commodities 
is contained in a few, very large deposits (Singer and 
DeYoung, 1980). For most types of mineral deposits, the 
grade of the ore varies by about one order of magnitude and 
the tonnage varies by several orders of magnitude among 
deposits. As a result, contained metal correlates strongly 
with tonnage. For porphyry copper deposits (which are the 
world’s leading source of copper), for example, 10 percent 
of the deposits accounts for approximately 60 percent of the 
identified copper resource whereas the bottom 50 percent 
of the deposits accounts for less than 5 percent of the 
identified copper resources (fig. N23A). For the PGEs, 
this correlation is more pronounced. Ten percent of PGE 
deposits account for more than 80 percent of identified 
PGE resources whereas the bottom 50 percent of the PGE 
deposits accounts for less than 1 percent of identified PGE 
resources. Thirty percent of PGE deposits contain more 
than 97 percent of the world’s identified PGE resources, and 
almost all these deposits are associated with three areas— 
the Bushveld Complex in South Africa, the Great Dyke 
in Zimbabwe, and the Noril’sk-Talnakh area in Russia 
(fig. N23B).
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Figure N22.  Plot showing the relation between tonnage and grade of remaining resources for conduit-type, 
reef-type, and other types of deposits enriched in platinum-group elements (PGEs). Diagonal lines are isolines 
that show amounts of contained PGEs and gold in the deposits, in metric tons (t). Annual world production and 
usage of PGEs, as of 2012, was about 450 metric tons. The shaded area on the figure highlights those deposits 
that are large enough to contain more than 1 year’s worth of the world’s PGE needs.
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Figure N23.  Graphs showing the percent of contained metal against percent of deposits for A, the 
world’s platinum-group-element (PGE) and porphyry copper deposits, and B , the top 30 percent of the 
world’s PGE deposits. In A, the curves are derived from compilations of known deposits and show that 
most of the contained metal in a given deposit type is associated with a small percentage of very large 
deposits. Both deposit types show the effect, but it is more pronounced for PGE deposits. In B, the 
curve focuses on the largest deposits, showing the data points and the name of the igneous intrusion 
hosting the deposit. Most of the large deposits are associated with the Bushveld Complex in South 
Africa, the Great Dyke in Zimbabwe, and sills in the Noril’sk-Talnakh area of Russia. Data for porphyry 
copper are from Singer and others (2008). PGE data are from table N10 at the end of this chapter.
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Seventy-two percent of the world’s PGE resources are 
found in reef-type and contact-type deposits in the Bushveld 
Complex, South Africa (table N4). The conduit-type magmatic 
deposits in the Noril’sk-Talnakh area, Russia, account 
for 10 percent of the world’s identified PGE resources. 
Eight percent of the world’s identified PGE resources are in 
the Great Dyke, Zimbabwe. In fact, more than 97 percent 
of all the world’s identified PGE resources are contained in 
only 14 intrusions or intrusive complexes (table N5 at back 
of chapter).

When considered by deposit type alone, 69 percent 
of identified PGE resources are associated with reef-type 
deposits, 20 percent are associated with contact-type deposits, 
and 11 percent are associated with conduit-type deposits 
(table N4). For reef-type deposits, 81 percent of identified 
resources have been delineated in the Bushveld Complex 
(South Africa); 12 percent in the Great Dyke (Zimbabwe);  
and 3 percent in the Stillwater Complex (Alaska). For  
contact-type deposits, 85 percent of the world’s identified 
resources are found in the Bushveld Complex. For conduit-
type deposits, about 90 percent of the identified resources  
are found in the Noril’sk-Talnakh area of Russia.

For simplicity, the previous discussion has focused on 
total PGE production and resources; however, individual 
PGEs do have different values and uses. For example, 
platinum and rhodium are more valuable economically than 
palladium, and the iridium market is much smaller than the 
markets for platinum and palladium. The proportions of the 
PGEs differ among deposits, however (fig. N24). The deposits 
in South Africa and Zimbabwe have a higher proportion 
of platinum than any other major deposit in the world. The 
proportion of palladium is much higher in the deposits in the 
Noril’sk-Talnakh area in Russia.

Undiscovered (Hypothetical and Speculative) 
Resources (United States and Global)

In addition to the resources of PGEs that have been 
discovered (identified), additional PGEs may be present as 
undiscovered resources in areas adjacent to identified magmatic 
deposits and in deposits that remain to be discovered.

Extensions to Identified Deposits
Additional PGE resources may be present in areas 

adjacent to or near deposits that now dominate world supply. 
Although resources for reef-type and contact-type PGE 
deposits are formally delineated in advance of mining, 
the extent of the deposits is never completely delineated 
because the upfront costs would be too great. Instead, mining 
companies conduct enough research and work to ensure 
that the deposit contains adequate resources to justify mine 
development. It is possible, therefore, that some deposits are 
larger than previously thought.

In the Bushveld Complex, South Africa, relatively 
unexplored extensions of the Merensky Reef and the 
UG2 Chromitite deposits could contain an additional 
33,000 metric tons of platinum and 32,000 metric tons of 
palladium to a depth of 3 km (Zientek and others, 2014). 
These reef-type PGE deposits are in the form of vast sheet- 
like orebodies. Mining has started at the surface and has 
progressed to depths of 2 km in some regions (fig. N25). 
Likewise, the Platreef in the Bushveld Complex could 
contain an estimated 1,100 metric tons of platinum and 
nearly 1,400 metric tons of palladium (based on a mean 
estimate to a depth of 1 km). The Great Dyke of Zimbabwe 

Figure N24.  Graph showing contained 
platinum-group element (PGE) and gold metal 
against the ratio of palladium to platinum 
for the major PGE deposits of the world. The 
only identified deposits in which platinum is 
the dominant metal are associated with the 
Bushveld Complex in South Africa and the Great 
Dyke in Zimbabwe. PGE data are from table N10 
at the end of this chapter. MR, Merensky Reef; 
Pd, palladium; Pt, platinum, UG2, UG2 Chromitite
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Figure N25.  Three-dimensional block diagram showing the Merensky Reef interpolated down to 2 kilometers in the southern 
area of the western limb of the Bushveld Complex, South Africa. Mined out areas are shown in gray, and the Merensky Reef 
trace is shown as a black line. The Merensky Reef continues at depth beyond what is shown in this illustration.

could contain up to 6,900 metric tons of undiscovered 
platinum, palladium, and rhodium (Zientek and others, 2014).

Additional PGE resources in the Noril’sk-Talnakh area in 
Russia are difficult to assess. The extent of the orebodies for 
which resources are reported is not revealed in publicly acces-
sible technical information released by the mining company. 
The northernmost mine in the Talnakh area, the Skalisty Mine, 
appears to be midway along the axis of the intrusion that hosts 
the massive sulfide orebodies (fig. N7A). If existing maps, 
similar to the one shown in figure N7A, are approximately 
correct, additional resources associated with massive sulfide 
orebodies in the Talnakh area could be present.

Roughly 305 metric tons of platinum and palladium 
have been produced from the J–M Reef in the Stillwater 
Complex in Montana, and drill-based estimates indicate that 
another 2,200 metric tons are present (U.S. Bureau of Mines, 

1933–96; U.S. Geological Survey, 1997–2016; Abbott and 
others, 2011). Mining has progressed to depths of 1,800 m 
below the surface, but the bottom of the ore deposit has not 
been reached. Rough geologic estimates suggest that another 
1,000 to 6,200 metric tons of platinum and palladium could 
be present at depth (Zientek, 1993; Zientek and others, 
2002). As with the Bushveld Complex, the J–M Reef has 
been traced for longer distances along strike than down dip. 
The downdip projection of the J–M Reef is complicated 
by structural deformation associated with the uplift of the 
Beartooth Mountains. Gravity anomalies and inclusion 
suites in younger, cross-cutting intrusions, however, demon-
strate that a portion of the complex is concealed at depth 
(Brozdowski, 1985; Kleinkopf, 1985). As a result, structural 
and geophysical models would be needed to constrain what 
rocks may be present at depth.
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Undiscovered Reef-Type and Contact-Type Deposits
Based on literature research, there are at least 200 layered 

intrusions in the world, although the actual number could 
be two to three times higher. An intrusion does not have to 
be large to have a reef-type deposit; intrusions as small as 
a few tens of kilometers in length with as little as 500 m 
of layered cumulates are known to host reef-type minerali
zation (table N6 at back of chapter; fig. N26). Well-explored 
intrusions have at the most 1- or 2-m-thick reef-type deposits 
(and several subeconomic occurrences) that occur in thou-
sands of meters of layered rock. Many small intrusions could 
be evaluated for their reef-type potential to assess whether 
an economic deposit could be present.

For example, the identified PGE resources in Finland 
are 91 metric tons of platinum and 237 metric tons of 
palladium in seven reef-type and contact-type deposits. An 
assessment by the Geological Survey of Finland estimates 
that a mean number of 29 and 23 contact-type and reef-type 
deposits, respectively, occur in Finland. They estimate that 
the median contained metal contents would be 5,500 metric 
tons of platinum and 12,000 metric tons of palladium in the 
undiscovered contact-type and reef-type deposits (Rasilainen 
and others, 2010).

Undiscovered magmatic mineral deposits could be 
present in many areas of the United States and the world. The 
intrusions of the Duluth Complex, United States, and other 
smaller intrusive complexes of the Midcontinent Rift in the 
Lake Superior region have high potential to contain undis-
covered copper-nickel-PGE sulfide deposits (fig. N15; Miller 
and others, 2002). In fact, recent exploration has dramatically 
expanded the mineral resource inventory of contact-type 
deposits along the western margin of the Duluth Complex. 
Exploration results have led to new exploration models, 
which indicate additional areas that may have the potential for 
undiscovered deposits. Furthermore, the Duluth Complex has 
many large layered intrusions that may have the potential to 
host reef-type PGE deposits. New models, new data, and tools 
for integration and visualization could result in discoveries of 
mineralized rocks.

Ernst and Buchan (2001) cataloged more than 300 LIP 
events worldwide; they determined that more than 100 LIP 
events have associated sill complexes or layered intrusions. 
All are prospective for the occurrence of magmatic mineral 
deposits. In the United States, Ernst and Buchan identified 
about 25 LIP events, of which several have sill complexes and 
layered intrusions. The obvious exploration targets for reef-
type deposits in the United States are the Stillwater Complex 
in Montana and the dozens of intrusions that make up the 
Duluth Complex in Minnesota and associated rocks of the 
Keweenawan LIP. Other layered mafic intrusions with reef-
type potential occur in the Wichita Mountains of Oklahoma, 
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which are part of a Cambrian LIP. The Lake Owens Complex 
in Wyoming, which is a small layered intrusion, is also 
reported to have reef-type mineralization (Loucks, 1991). 
Other large layered intrusions are known from subsurface 
oil and gas exploration in west Texas and New Mexico; at 
present, they are too deep to be targets for mineral exploration 
(Keller and others, 1989; Kargi and Barnes, 1995; Adams and 
others, 1997).

To have a significant effect on global supply, a 
large-tonnage deposit would first have to be discovered. 
Large-tonnage reef-type deposits can occur only in large 
layered intrusions. A survey of the literature shows there are 
several large intrusions that do not have identified reef-type 
mineralization (such as the Tete Complex, the Dufek intrusion, 
the Molopo Farms Complex, the Windimurra Complex, and 
so on) (table N6). Some of the intrusions are poorly exposed 
and others have been intensely deformed and metamorphosed, 
which makes them difficult to explore for deposits. The 
economic risk associated with exploring these intrusions 
would be relatively high compared with identifying additional 
resources in extensions of known reef-type deposits.
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Undiscovered Conduit-Type Deposits in the 
United States—Nikolai Greenstone and  
Eastern Wrangellia

Several LIPs with sill complexes occur in the 
United States (Ernst and Buchan, 2001); however, one 
in particular stands out for its potential for undiscovered 
conduit-type nickel-copper-PGE mineralization (Hulbert, 
1997; Hulbert and Stone, 2006; Schmidt and Rogers, 
2007). The Wrangellia LIP is known from extensive flood 
basalts and related rocks of the Middle to Late Triassic 
Nikolai Greenstone that is part of the Wrangellia terrane 
accreted to the western margin of North America (Berg 
and others, 1972; Jones and others, 1972; Berg and others, 
1978; Nokleberg and others, 1994; Plafker and Berg, 1994). 
The Wrangellia terrane can be traced discontinuously for 
more than 2,000 km from the Wrangell and Amphitheater 
Mountains in southern Alaska through Canada’s southwestern 
Yukon Territory, to the Queen Charlotte and Vancouver Islands 
in British Columbia, Canada.

Sill-like mafic to ultramafic intrusive complexes in 
Wrangellia are the remnants of subvolcanic magma chambers 
that fed the thick, overlying flood basalts and picritic 
pyroclastics of the Nikolai Greenstone. A conduit-type 
deposit in the Wellgreen intrusion, Yukon Territory, contains 
a resource of 461 million metric tons grading 0.32 weight 
percent nickel, 0.26 weight percent copper, 0.4 ppm platinum, 
0.34 ppm palladium, and 0.17 ppm gold (McCracken, 2011; 
Carter and others, 2012).

Alaska’s Amphitheater Mountains and the area of south-
central Alaska are also underlain by several mafic to ultramafic 
complexes that are part of the Nikolai LIP (fig. N27; Schmidt 
and Rogers, 2007; Glen and others, 2011). The largest and 
most exposed mafic to ultramafic sills include the Fish Lake 
and Tangle (FL–T) Complexes, which occur along the flanks 
of the Amphitheater Mountains synform. Smaller mafic to 
ultramafic complexes include Canwell, Eureka, and Rainy. 
The occurrence of picritic volcanic rocks (high-magnesium 
olivine basalt) near some of the larger mineralized ultramafic 
bodies is consistent with mineralized occurrences that have 
high nickel-to-copper ratios and elevated PGE concentrations. 
Grab samples from three different mafic to ultramafic 
complexes have extremely high metal concentrations, as 
follows: 2.0 weight percent nickel, 1.3 weight percent copper, 
and 7.9 g/t PGE+gold+silver from Rainy; 13.6 weight percent 
nickel, 2.9 weight percent copper, and 26.0 g/t PGEs from 
Canwell; and 6.7 weight percent nickel, 1.0 weight percent 
copper, and 1.5 g/t PGEs from Alpha (same as Fish Lake) 
(Pure Nickel, Inc., 2013).

Undiscovered Platinum Placer Deposits in Alaska
Undiscovered marine placer deposits could be associated 

with paleochannels or beach deposits in the Goodnews Bay 
region in Alaska. A geophysical survey indicates the presence 
of ultramafic rocks offshore, which could be a source of placer 
platinum (Barker and others, 1988; Barker and Lamal, 1989). 
Seismic analysis indicates that the bottoms of the paleochan-
nels that drained these now-offshore ultramafic rocks are 
about 20 to 40 m deep and covered with modern sediments 
(Oommen, 2006; Oommen and others, 2008). Platinum may 
have accumulated in marine sand bars that are aligned parallel 
or subparallel to the current Alaskan coastline (Oommen, 
2006; Oommen and others, 2008). Assuming that the sand bars 
represent submerged paleobeaches exposed during periods of 
glaciation in the Pleistocene Epoch, intensified wave sorting 
and concentration of heavy minerals (including entrained 
platinum grains) may have taken place. Spatial distribution 
patterns of platinum and sediments offshore of the Goodnews 
Bay Complex suggest relatively high platinum concentrations 
near Goodnews Bay and Carter Bay (Oommen, 2006; 
Oommen and others, 2008).

Schmidt and others (2007) delineated a permissive tract 
(fig. N19A) for placer PGE-gold deposits hosted in Quaternary 
unconsolidated alluvial and marine sediments that includes 
onshore regions and areas up to 10 km offshore that are 
downstream of known mafic to ultramafic complexes within 
the Goodnews Bay and Togiak terranes (Hoare and Coonrad, 
1978; Decker and others, 1994). They estimate that the tract 
has a 90 percent probability of containing at least 1 metric 
ton of platinum and a 10 percent probability of containing 
at least 17 metric tons; the mean and median estimates are 
5 and 7 metric tons, respectively.

Metals in Stored Waste Products

PGEs may also be present in material discarded during 
the mining and beneficiation of magmatic ore deposits. When 
ore materials are processed to recover the PGEs, some losses 
always occur; in other words, it is impossible to recover 
100 percent of the metal in the mined material. For example, 
tailings derived from processing ores from the Noril’sk-
Talnakh area in Russia may contain 800 to 1,000 metric 
tons of PGEs; an additional 100 metric tons of PGEs may 
be present in stored pyrrhotite concentrates and iron cakes 
(Petrov and others, 2013). Some of the metals in stored waste 
products could be recovered if appropriate technologies are 
developed. For example, ultrafine grinding techniques are 
currently being used to reprocess tailings from the Merensky 
Reef mines in South Africa (Buys and others, 2013).



N36    Critical Mineral Resources of the United States— Platinum-Group Elements

145°40' W146°00' W146°20' W

63°20' N

63°10' N

Fish Lake
Complex

 Rainy Complex

Canwell
Complex

Tangle
Complex

Eureka   Complex

Tangle
Lakes

Fielding
Lake

Landmark
Gap LakeGlacier

Lake

D
el

ta
 R

iv
er

Fish
Lake

Sum
m

it Lake

Creek

Phelan

Sevenmile Lake

Trng

Trnb

Trnb

Trng

Trng

Trnb

Trng

Trnu

Trnu

Trnu

Trnu

Trnb

Trnb

Trnu

PTar

Q

Q

Q

Q

Q

Q

Trng

Trnb

Trnb

Q

Q

Trnu

Trnb

HIGHW
AY

HIGHWAY

DENALI

Eureka Glacier

Canwell Glacier

PGE fig N27 (Nikolai Belt from Geological Society of America Special Papers-2007-Schmidt-2007.2431(24)_v2)

0 2 4 6

0 2 10 124 6 8 KILOMETERS

MILES

60° N

70° N

RICHARDSON

Nickel–copper–platinum-group-
   element prospect

Undifferentiated Quaternary deposits and
   Tertiary to Pennsylvanian bedrock

Trnb Triassic Nikolai basalt

Triassic mafic (gabbroic) rocksTrng 

Triassic ultramafic rocksTrnu

EXPLANATION

Permian-Triassic argillaceous rocks PTar

Q

CANADAUNITED
STATES
ALASKA

Map
area

120° W150° W180°  

Figure N27.  Geologic map of the Amphitheater Mountains and south-central Alaska showing the location and names of 
mafic-ultramafic complexes that are part of the Nikolai large igneous province (Schmidt and Rogers, 2007). 



Environmental Considerations    N37

Exploration for New Deposits
The methods of locating PGE deposits can vary. In very 

rare cases, PGE-enriched sulfide mineralization has been 
found by panning. For example, the Merensky Reef of the 
Bushveld Complex, South Africa (fig. N9), was discovered 
in 1924 as the result of panning in a dry river bed and finding 
platinum minerals in the concentrate (Cawthorn, 1999). 
In most cases, chemical analysis of samples is required to 
identify PGE-enriched rocks. Because of the refractory nature 
of PGEs and their low concentration in most materials, an 
analytical technique that preconcentrates PGEs before analysis 
and ensures complete digestion of the sample is required. The 
preferred method to analyze for PGEs is fire assay.

A practical and effective exploration approach is to look 
for anomalous concentrations of copper, platinum, and palla-
dium in residual or transported material derived from a larger 
volume of rock, such as soil, stream sediments, and talus fines 
(Cameron and Hattori, 2005). Soil chemistry has been used 
to delineate mineralized rocks in the Platreef of the Bushveld 
Complex (Frick, 1985). The J–M Reef of the Stillwater 
Complex (fig. N13) was discovered in 1974 by analyzing 
soil and talus fines for platinum and palladium (Conn, 1979; 
Zientek and others, 2005). Contact-type mineralization in the 
Duluth Complex (fig. N15) is currently being explored using 
regional geochemical surveys of glacial till (Duluth Metals 
Ltd., 2011).

Surface-water geochemistry led to the discovery of 
the ore deposits in the Noril’sk-Talnakh area in Russia 
(figs. N3 and N6; Kunilov, 1994). A surface water 
geochemical survey showed elevated concentrations of SO4

2– 
in samples from the Talnakh River. This led to the discovery 
of mineralized boulders in the area, which were traced to the 
base of the Kharayelakh Mountains. A study of talus along the 
slope of Otdel’naya Mountain led to the discovery of mineral-
ized outcrops.

Geophysical methods used in PGE exploration map 
physical property contrasts, which primarily indicate the 
presence of magnetite, silicate minerals, and sulfide minerals 
that may be associated with PGE mineralization (Balch, 
2005). If the PGEs are associated with base-metal sulfide 
minerals that have some degree of interconnection in the 
rock (and are electrically conductive), airborne and ground 
electromagnetics and induced polarization surveys can be used 
to detect mineralized rocks. High-resolution aeromagnetic 
surveys can be used to map igneous layering and tectonic 
structures (Campbell, 2006) but generally do not give direct 
indication of mineralized rock. Gravity studies are used to 
determine the subsurface extent of rocks with variable density 
and are particularly well suited to map and model the extent 
and volume of mafic and ultramafic igneous rocks (Webb 
and others, 2004). Once a rock layer that contains reef-type 
mineralization has been identified, seismic studies can be 
used to map the subsurface extent of the rocks (Davison and 
Chunnett, 1999; Chunnett and Rompel, 2004).

Lithogeochemical studies can be used to focus explora-
tion activities (Maier and Barnes, 2005). For example, changes 
in the ratio of PGEs to sulfur or copper in rocks can be used 
to target specific intervals in cumulate stratigraphy where 
reef-type PGE mineralization could be present. In layered 
intrusions, nickel depletion in olivine is thought to indicate 
indirectly the presence of magmatic sulfide mineralization. 
Metal depletion in lavas flows is thought to indicate the 
presence of sulfide mineralization in the sills and dikes that 
served as feeders to the flows.

High-density drilling and sampling are required to 
delineate mineral resources and reserves in PGE deposits. 
For the J–M Reef, drilling on 15-m spacing is used to define 
proven mineral reserves; probable mineral reserves are 
delineated by projecting data 300 m from drill holes (Abbott 
and others, 2011). In the reef-type deposits in the Bushveld 
Complex, South Africa, measured mineral resources are 
defined with holes spaced 250 to 300 m apart, indicated 
resources are defined with holes spaced 500 to 600 m apart, 
and inferred mineral resources are defined with holes spaced 
800 to 2,000 m apart. By comparison, massive sulfide ores 
in the Noril’sk-Talnakh area, Russia, are explored on a 
32- by 60-m rectangular grid (Kunilov, 1994).

Environmental Considerations
The mineralogy of the ore and waste material associated 

with reef-type, contact-type, and conduit-type deposits are 
similar. Common sulfide minerals include chalcopyrite, 
pentlandite, and pyrrhotite. Secondary phases that typi-
cally form from primary sulfide minerals include covellite, 
goethite, gypsum, jarosite, marcasite, native sulfur, and 
pyrite (McGregor and others, 1998; Johnson and others, 
2000). Common primary gangue minerals include chromite, 
olivine, plagioclase, and pyroxene. Alteration products include 
chlorite, magnetite, serpentine, talc, and minor amounts of 
carbonate and clay minerals.

The abundance of sulfide minerals defines the environ
mental and geologic characteristics of PGE-enriched 
magmatic sulfide deposits. The high proportion of sulfide 
minerals distinguishes some conduit-type deposits from reef- 
and contact-type deposits. The overall pyrrhotite content of 
ore, waste rock, and tailings determines their acid-generating 
potential. Acid generated by the oxidative weathering of 
pyrrhotite can attack associated ore sulfide minerals and 
gangue silicate minerals, releasing a variety of potentially 
toxic elements—particularly cobalt, copper, iron, manganese, 
nickel, and, to a lesser extent, aluminum, cadmium, chromium, 
lead, and zinc to solution or to secondary solid phases 
(McGregor and others, 1998; Johnson and others, 2000). 
Massive ores characteristic of some conduit-type deposits 
have greater than 50 volume percent sulfide minerals and 
pose a greater challenge for mining and processing the ores 
without causing environmental problems. Both the low-sulfide 
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reef-type and contact-type deposits have significantly lower 
sulfide contents, usually less than a few volume percent. 
Therefore, acid generation in mine wastes is less of a chal-
lenge to manage.

Sources and Fate in the Environment

The abundance of PGEs in the upper continental crust 
ranges from tens to hundreds of parts per trillion (ppt); 
platinum is the most abundant, followed by palladium, 
osmium, ruthenium, iridium, and rhodium (table N7; Taylor 
and McLennan, 1995; Park and others, 2012). Background 
PGE concentrations are also low in other environmental 
media, such as water, sediment, soil, and plants.

Experimental studies suggest that the maximum solu-
bility of platinum in water at room temperature (25 °C) under 
oxygenated conditions ranges between 0.02 and 195 ppb, 
depending upon the pH of the water (Wood, 1991; Azaroual 
and others, 2001). The solubility of palladium in water at 
room temperature (25 °C) under oxygenated conditions ranges 
between 1 and 3,400 ppb, depending upon the pH of the water 
(Wood, 1991). Because of its greater solubility, palladium is 
more mobile in the environment than platinum.

PGE concentrations in water are generally in the 
10 –2 ppt range. Rhodium (0.082 ppt) has the highest mean 
concentration in seawater, followed by palladium (0.062 ppt), 
platinum (0.026 ppt), and osmium (0.005 ppt); ruthenium 
and iridium are present well below the ppt range (Bruland 
and Lohan, 2003). Platinum concentrations range from 
0.22 to 78,000 ppt in surface water and from 3 to 38 ppt 
in groundwater (Ravindra and others, 2004).

Environmental baseline studies generally show low 
concentrations of PGEs and trace elements in water near 
undeveloped deposits. In the vicinity of the contact-type 

NorthMet deposit in northern Minnesota, surface water 
downstream of the deposit in the Partridge River watershed 
has neutral pH (7.0), a low dissolved sulfate concentration 
(7.2 ppm), and moderate alkalinity (31 ppm calcium carbonate 
[CaCO3 ]) and hardness (30.3 ppm CaCO3 ). Dissolved platinum 
and palladium concentration are below the detection limit 
(<25 ppb), and the concentrations of other trace elements are 
low (table N8 at back of chapter; Minnesota Department of 
Natural Resources and the U.S. Army Corps of Engineers, 
2009). Near the buried Eagle deposit, which is a conduit-type 
deposit in northern Michigan, maximum concentrations of iron 
(190 ppb), nickel (59 ppb), and zinc (88 ppb) in groundwater 
near the deposit reflect the presence of the orebody, whereas 
maximum concentrations of copper (<5 ppb) and cobalt 
(<10 ppb) are below their detection limits. In contrast, the 
concentrations of copper, nickel, and other trace elements in 
surface waters over the buried deposit are indistinguishable 
from those from regional water samples (Kennecott Eagle 
Minerals Co., 2006).

In fluvial and pelagic-marine sediment away from any 
known deposits, total PGE concentrations are less than a few 
tens of ppb (table N7). Platinum and palladium are found in 
higher concentrations than are (in decreasing order of abun-
dance) ruthenium, iridium, osmium, and rhodium.

Fuchs and Rose (1974) investigated the geochemical 
behavior of platinum and palladium in the weathering cycle in 
soils around the Stillwater Complex in Montana. They found 
that palladium was depleted in the surface soil horizons but 
was concentrated at depth, reaching a maximum concentration 
of approximately 40 ppb. Platinum did not show systematic 
trends with depth; a maximum concentration of approximately 
180 ppb was recorded. The differences in the behavior of 
palladium and platinum in soils reflects the higher solubility 
of palladium in water compared with that of platinum in water 
(Fuchs and Rose, 1974).

Table N7.  Platinum-group-element concentrations in samples of upper crust, loess, river sediment, and marine pelagic sediment.

[n.d., no data]

Material
Platinum Palladium Ruthenium Iridium Osmium Rhodium

Reference(s)
(part per billion)

Upper continental 
crust

0.599 0.526 0.03 0.022 0.05 0.018 Taylor and McLennan (1995); 
Park and others (2012)

Loess (China) 0.751 0.546 0.03 0.023 n.d. 0.018 Park and others (2012)

River sediment 
(Mölndal River, 
Sweden, and 
Stour River, 
England)

<0.29 to 
53.9

0.08 to 
38.7

<0.15 to 
3.73

<0.03 to 
2.69

n.d. <0.11 to 
9.4

Ravindra and others (2004);
Moldovan and others (2001); 

de Vos and others (2002)

Marine pelagic 
sediment

0.4 to 
21.9

1.2 to 
9.4

< 0.2 to 
2.2

<0.2 to 
1.2

<0.05 to 
0.81

n.d. Goldberg and Koide (1990)
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The results of an exploration program illustrate the 
natural background variation of platinum and palladium 
in a layered intrusion that hosts a major reef-type deposit. 
Following the studies by Fuchs and Rose, more than 
10,900 samples of soil and talus fines were collected and 
analyzed for platinum and palladium as part of the exploration 
program that led to the discovery of the J–M Reef at the 
Stillwater Complex (Conn, 1979; Zientek and others, 2005). 
Palladium was below the detection limit for 14 percent of 
the locations; almost one-half of the samples had platinum 
concentrations that were below the detection limit. For most of 
these samples, the detection limit for palladium and platinum 
was 2 ppb and 20 ppb, respectively. The median values for 
samples in the study above the detection limit were 8 ppb and 
20 ppb for palladium and platinum, respectively. Maximum 
values measured for palladium and platinum were 6.4 ppm and 
5.76 ppm, respectively.

Platinum and palladium data are characterized by 
positive-skewed, multimodal distributions. More than 
95 percent of the samples belong to a population consisting of 
unmineralized material with less than 30 to 40 ppb palladium 
and less than 40 to 50 ppb platinum. The remaining approxi-
mately 460 samples appear to be made up of two populations. 
The range of values for the largest population in the remaining 
5 percent varies from about 40 ppb to 200 ppb palladium and 
about 50 to about 200 ppb platinum. About 50 samples make 
up the third population and consist of material with more than 
200 ppb platinum or palladium.

Biogeochemical surveys show that platinum and 
palladium can concentrate in plants near mineralized outcrops. 
Riese and Arp (1983) conducted a geochemical orientation 
survey of the J–M Reef in the Stillwater Complex and 
found accumulations of platinum in stems of Douglas-fir 
(Pseudotsuga menziesii) up to thousands of parts per billion 
in ashed samples. In the northern forests of Saskatchewan, 
Canada, platinum and palladium tend to be concentrated in 
the twigs and trunks of black spruce (Picea mariana) and 
jack pine (Pinus banksiana) and in the stems of Labrador tea 
(Rhododendron groenlandicum). Spruce was sampled close to 
a worked-out nickel-copper deposit in northern Saskatchewan 
that contained 3,000 ppb platinum and 6,000 ppb palladium. 
The ashed twigs yielded up to 880 ppb platinum and 1,350 ppb 
palladium compared with background levels of below 10 ppb 
platinum and 2 ppb palladium (Dunn, 1986). Coker and others 
(1991) found greater enrichment of palladium than of platinum 
in vegetation around several PGE deposits in Canada—some 
that had been mined and some that had not been mined.

Anthropogenic sources of PGEs in the environment 
include catalytic converters used in modern automobiles (Ek 
and others, 2004; Ravindra and others, 2004; Wiseman and 
Zereini, 2009), platinum-based chemotherapy drugs (Ravindra 
and others, 2004), and smelter emissions (Chen and others, 
2009). During the release of exhaust gases from automobile 
engines, the catalytic converters are chemically and physically 

stressed and release PGE-containing particulate matter. Most 
of the PGEs in the particles are in the metallic state, but about 
1 percent is in an oxidized form that could be bioavailable 
(Ravindra and others, 2004). Concentrations of PGE particles 
are found in roadside dust, soils, and water. In platinum-
bearing drugs that are used to treat cancer, the platinum is 
excreted by the patients following treatment and ends up in the 
hospital sewage. The contribution of PGEs to the environment 
through this method is minor, however, compared with that 
from catalytic converters (Ravindra and others, 2004). Tiny 
amounts of osmium (0.25 to 23 femtograms per gram of water; 
1 femtogram is 10 –15 grams) are found in rainwater and snow 
from around the world (Chen and others, 2009). The most 
likely sources of this metal are smelters that process PGE ores. 
The osmium concentrations are so low that they are difficult to 
analyze; however, it is possible that the global appearance of 
osmium could someday be used as an environmental tracer.

Platinum-Group-Element Mining and Mineral-
Processing Methods

Selective underground mining techniques are used for 
PGE deposits that occur in narrow reefs, such as those in the 
Bushveld Complex (South Africa) and the Stillwater Complex 
(Montana). The underground mining is performed by using 
either handheld pneumatic drills or mechanized drills to bore 
holes in the ore horizon, which are then filled with explosives. 
After blasting, the ore is removed from the mining stope and 
transported to the surface for further processing. Open pit 
mining is used for deposits in which the PGEs occur in greater 
thicknesses and at shallow depth, such as in the Lac des Iles 
Mine in Canada and the Platreef of the Bushveld Complex.

After ore is removed from the mines, it is crushed and 
ground to reduce the particle size and free the PGE-containing 
minerals from the rock matrix. The ore is then concentrated 
by using froth flotation circuits. For flotation, the ground rock 
particles are mixed with water and various reagents and air 
is pumped through the liquid, creating bubbles to which the 
PGE-containing minerals adhere. These bubbles float to the 
surface of the flotation vats and are removed as froth. The 
material is reground and refloated to produce a concentrate 
of nickel-iron-copper-PGE sulfide minerals for further 
processing. The greatest losses of PGEs occur in the early 
stages of processing, including crushing, milling, and froth 
flotation, owing to the diversity of PGE mineralogy. Much 
research is devoted to increasing PGE recovery rates in these 
early stages.

The concentrate is dried and then smelted in an electric 
arc furnace at temperatures that can exceed 1,500 ºC. During 
smelting, the concentrate forms a liquid, which separates into 
two layers. A matte containing the valuable metals is separated 
from a silicate- and oxide-rich slag, which is discarded. At 
the Stillwater Mining Co. smelter, the gases released from 
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smelting operations undergo a gas-to-liquid scrubbing process, 
which removes approximately 99.8 percent of the sulfur 
dioxide. The sulfur dioxide is converted to gypsum, which is 
sold to local farmers for use as a soil amendment.

After smelting, the PGE-rich matte is transferred to 
converters, through which air is blown to remove iron and 
sulfur. The converter matte is processed at the base-metals 
refinery to separate the base metals from the PGEs by selective 
leach processing. The final stage is PGE refining by various 
hydrometallurgical techniques, including solvent extraction, 
precipitation, and dissolution using chloride solutions, in 
which the six PGEs are separated from each other to a purity 
of more than 99.99 percent. The refined PGEs can be produced 
in various forms, including as ingots, grains, or a fine powder 
known as “sponge.”

The chromium-rich ores of the Bushveld Complex’s 
UG2 Chromitite present special difficulties for beneficiation. 
The high chromium content of the ores requires especially 
high temperatures for smelting, and the low sulfide content 
both increases the matte viscosity and lowers the amount of 
matte formed. A processing technique, known as ConRoast, 
has been employed by some Bushveld processors specifi-
cally for use with high-chromium PGE ores. The ConRoast 
technique removes sulfur from the concentrate by roasting the 
ore at high temperatures in oxidizing conditions followed by 
smelting in a direct-current arc furnace in reducing conditions, 
which uses an iron-based alloy as a collector of cobalt, copper, 
nickel, and PGEs. The ConRoast technique can be used for 
concentrates containing any amount of chromite (Jones, 2002).

Ores from the Duluth Complex (Minnesota) present 
another challenging processing problem. Their low-grade 
nature makes smelting inefficient and uneconomic. A high-
temperature chloride-assisted pressure-leaching process, 
known as PLATSOL™, has been developed to process the 
Duluth ores. The PLATSOL™ process is an alternative to 
smelting and is capable of processing low-grade PGE ores. 
The nickel-copper-PGE ore concentrates are processed in 
an autoclave in an oxidizing environment in which PGEs, as 
well as gold, are solubilized and can be recovered directly 
after leaching by adsorption or precipitation with sulfide ions. 
Finally, base-metal sulfides are recovered either by precipi
tation, ion exchange, or solvent extraction-electrowinning 
(Baxter and others, 2005).

Mine Waste Characteristics

The majority of solid mine waste includes waste rock, 
mill tailings, slag, and smelter dust. Waste rock is uneconomic 
rock that must be removed to access the ore and is disposed 
of on site. It can also be used for construction on site if tests 
determine that it will not generate acid-rock drainage when it 
is exposed to the atmosphere and water. Tailings, which is the 
waste material from processing ore, can be pumped as slurry 
or trucked dry to a tailings storage facility on site. Tailings 

storage facilities are typically impoundments surrounded by a 
retaining dam. Tailings can also be disposed of underground 
in mined-out portions of the mine. The crushing and milling 
process increases the porosity of the solid waste and thus its 
volume by a factor of approximately two, which means that 
only about one-half of the waste from ore processing can be 
returned underground. Smelter slag, which is glassy waste 
matter separated from metals during the refining of ore, also 
has both physical and chemical characteristics of environ-
mental concern and is typically held in storage facilities. Slag 
is also used in some mining and construction applications. 
Smelters produce gaseous emissions that may contain particu-
late material (smelter dust). If the emissions are not treated 
before the gases are vented to the atmosphere, the particulate 
material will settle near the smelter. For most modern smelting 
facilities, the gaseous emissions are treated to remove particu-
lates, which are reprocessed to recover metals or put into a 
storage system.

Waste rock and tailings are usually found at all mines, 
but their proportions vary based on the mining method. The 
amount of waste rock is significantly greater at open pit mines 
than at underground mines. Reef-type deposits are generally 
mined by underground methods because of the narrow width 
of the ore horizon. Contact-type and conduit-type ores are 
mined by either open pit or underground methods, depending 
upon the geometry and depth of the orebodies.

Acid-Base Accounts
Metals and many other trace elements tend to be more 

soluble at low pH than at neutral or high pH. Therefore, the 
acid-generating or acid-neutralizing potentials of waste rock, 
tailings, and other solid waste material help determine the 
possible environmental risk of mineral resource development. 
The balance between the acid-generating and the acid-
neutralizing potential of rocks and mine waste is expressed as 
an “acid-base account” (Price, 2009; International Network 
for Acid Prevention, 2011). The release of acid is primarily 
related to the presence of pyrrhotite in the rocks and waste. 
The presence of carbonate minerals, such as calcite, and some 
silicate minerals, such as feldspar, olivine, or pyroxene, in 
rocks and wastes can neutralize acidic solutions. Acid-base 
accounting values are commonly expressed in terms of 
kilograms of calcium carbonate per metric ton (kg CaCO3/t) of 
waste material.

Acid-Base Accounts for Reef-Type and  
Contact-Type Deposits

Acid rock drainage from reef-type and contact-type 
deposits is unlikely because the ores and their host rocks 
contain low proportions of sulfide minerals. Jambor and others 
(2000) proposed a threshold of 0.3 weight percent sulfur 
present in sulfide minerals for acid generation. The sulfur 
content of ore in the J–M Reef at the Stillwater Complex 
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in Montana ranges from 0.13 to 0.49 weight percent, with 
concentrations in tailings ranging from 0.05 to 0.08 weight 
percent. The sulfur content of the waste rock ranges from 
0.01 to 0.04 weight percent (table N9 at back of chapter). 
Similarly, the ores and host rocks for the UG2 Chromitite, 
the Merensky Reef, and the Platreef deposits have low sulfur 
concentrations (Wilson and Chunnett, 2006; Naldrett and 
others, 2009). Acid-base accounting studies, leach tests, and 
site monitoring demonstrate that there is limited potential 
for the generation of hazardous metal leachates from ores, 
waste rocks, or tailings from most reef-type and contact-type 
deposits (table N9).

Acid-Base Accounts for Conduit-Type Deposits
For some conduit-type deposits with massive ores, the 

ore is processed to separate out and produce concentrates of 
iron-, copper-, and nickel-bearing sulfide minerals; the concen-
trated material is then further processed to extract the copper 
and nickel metals, and the iron-bearing sulfide minerals, 
mainly pyrrhotite, are discarded as waste. This process 
results in waste material with high acid-generating potential; 
the presence of minor amounts of carbonate minerals in the 
ore assemblage and the lower reactivity of the neutralizing 
minerals, such as olivine and pyroxene, offer minimal short-
term acid-neutralizing potential. The Eagle deposit in northern 
Michigan has the potential to generate acid leachate similar to 
that found in mineralogically similar tailings from Sudbury, 
Ontario, Canada (McGregor and others, 1998; Johnson and 
others, 2000). Johnson and others (2000) documented the 
generation of low pH (down to 3) waters with high dissolved 
concentrations of iron (up to 9,800 ppm), sulfate (up to 
2,400 ppm), aluminum (up to 1,130 ppm), and nickel (up to 
698 ppm) in groundwater in the tailings pile at the Nickel Rim 
Mine at Sudbury, Ontario, Canada. Copper (up to 3.5 ppm) 
and cobalt (up to 2.5 ppm) were also significant constituents.

Air Quality Assessments
An air quality assessment of the heavily industrialized 

western part of the Bushveld Complex, where the Merensky 
Reef and the UG2 Chromitite are mined, found that sulfur 
dioxide, nitrous oxide, and carbon monoxide concentrations 
are at acceptable levels using South African and European 
air quality standards (Venter and others, 2012). The major 
contributing sources were high-stack industry emissions for 
sulfur dioxide (metallurgical complexes and smelters), and 
household combustion for nitrous oxide and carbon monoxide. 
The levels of ozone and PM10 frequently exceeded standards 
(PM10 refers to the total mass concentration of particulate 
matter up to 10 micrometers [µm] in size). Ozone is related 
to regional sources (wildfires, and coal and wood combustion 
for cooking and heating). The source of PM10 was identified 
as local household combustion (Hirsikko and others, 2012; 
Venter and others, 2012).

Mining operations in the Noril’sk-Talnakh area of 
Russia emit large amounts of sulfur dioxide and nickel and 
other metals (Council on Ethics, 2009; Bellona Foundation, 
2010). According to the Norwegian Government’s Council on 
Ethics for the Government Pension Fund-Global, atmospheric 
emissions of sulfur dioxide, which lead to acid rain, are about 
2,000,000 metric tons per year, and atmospheric emissions 
of copper, nickel, and cobalt are conservatively estimated to 
be about 500, 450, and 50 metric tons per year, respectively. 
Smelting operations release metals into the atmosphere in 
the form of dust or particulates. Smelter emissions have been 
shown to cause death or significant damage to vegetation up 
to 200 km from the mining operations.

Human Health Concerns
The metallic forms of PGEs are generally considered 

to be inert. Health hazards specifically related to PGEs 
affect only individuals who are occupationally exposed to 
manmade PGE compounds, especially workers in precious-
metal refineries. Platinum-based drugs, such as cisplatin and 
carboplatin, are used in cancer treatment. Broader human 
health effects of PGEs appear to be limited because of the low 
concentrations of PGEs in the environment (Hoppstock and 
Sures, 2004). Ravindra and others (2004) and Hoppstock and 
Sures (2004) reviewed human health risks associated with 
PGEs, and Kielhorn and others (2002) reviewed the human 
health effects of palladium specifically. The more significant 
human health risks associated with PGE mining are related to 
the trace elements associated with PGE deposits.

As discussed in a previous section, the mining operations 
at the Noril’sk-Talnakh area in Russia affect air quality; 
surface and groundwater are also affected by the industrial 
activities. Respiratory diseases and various forms of cancer 
have been shown to be more prevalent in the local population 
of the Noril’sk-Talnakh area than in other regions of Russia 
(Council on Ethics, 2009). Industrial activity in this area has 
been shown to be related to increased incidences of acute 
respiratory illness and a higher prevalence of oncological 
disease, particularly lung cancer, and may be related to other 
possible negative health effects, such as weakening of the 
immune system, reproductive health issues, an increase in 
the rate of disease in children, and reduced life expectancy 
(Council on Ethics, 2009).

Ecological Health Concerns
The risks to the ecosystem from mining PGEs and 

associated minerals are mainly those related to acid mine 
drainage, which primarily affects aquatic environments. The 
surface water chemistry downstream from platinum mine 
waste dumps in Zimbabwe was investigated by Meck and 
others (2006). The surface water in the vicinity of platinum 
dumps was found to be near neutral or to have slightly alkaline 
pH and to contain concentrations of chromium, cobalt, copper, 
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lead, and nickel that exceeded chronic surface-water criteria 
established by the U.S. Environmental Protection Agency 
(Suter, 1996; U.S. Environmental Protection Agency, 2009). 
Differences between upstream and downstream sample sites 
were most noticeable for nickel and approached a difference 
of 500 ppb.

Ecological risks can also be associated with soils and mill 
tailings. The toxicity of rehabilitated and nonrehabilitated 
mill tailings from reef-type deposits in South Africa to earth-
worms (Eisenia fetdia) was investigated by Jubileus (2008) 
and Maboeta and others (2008) using laboratory bioassay 
techniques. Sublethal impairment of earthworms (that is, 
effects on the growth and hatching success of cocoons) in 
soil samples decreased with distance from the tailing storage 
facilities. Anomalous concentrations of chromium, copper, 
nickel, and zinc were found in the tailings relative to the 
regional background soils. Wahl and others (2012) reached 
similar conclusions based on mesofauna surveys from the 
same tailing storage facilities.

Studies of soil and grass show anthropogenic platinum 
enrichment near mines in the Bushveld Complex. Thousands 
of soil and stream sediment samples collected at the Bushveld 
Complex show anomalous concentrations of precious metals 
related to bedrock sources and mining areas (Wilhelm and 
others, 1997). The results of the soil and stream sediment 
surveys mapped two bedrock sources of PGEs that are 
concordant to magmatic layering in the Bushveld Complex. 
The survey also mapped large anomalies near the locations 
of the large PGE mines in the western part of the Bushveld 
Complex; anomalies near the mines exceed 200 ppb PGEs. 
Rauch and Fatoki (2013) found about 700 ppb platinum in 
soils at a smelter. The maximum concentration in grass was 
256 ppb platinum, again found at the smelter.

Carbon Footprint

The PGEs and their mining have several links to carbon 
cycling in the environment. One of the most important uses 
of PGEs is in catalytic converters (Loferski, 2012a, b), which 
help to limit the amount of carbon and nitrogen gases and 
other air pollutants that enter the environment through vehicle 
exhaust. Fuel cells are an emerging energy technology. Proton 
exchange membrane (PEM) fuel cells use hydrogen as fuel, 
combining it with oxygen to form water; these fuel cells rely 
on platinum catalysts (Mehta and Cooper, 2003).

The trend towards the mining of lower grade ore in 
existing mines is expected to have a negative effect on 
greenhouse gas emissions. Lower grade ores require more 
energy to produce a unit of PGEs than do higher grade ores. 
The trend towards increased greenhouse gas emissions per 
unit of PGEs produced (measured in tons of carbon dioxide 
[CO2 ] per kilogram of PGEs) over time is evident in data from 

South Africa that date back to 2002 (Glaister and Mudd, 2010). 
In 2002, unit greenhouse gas emissions varied from about 
20 to 40 metric tons for different mine properties. In 2008, the 
range of values increased to about 30 to 65 metric tons.

The calcium- and magnesium-rich silicate minerals 
common in mine wastes from PGE deposits represent an 
important sink for atmospheric carbon dioxide because these 
minerals react fairly readily with this greenhouse gas. The 
potential for mineral carbonation of PGE tailings was evalu-
ated by Vogeli and others (2011). They ranked South African 
PGE tailings in terms of their carbonation potential on the 
basis of their mineralogy and the grain size and found that 
finer-grained, more olivine-rich, and plagioclase-poor tailings 
would be best for mineral carbonation. Although the mass 
of PGE tailings globally is inadequate to reduce global 
atmospheric carbon dioxide concentrations significantly, 
the carbonation of calcium- and magnesium-rich tailings 
can contribute to reducing the carbon footprint of individual 
mining operations.

Mine Closure

The procedures used to close PGE mines depends 
primarily on the method of mining and the character of the 
waste material. Reef-type deposits are typically developed 
using underground methods. Contact-type and conduit-type 
deposits can be developed by underground or open pit methods, 
depending upon the geometry of the orebody. For all these 
deposit types, open pit mining results in at least three different 
features after mining: the open pit, waste rock piles, and tailings 
storage facilities. Because of the scale of typical PGE mining 
activities, backfilling open pits is usually not practical. If the 
water table is above the bottom of the pit, the pit will fill with 
water and form a lake. The water quality of the lake will depend 
upon a number of factors, including the nature of the wall rock, 
the extent of interconnected underground mine workings that 
open to the pit, the water level in the pit, the local hydrology, 
and the climate, among others (Castendyk and Eary, 2009).

The long-term fate of tailing storage facilities depends 
upon the nature of the tailings and the method of construction 
of the facility. Some facilities can be regraded, capped, and 
revegetated. Others are designed to have a water cover in 
perpetuity to limit sulfide oxidation. Either type may have 
seepage that may require some form of water treatment.

The long-term fate of waste rock piles may include 
regrading, capping, and revegetation. Depending upon the 
acid-generating potential of the material, some piles may 
require some form of water treatment. An emerging issue for 
historical PGE tailings and piles is that older ore-processing 
techniques were not as efficient as those used today. As a 
consequence, historical tailings and waste piles can carry 
significant PGE grades.
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Problems and Future Research
The supply of PGE from primary and secondary sources 

currently meets society’s demand for these metals. Even if 
demand increases (as it assuredly will), the in-ground identi-
fied mineral resources appear to be sufficient to supply the 
world’s needs for several decades. The location of most of 
the in-ground resources in a few big deposits in a few places 
makes the primary production of PGE susceptible to supply 
disruption, however. The following section discusses this 
problem in more detail.

Future Demand and Possible Risks to Supply

The demand for PGEs continues to increase. PGE use 
in automobile catalytic converters is expected to increase as 
more-stringent automobile emission standards are adopted 
worldwide. An emerging industrial use for platinum is in fuel 
cells that provide electricity for automobiles, homes, and busi-
nesses. Fuel cells produce electricity through electrochemical 
reactions by combining oxygen with a hydrogen-bearing fuel 
over a catalyst, such as platinum, and produce only water and 
carbon dioxide as emissions.

Various studies have compared anticipated demand for 
the PGEs with the amount of PGE ore that has been positively 
identified by mineral exploration. Along with the anticipated 
supply of PGEs by recycling, the studies suggest that there 
are sufficient PGE resources in the ground to meet projected 
platinum demand well into the middle of the 21st century 
(Tiax LLC, 2003; Wilburn and Bleiwas, 2004; Mudd, 2012; 
Wilburn, 2012). Mineral reserves in the Bushveld Complex 
would be sufficient to meet global platinum demand until 
2040 (assuming an annual increase in platinum consumption 
of 2 percent). The much larger volume of mineralized rock 
that has been classified as mineral resources, coupled with the 
potential for additional undiscovered resources to be found, 
indicates that the potential amount of PGEs that could be mined 
will not be a constraint to PGE supply for many decades. 
Disruptions to the PGE supply are more likely to be affected 
by social, environmental, political, and economic factors rather 
than geologic issues or resource depletion (Mudd, 2012).

Variations in the annual average prices of the PGEs 
during the past 40 years illustrate the types of events and 
policies that could affect global supply and demand for 
mineral commodities (fig. N28). Some events, such as the 
oil embargo in the mid-1970s and the global recession that 
began in 2008, affected all metal prices (not just the prices 
of PGEs). Other effects can be specifically related to legisla-
tion passed by one or more Governments; for example, in 
the mid-1970s, catalytic converters, which use PGEs as the 
catalyst, were installed in automobiles to meet air standards 
set in the Clean Air Act Amendments of 1970 (84 Stat. 1705, 
P.L. 91–604; Gerard and Lave, 2005; McCarthy and others, 
2011). Catalytic converters reduce harmful emissions from 

automobiles; the widespread adoption of catalytic converters, 
first in the United States in the 1970s, then in the European 
Union and Japan, increased demand for PGEs. Palladium 
supply was disrupted in 1999 and 2000 because Russian 
Government legislation temporarily blocked export of this 
metal (United Nations Conference on Trade and Development, 
undated). Other effects are related to problems with mineral 
production; for example, problems with a refinery in 
Rustenburg, South Africa, in 1989 caused a decrease in the 
world supply of rhodium. The PGE supply was also affected 
by work stoppages and miners’ strikes in South Africa in 1986, 
2011, and 2012 (Yager and others, 2012).

Production of PGEs requires power and water, both 
of which are in short supply in southern Africa. Africa 
depends on imports of oil and on production of synthetic 
fuels from coal to meet its fuel requirements (United Nations 
Conference on Trade and Development Secretariat, 1995). In 
January 2008, the South African mining industry briefly shut 
down almost all its operations because of the unpredictability 
of the power supply. Roughly one-quarter of the installed 
generating capacity was not available owing to system 
faults, planned maintenance, and a shortage of the coal used 
in power stations. The country was subject to short-notice 
blackouts, which made mining unsafe (Platinum Today, 2008). 
Expanding the mining capacity at the Bushveld Complex in 
South Africa is constrained by the power supply. Water is 
required to mine, process ore, and refine metals; if the water 
supply is restricted, then production is affected. In any country 
that is water-stressed, mining companies must strive to 
manage the supply and use of water to ensure continuation of 
operations (Anglo American Platinum Ltd., 2012).

The ultimate constraint on the development of PGE 
mineral resources may not be the presence of mineralized 
rock but rather the rock temperature. For example, the contact 
between the Main zone and the Lower Critical subzone in 
the Bushveld Complex can be traced to depths of 6 km in 
seismic surveys (Sargeant, 2001; Campbell, 2011), which 
indicates that mineralization associated with the Merensky 
Reef and the UG2 Chromitite may also be present at those 
depths (Cawthorn, 2010). These reefs are currently being 
mined at depths exceeding 2 km at the Northam Mine, where 
virgin rock temperatures of 70 °C are measured at a depth 
of 2,176 m (Northam Platinum Ltd., 2008). Anglo American 
Platinum Ltd., whose operations include several mines in 
the Bushveld Complex, considers a virgin rock temperature 
of 75 °C to be the limit of mining based on the anticipated 
technology, metal prices, and energy costs (Anglo American 
Platinum Ltd., 2011). By comparison, rock temperatures 
within the ore-bearing intrusions at the Talnakh area of Russia 
are up to 35 ºC in the Taimyrsky Mine, 27 to 30 ºC in the 
Skalisty Mine, and are anticipated to be 43 to 47 ºC in the 
area that will be developed by the Gluboky Mine (Kunilov, 
1994). The massive sulfide ores in these Russian mines are 
highly reactive, however, and are prone to oxidation and 
spontaneous combustion.
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Research Directions

Successful exploration strategies for PGEs have been 
based on the magmatic deposit paradigm. This approach has 
proven highly successful and will likely result in additional 
discoveries. Its utility has a down side, however, in that other 
geologic settings in which PGEs may be concentrated have 
not been studied. Models strongly influence the observations 
made in both research and mineral exploration. For example, 
most economic geologists would not look for world-class 
PGE deposits in ophiolites. The most common magmatic ore 
type in ophiolites are chromitite deposits; all contain PGEs 
but are enriched in iridium relative to platinum (Mungall, 
2002; Finnigan and others, 2008). There are a few examples 
of platinum-enriched chromitites in ophiolites, but these are 
too small to be of any economic consequence. Therefore, 
mineral exploration geologists have not searched for concen-
trations of magmatic sulfide minerals in ophiolites; however, 
a small magmatic sulfide deposit in the Acoje ophiolite, 
Philippines (Bacuta and others, 1990; Yumul, 2001), and 
occurrences in cumulates of the Shetland Ophiolite Complex, 
United Kingdom (Prichard and Lord, 1993), are examples that 
indicate that sulfide exsolution and PGE enrichment can take 
place in ophiolites. The examples of hydrothermal ore deposits 
with elevated PGEs are other reminders that an economic PGE 
deposit may be present in rocks that have not been explored.

Most researchers in the field of economic geology can 
supply a list of research topics that could be undertaken to 
alleviate concerns about the global availability of PGEs. One 
approach to addressing concerns is to find more deposits, but 
finding small deposits will not solve the problem. The deposits 
must be large (like one or more of the giants that currently 
dominate supply). Research to find new deposits can be basic, 
in which known deposits are mapped and characterized in 
order to understand how they form. The research can also be 
applied, in which the search for PGE deposits is extended 
into geologic settings where the deposits would be highly 
weathered, highly metamorphosed, or largely concealed. 
Additionally, research can focus on new ways to understand 
and integrate information so that new hypotheses can be 
proposed and tested. Research will be most effective if basic 
and applied research is integrated. It will also be more fruitful 
if expertise from many disciplines is involved in solving 
the problem.
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	Figure N1. Graphs showing platinum and palladium consumption, by category of use, from 2000 to 2012 for the world (A and B ), North America (C and D ), and China (E and F ). The decrease in platinum consumption for North America is directly related to the
	Figure N2. Photograph of gold mask with platinum highlights, from the period of La Tolita culture, Ecuador. From Museo Nacional del Banco Central del Ecuador collection.
	Figure N3. World map showing locations of igneous intrusions and intrusive complexes that contain most of the world’s platinum-group-element (PGE) deposits, as well as the placer deposits that are mentioned in the text. On the map, intrusions and intrusiv
	Figure N4. Schematic block diagram showing changes in the form of igneous intrusions with depth and the relative occurrence of conduit-type, contact-type, and reef-type magmatic ore deposits. Layered igneous rocks with reef-type and contact-type deposits 
	Figure N5. Map showing the geology of the Siberian flood basalt province in Russia, which is the largest flood basalt province in the world. The province includes a large area of exposed lavas and sills. It also includes an equally large area of lavas tha
	Figure N6. Map showing the geology of the Noril’sk-Talnakh area and the location of nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits. Flood basalts crop out in the northeast and the southeast; in other areas, erosion has removed the lavas and exp
	Figure N7. Maps showing nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits in the Talnakh area, Russia. A, Extent of two elongate sill-like intrusions (Talnakh and Kharayelakh) and the distribution of massive sulfide ores that underlie them. B, Zon
	Figure N8. Photograph of copper-rich massive sulfide ore exposed in a stope in the Oktyabr’sk Mine in the Talnakh area, Russia. The ore consists of several iron-copper-sulfide minerals, such as chalcopyrite (CuFeS2 ), mooihoekite (Cu9Fe9S16 ), and talnakh
	Figure N9. Map showing the Rustenburg Layered Suite of the Bushveld Complex, South Africa, the surface trace of significant orebodies, and cross sections through the central area and northeastern limb. Cross section A–A’ is based on geophysical modeling a
	Figure N11. The base of the Merensky cyclic unit, a pegmatoidal pyroxenite, which contains the platinum-group-element-rich Merensky Reef. A, Photograph of the base of the Merensky cyclic unit on the Hackney farm property in the eastern part of the Bushvel
	Figure N12. Geologic map and cross sections of the Great Dyke, Zimbabwe. Geologic mapping and geophysical studies show that the intrusion has a dike-like form; however, igneous layering dips gently into the center of the intrusion. The Main Sulphide Zone,
	Figure N13. Geologic map and cross section of the Stillwater Complex, Montana. The layered cumulates that make up the complex have been tilted to the north, exposing a section through the entire intrusion, from the ultramafic rocks at its base (Ultramafic
	Figure N14. Photograph of the Stillwater Mine in south-central Montana, looking southeast. The pond is the tailings impoundment. The buildings in the lower left include the shaft, the mill complex, and offices. Photograph by Michael L. Zientek, 2006.
	Figure N15. Map showing the geology along the western margin of the Duluth Complex, Minnesota, with the surface projection of nickel–copper–platinum-group-element (Ni-Cu-PGE) deposits and exploration targets. Exploration targets occur along the outer marg
	Figure N16. Maps illustrating the distribution of platinum deposits in the Ural Mountains, Russia. A, Generalized geology,
location of platinum placer districts, and platinum-producing areas in the Ural Mountains, Russia. Placer platinum deposits are deri
	Figure N17. Geology and imagery of the Uralian-type Kondyor Massif, which is located in eastern Siberia, Russia, north of the city of Khabarovsk. A, Geologic map of the massif, showing that the circular pluton consists of a central core of dunite, which i
	Figure N18. Photograph and lithograph showing the morphology of platinum-iron-alloy nuggets derived from Uralian-type intrusions. A, Photograph of silvery-gray nugget of isoferroplatinum from the Kondyor Massif, Russia. The nugget, which is about 4 millim
	Figure N19. Maps illustrating platinum-group-element (PGE) resources in southeastern Alaska. A, Location of the permissive tract assessed for undiscovered placer platinum resources and the major geologic provinces (terranes) it encompasses. The permissive
	Figure N20. Graph showing world platinum-group-element production, by country and year, from 1960 to 2011. The layers of the graph are placed one above the other, forming a cumulative total. Data are from U.S. Bureau of Mines (1933 –34, 1933 –96) and U.S.
	Figure N21. Pie chart showing world platinum-group-element (PGE) production from 1960 to 2011, by country and amount (in metric tons [t]) . Data are from U.S. Bureau of Mines (1933 –34,1933 –96) and U.S. Geological Survey (1997–2016). 
	Figure N22. Plot showing the relation between tonnage and grade of remaining resources for conduit-type, reef-type, and other types of deposits enriched in platinum-group elements (PGEs). Diagonal lines are isolines that show amounts of contained PGEs and
	Figure N23. Graphs showing the percent of contained metal against percent of deposits for A, the world’s platinum-group-element (PGE) and porphyry copper deposits, and B , the top 30 percent of the world’s PGE deposits. In A, the curves are derived from c
	Figure N24. Graph showing contained platinum-group element (PGE) and gold metal against the ratio of palladium to platinum for the major PGE deposits of the world. The only identified deposits in which platinum is the dominant metal are associated with  t
	Figure N25. Three-dimensional block diagram showing the Merensky Reef interpolated down to 2 kilometers in the southern area of the western limb of the Bushveld Complex, South Africa. Mined out areas are shown in gray, and the Merensky Reef trace is shown
	Figure N26. Graph illustrating the exposed area and stratigraphic thickness of cumulates in more than 200 intrusions from around the world. 
	Figure N27. Geologic map of the Amphitheater Mountains and south-central Alaska showing the location and names of mafic-ultramafic complexes that are part of the Nikolai large igneous province (Schmidt and Rogers, 2007). 
	Figure N28. Graphs showing platinum-group element prices (in constant U.S. dollars referenced to 2010) for platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os) from 1880 to 2013. Major world events affecting pricing a
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