


Critical Mineral Resources of the United States— Economic and Environmental Geology and Prospects for Future Supply

Professional Paper 1802

U.S. Department of the Interior U.S. Geological Survey

Periodic Table of Elements

Modified from Los Alamos National Laboratory Chemistry Division; available at http://periodic.lanl.gov/images/periodictable.pdf.

Front cover (clockwise starting at top left).

Dry Lake Wind Power Project. This 63-megawatt-capacity facility in Arizona was the first utility-scale power project. The large wind turbines use generators that contain strong permanent magnets composed of neodymium-iron-boron. Photograph courtesy of Iberdrola Renewables, Inc., NREL 16701.

U.S. Air Force F-35 Lightning II Joint Strike Fighter. This and many other aerospace vehicles rely on electrical and mechanical components made of beryllium alloys. Photograph courtesy of the U.S. Air Force.

Flat-panel display and touchscreen devices. The screens are coated with indium-tin oxide, for which there are few chemical substitutes. Photograph by C.N. Mercer, U.S. Geological Survey.

Solar photovoltaic cells. This 2-megawatt ground-mounted array occupies the site of a former landfill at Fort Carson, Colorado. Tellurium is a critical component for the development of efficient thin-film photovoltaic cells that are needed for the production of electricity from sunlight. Photograph courtesy of the U.S. Department of Energy Western Area Power Administration.

Back cover. A handful of stibnite, which is the primary ore mineral for antimony. Antimony is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children's clothing, to make them resistant to the spread of flames. Photograph by Niki Wintzer, U.S. Geological Survey.

Front and back covers background image. Lithium-brine evaporating ponds at Clayton Valley, Nevada. Lithium has many uses, the most prominent being in batteries for cell phones, laptop computers, and electric and hybrid vehicles. Photograph by Doc Searls/CC-BY-2.0, http://commons.wikimedia.org/wiki/File:Chemetall_Foote_Lithium_Operation.jpg.

Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply

Edited by Klaus J. Schulz, John H. DeYoung, Jr., Robert R. Seal II and Dwight C. Bradley

Professional Paper 1802

U.S. Department of the Interior SALLY JEWELL, Secretary

U.S. Geological Survey Suzette M. Kimball, Director

U.S. Geological Survey, Reston, Virginia: 2017

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov/.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, and Bradley, D.C., eds., 2017, Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, 798 p., http://dx.doi.org/10.3133/pp1802.

Library of Congress Cataloging-in-Publication Data

Names: Schulz, K. J., editor. | Geological Survey (U.S.), issuing body.

Title: Critical mineral resources of the United States: economic and environmental geology and prospects for future supply / edited by Klaus J. Schulz, John H. DeYoung, Jr., Robert R. Seal II, and Dwight C. Bradley.

Other titles: Economic and environmental geology and prospects for future supply | U.S. Geological Survey professional paper; 1802.

Description: Reston, Virginia: U.S. Geological Survey, [2017] | Series: Professional paper; 1802 | Includes bibliographical references. Identifiers: LCCN 2017005489 | ISBN 9781411339910 | ISBN 1411339916 Subjects: LCSH: Mines and mineral resources--United States. | Strategic materials--United States. | Industrial minerals--United States.

Classification: LCC TN23 .C67 2017 | DDC 333.8/50973--dc23 | SUDOC I 19.16:1802

LC record available at https://lccn.loc.gov/2017005489

ISSN 1044-9612 (print) ISSN 2330-7102 (online)

Foreword

From the Stone, Bronze, and Iron Ages, through the Industrial Revolution, to the emergence of developing nations and economies in the 21st century, mineral commodities have been essential ingredients for building and advancing civilization. Our homes and office buildings, our cars and the roads we drive on, and our computers, televisions, and smart phones are but a few examples of things we use every day that are built with materials derived from mineral resources. In short, minerals are important to a modern society.

When the periodic table of elements was first established in the latter half of the 19th century, many of the elements were simply known to exist in nature, but, compared to today, relatively few were being used by society. Today, the discovery of new uses for an increasing number of elements on the periodic table is enabling rapid innovations in technology and materials science. Advances in telecommunications, information technology, health care, alternative energy technology, and national defense systems have all been made possible through the incorporation of new mineral materials.

As the importance and dependence on use of specific mineral commodities grow, so does the concern about their supply. Mineral commodities that have important uses and no viable substitutes, yet face potential disruption in supply, are defined as critical to the Nation's economic and national security. A mineral commodity's importance and the nature of its supply chain can change with time, such that a mineral commodity that may have been considered critical 25 years ago may not be critical now, and one considered critical now may not be so in the future.

The U.S. Geological Survey has produced this volume to describe a select group of important mineral commodities of our time and to document where the United States stands in the changing spectrum of mineral commodity needs and availability. For each mineral commodity covered, the authors provide a comprehensive look at the commodity's use, the geology and global distribution of the mineral deposit types that account for the present and possible future supply of the commodity, and the current status of production, reserves and resources, both in the United States and globally. Information is also provided on mineral environmental issues to be considered in the responsible development of different types of mineral deposits. This analysis describes U.S. critical mineral resources in a global context, for no country can be self-sufficient for all its mineral commodity needs, and the United States will always rely on global mineral commodity supply chains. This volume provides the scientific understanding of critical mineral resources that is required for informed decisionmaking by those responsible for ensuring that the United States has a secure and sustainable supply of the mineral commodities that it needs. For just as our past was built on a foundation of minerals, even more so will be our future.

Sally Jewell Secretary of the Interior

Preface

Mineral commodities are vital to economic growth, improving the quality of life, providing for national defense, and the overall functioning of modern society. Minerals are being used in larger quantities than ever before and in an increasingly diverse range of applications from telecommunications (cell phones and computers) to renewable-energy generation (wind turbines, solar photovoltaics, and fuel cells) to clean forms of transportation (electric and hybrid cars). Until the mid-20th century, only about 15 metallic elements had much practical use. Today, nearly all the natural elements in the periodic table of elements have several significant uses. For example, the manufacture of a modern computer chip requires more than one-half of the elements in the periodic table. Even though many of the elements may be present in only small amounts, each is essential to the function and performance of the chip.

With the increasing demand for a considerably more diverse suite of mineral commodities has come renewed recognition that competition and conflict over mineral resources can pose significant risks to the manufacturing industries that depend on them. In addition, although mineral deposits may occur in many places around the world, production of many mineral commodities today has become concentrated in relatively few countries (for example, tungsten, rare-earth elements, and antimony in China; niobium in Brazil; and platinum-group elements in South Africa and Russia), thus increasing the risk for supply disruption owing to political, social, or other factors. At the same time, an increasing awareness and sensitivity to potential environmental and health issues caused by the mining and processing of many mineral commodities may place additional restrictions on mineral supplies. These factors have led a number of Governments, including the Government of the United States, to attempt to identify those mineral commodities that are viewed as most "critical" to the national economy and (or) security if supplies should be curtailed. The lists of critical minerals compiled by Governments and other organizations vary in the number and individual rankings of mineral commodities included on them, but many of the lists include several of the same commodities. Rare-earth elements and platinum-group elements particularly are broadly viewed as critical.

This book presents resource and geologic information on the following 23 mineral commodities currently among those viewed as important to the national economy and national security of the United States: antimony (Sb), barite (barium, Ba), beryllium (Be), cobalt (Co), fluorite or fluorspar (fluorine, F), gallium (Ga), germanium (Ge), graphite (carbon, C), hafnium (Hf), indium (In), lithium (Li), manganese (Mn), niobium (Nb), platinum-group elements (PGE), rare-earth elements (REE), rhenium (Re), selenium (Se), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), vanadium (V), and zirconium (Zr). For a number of these commodities—for example, graphite, manganese, niobium, and tantalum—the United States is currently wholly dependent on imports to meet its needs.

The first two chapters deal with general information pertinent to the study of mineral resources. The introductory chapter (A) discusses the purposes of the volume, the distinctions between reserves and various categories of resources, and issues related to the classification of mineral resource "criticality." The second chapter (B) provides an overview of some of the environmental considerations related to the mining of nonfuel mineral resources, including the modern regulatory framework and development of geoenvironmental mineral-deposit models.

Chapters C through V describe individual mineral commodities and include an overview of current uses of the commodity, identified resources and their distribution nationally and globally, the state of current geologic knowledge, the potential for finding additional deposits nationally and globally, and geoenvironmental issues that may be related to the production and uses of the commodity. These chapters are updates of the commodity chapters published in 1973 in U.S. Geological Survey Professional Paper 820, United States Mineral Resources. In 1973, many of these commodities were only of minor importance, and resource and geologic information was often very limited and incomplete. In addition, little was generally known about geoenvironmental issues related to their production and use.

We would like to thank our colleagues for their contributions to and cooperation in all phases of the preparation of this book. The descriptions of geology, the origin of mineral deposits, and geoenvironmental chemistry in each chapter necessarily involve some scientific jargon, but much of the discussion is cast in less-technical language. Our hope is that the information provided will be of use to scientists and non-scientists alike.

Klaus J. Schulz John H. DeYoung, Jr. Robert R. Seal II Dwight C. Bradley

Contents

Foreword	iii
Preface	iv
Chapter A. Critical Mineral Resources of the United States—An Introduction By Klaus J. Schulz, John H. DeYoung, Jr., Dwight C. Bradley, and Robert R. Seal II	A1
Chapter B. Environmental Considerations Related to Mining of Nonfuel Minerals By Robert R. Seal II, Nadine M. Piatak, Bryn E. Kimball, and Jane M. Hammarstrom	B1
Chapter C. Antimony By Robert R. Seal II, Klaus J. Schulz, and John H. DeYoung, Jr. With contributions from David M. Sutphin, Lawrence J. Drew, James F. Carlin, Jr., and Byron R. Berger	
Chapter D. Barite (Barium) By Craig A. Johnson, Nadine M. Piatak, and M. Michael Miller	D1
Chapter E. Beryllium By Nora K. Foley, Brian W. Jaskula, Nadine M. Piatak, and Ruth Schulte	E1
Chapter F. Cobalt By John F. Slack, Bryn E. Kimball, and Kim B. Shedd	F1
Chapter G. Fluorine By Timothy S. Hayes, M. Michael Miller, Greta J. Orris, and Nadine M. Piatak	G1
Chapter H. Gallium By Nora K. Foley, Brian W. Jaskula, Bryn E. Kimball, and Ruth Schulte	H1
Chapter I. Germanium and Indium By W.C. Pat Shanks III, Bryn E. Kimball, Amy C. Tolcin, and David E. Guberman	I1
Chapter J. Graphite By Gilpin R. Robinson, Jr., Jane M. Hammarstrom, and Donald W. Olson	J1
Chapter K. Lithium By Dwight C. Bradley, Lisa L. Stillings, Brian W. Jaskula, LeeAnn Munk, and Andrew D. McCauley	K1
Chapter L. Manganese By William F. Cannon, Bryn E. Kimball, and Lisa A. Corathers	L1
Chapter M. Niobium and Tantalum By Klaus J. Schulz, Nadine M. Piatak, and John F. Papp	M1
Chapter N. Platinum-Group Elements By Michael L. Zientek, Patricia J. Loferski, Heather L. Parks, Ruth F. Schulte, and Robert R. Seal II	N1
Chapter O. Rare-Earth Elements By Bradley S. Van Gosen, Philip L. Verplanck, Robert R. Seal II, Keith R. Long, and Joseph Gambogi	01
Chapter P. Rhenium David A. John, Robert R. Seal, II, and Désirée E. Polyak	P1
Chapter Q. Selenium By Lisa L. Stillings	01

•	R. Tellurium Richard J. Goldfarb, Byron R. Berger, Micheal W. George, and Robert R. Seal II	R1
Chapter By	S. Tin Robert J. Kamilli, Bryn E. Kimball, and James F. Carlin, Jr	S1
•	T. Titanium Laurel G. Woodruff, George M. Bedinger, and Nadine M. Piatak	T1
	U. Vanadium Karen D. Kelley, Clinton T. Scott, Désirée E. Polyak, and Bryn E. Kimball	U1
•	V. Zirconium and Hafnium James V. Jones III, Nadine M. Piatak, and George M. Bedinger	V1
Figure	s	
A1.	Diagram showing increases in the use of elements over two decades of computer chip technology development	A3
A2.	Diagram showing the mineral resource classification system used in this volume	A5
B1.	Graph showing population growth and the change in supporting land area from 3500 B.C. to 2100 A.D., with projections to 2050	B3
B2.	Graph showing dates associated with all the mine sites on the U.S. Environmental Protection Agency's National Priorities List	B10
C1.	World map showing the location of selected antimony deposits, mines, and major occurrences	C2
C2.	Pie chart showing end uses of antimony as a percentage of antimony consumption in the United States in 2012	C3
C3.	Graph showing world production, U.S. apparent consumption, and U.S. mine production of antimony from 1900 to 2012	C4
C4.	Pie charts showing percentages of contained antimony in U.S imports in 2008–11, by source country	C5
D1.	Graph showing barite world production, U.S. production, and U.S. consumption from 1950 to 2011	D2
D2.	Map showing locations of selected barite deposits and districts, color-coded by deposit type	D4
D3.	Pie chart showing the average annual tonnage of barite produced by country for the period 2007–11, in million metric tons	D7
E1.	Map showing locations of selected deposits of beryllium by the two major beryllium-bearing mineral types	E2
E2.	Photographs of the minerals bertrandite, which can contain up to 42 percent beryllium oxide, and industrial beryl, which can contain up to about 5 percent beryllium	ΕS
E3.	Photographs illustrating some of the many uses of beryllium	
E4.	Pie charts showing reported uses of beryllium consumed in the United States in 2011 for the two main classes of products—performance alloys, and	
E5.	A generalized cross section showing the geologic setting of and some example deposits for the major types of beryllium resources associated	E6
	with rare-metal magma systems	F12

Eb.	which is located west of Kimberley, British Columbia, Canada	E13
E7.	Schematic geologic cross section showing the setting of volcanogenic beryllium deposits and related deposit types, geologic map of the Spor Mountain area in Utah, photograph of beryllium tuff at Spor Mountain, and photograph of nodule from the Spor Mountain tuff	E15
E8.	Graph showing general estimates of grade and tonnage for a variety of beryllium deposits, districts, and belts	
E9.	Graph showing estimated global production of beryllium, in metric tons, from 2000 to 2011	E18
F1.	Pie chart showing world cobalt consumption in 2011, by end use	F2
F2.	Graph showing world cobalt mine and refinery production and apparent consumption	F2
F3.	Graph showing world cobalt mine production from 1950 to 2011	F3
F4.	Pie chart showing world cobalt mine production in 2011, by country	F3
F5.	Pie chart showing world cobalt mine production in 2011, by deposit type	
F6.	Grade-tonnage plot for 214 cobalt deposits worldwide	F11
F7.	Map showing global distribution of major cobalt-bearing mineral deposits and selected smaller deposits that represent minor types	F12
F8.	Pie charts showing proportions of cobalt contained in mineral deposits worldwide, by deposit type	F13
G1.	Photograph of a fluorite specimen from the Number 1 (Minerva) Mine, Cave-in-Rock subdistrict, Illinois-Kentucky fluorspar district	G3
G2.	Graph showing the solubility of fluorite as a function of temperature for complex Na-Ca-Mg-Cl (sodium-calcium-magnesium-chloride) brines from ambient temperatures to 260° Celsius	G10
G3.	Chart showing eight minerals or mineral groups from which fluorine has been produced or may be produced in the future and a preliminary classification of hydrothermal fluorspar deposits by tectonic and magmatic association	G11
G4.	World map showing selected world fluorspar deposits according to their tectonic and magmatic class	G14
G5.	Map showing the locations of deposits in the Cantabrian salt-related carbonate-hosted mineral district in north-central Spain	G19
G6.	Plot of fluorite grade versus tonnage for fluorspar deposits related to strongly differentiated granites, for carbonatite-related fluorspar deposits, and for veins from all classes of fluorspar deposits	
G7.	Graph showing sources of U.S. fluorspar supply from 1970 to 2011	
H1.	Photograph of gallium metal with an inset showing its position on the periodic table of elements	
H2.	Photographs illustrating some current uses for gallium	
H3.	Graphs showing U.S. and world gallium production and consumption for 2007 to 2012	
H4.	World map showing the locations of selected mineral deposits, by type; gallium has been produced from these types of deposits	H 5
H5.	Cross sections showing the general geologic environments for the types of mineral deposits with which gallium is most commonly associated and	
116	from which gallium is typically extracted	H7
H6.	Plot of the ratio of aluminum to gallium (Al:Ga, log scale) versus gallium content for volcanic rocks, hydrothermally altered rocks, and bauxite deposits	H12

п/.	the primary mineralogical sources of gallium	H14
l1.	Photograph of a concentrator photovoltaic solar power system	
12.	Pie charts showing relative end uses of germanium and indium worldwide in 2012	
13.	Photographs showing tin-doped indium oxide and examples of	
	display screens that are coated with it	14
14.	Map and schematic cross section showing the geology of the Red Dog district	
	in Alaska and the stratigraphy of selected deposits in the district	17
15.	Map showing the locations and geologic settings of selected volcanogenic massive	
	sulfide, sedimentary exhalative, Mississippi Valley-type, and coal deposits and other	
	types of deposits in southern China	19
16.	Map showing the location of Kipushi-type deposits (including the Kabwe	
	deposits) and major Neoproterozoic orogenic belts and basins in the Precambrian tectonic framework of southern Africa	110
17.	Map showing indium-bearing tin-polymetallic ore deposits in Bolivia	
17. 18.	Graph showing worldwide production of germanium and indium from 1995 to 2012	
то. J1.	Diagram showing the arrangement of carbon atoms in crystalline graphite,	114
JI.	which consists of stacks of parallel sheets of carbon atoms, with each sheet	
	containing hexagonal arrays of carbon atoms	J6
J2.	Map showing locations of major graphite deposits and districts in the world,	
	by commodity type	J14
J3.	Graph showing carbon grade and "ore" tonnage characteristics for some	
	of the amorphous and crystalline graphite deposits	J16
J4.	Pie chart showing average estimated natural graphite production by	
	country or region from 2006 to 2010, in thousand metric tons per year	
K1.	Graph showing lithium production, by deposit type, from 1900 through 2006	K1
K2.	Pie chart showing end uses of lithium as a percentage of worldwide lithium	1/6
1/0	consumption for the year 2013	
K3.	Photographs illustrating some sources and uses of lithium	K3
K4.	World map showing lithium-cesium-tantalum pegmatites, by size, and lithium-enriched granites	V
K5.	World map showing closed-basin lithium-brine, lithium-enriched oilfield brine,	NO
NJ.	geothermal brine, lithium-clay, and lithium-zeolite deposits	K7
K6.	Histograms of the number of lithium-cesium-tantalum pegmatites formed per	
	50-million-year interval as a function of geologic time, of the age distribution	
	of detrital zircon in river sand as a function of time, and of the age distribution	
	of lithium resources in pegmatites	K9
K7.	Schematic cross section showing the concentric arrangement of lithium-	
	cesium-tantalum pegmatites around a parental granite pluton	
K8.	Block diagram showing conceptual ore-deposit model for lithium brine	
K9.	Lithium grade-tonnage plots based on values from known deposits	K13
L1.	Bar chart showing world production of manganese ore from 2007 to 2011	
	compared with apparent consumption, and pie chart showing distribution of manganese ore production, by country, for the same period	13
L2.	Pie charts showing the sources and the annual average amounts of U.S. imports of	LC
LZ.	manganese ore, ferromanganese, and silicomanganese for the period 2008–11	L3
L3.	World map showing the location, relative size, and type of the major	
	terrestrial manganese deposits listed in table L2 as well as subeconomic	
	deposits in the United States	L7

	Photographs of contrasting types of manganese ore	LU
L5.	Schematic diagram of the oceanic conditions necessary to form sedimentary manganese deposits that are not enriched in iron	L8
L6.	Photograph showing a dense carpet of ferromanganese nodules on the seabed off Johnston Island within the United States Exclusive Economic Zone near Hawaii	L10
L7.	Photograph showing ferromanganese crust on carbonate rock from the Blake Plateau off the southeastern coast of the United States	L11
L8.	Photograph of the Mamatwan open pit mine in South Africa	L13
L9.	Graphs showing the cumulative frequency of tonnages and grades of 39 marine sedimentary manganese deposits	
M1.	Photograph of the ATLAS detector in the Large Hadron Collider showing its eight superconducting barrel toroid magnets around the calorimeter	M3
M2.	Reported world consumption of niobium and tantalum, by material produced	M3
M3.	Criticality matrix for niobium, tantalum, and selected other mineral commodities	M4
M4.	Photographs showing centimeter-size pyrochlore crystals from Uganda and a tantalite crystal	M6
M5.	Map showing the locations of selected niobium and tantalum mines, deposits, and occurrences, by deposit type	M8
M6.	Log-log plots of tantalum and niobium deposit grades and tonnages, by deposit type	M9
M7.	Diagrams showing the subsurface geology of the Saint-Honoré carbonatite complex in southern Quebec, Canada, and a schematic north-south cross-section	M14
M8.	Schematic cross-section of the Lovozero alkaline intrusion, Kola Peninsula, Russia, showing the relation among the three intrusive phases and the niobium mineralization contained in eudialyte and loparite	
M9.	Schematic representation of regional lithium-cesium-tantalum rare-metal-bearing pegmatite zoning above a parental granite	
M10.	Schematic cross-section of a concentrically zoned lithium-cesium-tantalum rare-metal-bearing pegmatite	
M11.	Bar chart showing niobium resources and reserves in Brazil, Canada, and the United States, in thousand metric tons of Nb	
M12.	Bar chart showing global tantalum resources and reserves, in thousand metric tons of Ta	
M13.	Bar chart showing global production of primary niobium and tantalum from 2000 through 2011, in metric tons of contained metal produced	M23
M14.	Pie charts showing estimated annual average percentage of niobium production, and tantalum production, by country, for the period 2007–11	M23
N1.	Graphs showing platinum and palladium consumption, by category of use, from 2000 to 2012 for the world, North America, and China	N3
N2.	Photograph of gold mask with platinum highlights, from the period of La Tolita culture, Ecuador	N4
N3.	Map showing the locations of igneous intrusions and intrusive complexes that contain most of the world's platinum-group-element deposits, as well as the placer deposits that are mentioned in the text	N7
N4.	Schematic block diagram showing changes in the form of igneous intrusions with depth and the relative occurrence of conduit-type, contact-type, and reef-type magmatic ore deposits	N9

Nb.	Map snowing the geology of the Siberian flood basalt province in Russia	IV I U
N6.	Map showing the geology of the Noril'sk-Talnakh area and the location of nickel–copper–platinum-group-element deposits	N11
N7.	Maps showing nickel–copper–platinum-group-element deposits in the Talnakh area, Russia	N13
N8.	Photograph of copper-rich massive sulfide ore exposed in a stope in the Oktyabr'sk Mine in the Talnakh area, Russia	N14
N9.	Map showing the Rustenburg Layered Suite of the Bushveld Complex, South Africa, the surface trace of significant orebodies, and cross sections through the central area and northeastern limb	N15
N10.	Photograph of the UG2 Chromitite at the Karee Mine in the western part of the Bushveld Complex, South Africa	N16
N11.	Photograph of the base of the Merensky cyclic unit which contains the platinum-group-element-rich Merensky Reef	N16
N12.	Geologic map and cross sections of the Great Dyke, Zimbabwe	N17
N13.	Geologic map and cross section of the Stillwater Complex, Montana	N19
N14.	Photograph of the Stillwater Mine in south-central Montana, looking southeast	N20
N15.	Map showing the geology along the western margin of the Duluth Complex, Minnesota, with the surface projection of nickel–copper–platinum-group- element deposits and exploration targets	N21
N16.	Maps illustrating the distribution of platinum deposits in the Ural Mountains, Russia	N24
N17.	Geologic map and imagery of the Uralian-type Kondyor Massif in eastern Siberia, Russia	N25
N18.	Photograph and lithograph showing the morphology of platinum-iron-alloy nuggets derived from Uralian-type intrusions	N26
N19.	Maps illustrating platinum-group-element resources in southeastern Alaska	N27
N20.	Graph showing platinum-group-element production, by country, from 1960 to 2011	N28
N21.	Pie chart showing world platinum-group-element production, by country, from 1960 to 2011	N29
N22.	Plot showing the relation between tonnage and grade of remaining resources for conduit-type, reef-type, and other types of deposits enriched in platinum-group elements	N30
N23.	Graphs showing the percent of contained metal against percent of deposits for the world's platinum-group-element (PGE) and porphyry copper deposits and the top 30 percent of the world's PGE deposits	N31
N24.	Graph showing contained platinum-group element (PGE) and gold metal against the ratio of palladium to platinum for the major PGE deposits of the world	N32
N25.	Map and three-dimensional block diagram showing the Merensky Reef interpolated down to 2 kilometers in the southern area of the western limb of the Bushveld Complex, South Africa	N33
N26.	Graph illustrating the exposed area and stratigraphic thickness of cumulates in more than 200 intrusions from around the world	N34
N27.	Geologic map of the Amphitheater Mountains and south-central Alaska showing the location and names of mafic-ultramafic complexes that are part of the Nikolai large igneous province	N36

N28.	Graphs showing prices for platinum, palladium, rhodium, iridium, ruthenium,	
1420.	and osmium from 1880 to 2013.	N44
01.	Graph showing world mine production of rare-earth oxides from 1960 to 2012	04
02.	Graph showing radii of the trivalent ions of the rare-earth elements, along with the radii of the cerium (Ce ⁴⁺) and europium (Eu ²⁺) ions	06
03.	Photograph of the Mountain Pass Mine, which was the only active producer of rare-earth elements in the United States in 2013	08
04.	Map showing the locations of active rare-earth element mines and ongoing advanced exploration projects	09
05.	Chondrite-normalized plot showing the rare-earth-element (REE) distribution in six different types of North American REE deposits	011
P1.	Photographs of rhenium and rhenium compounds	P2
P2.	Pie chart showing major end uses of primary rhenium as a percentage of total rhenium consumption in the world in 2012	P3
P3.	Map showing locations of major rhenium-bearing deposits, including porphyry copper-molybdenum-gold deposits	P5
P4.	Plot of rhenium grade versus deposit tonnage for major rhenium-bearing deposits in the world	P10
P5.	Cross sections illustrating rhenium occurrences in major deposit types from which rhenium is recovered or potentially recoverable	P11
P6.	Pie chart showing mine production of rhenium, by country, as a percentage of world mine production of rhenium in 2012	P18
Q1.	Graph showing relative abundance of the chemical elements in Earth's upper crust	02
Q2.	Graph showing end uses for selenium in the United States from 1975 to 2012	Q3
Ω3.	Graph showing average annual prices of commercial-grade selenium from 1970 to 2010	Q5
Q4.	Map showing selenium concentrations (in parts per million) in coal samples, by region of the United States	Q16
Q5.	Maps showing locations of seleniferous sedimentary outcrops and deposits and plant samples with significant selenium content	Q17
Ω6.	A predictive map of selenium source rocks associated with organic-rich depositional marine basins	Q21
Ω7.	Maps showing selenium concentrations in soils of the conterminous United States	023
R1.	World map showing the locations of selected tellurium-enriched mineral occurrences discussed in the text, by type of deposit	
R2.	Pie chart showing major uses for tellurium in the world in 2010, by end use	R3
R3.	Phase diagram showing speciation calculations for tellurium in a hydrothermal fluid at 300 degrees Celsius, as a function of pH and oxygen fugacity	R4
R4.	Pie chart showing estimated tellurium refinery production, by region, as a percentage of world refinery production	R13
S1.	Pie chart showing end uses of tin as a percentage of total consumption in the United States in 2014	
S2.	Graph showing the average annual prices of tin metal from 1970 to 2010	
S3.	Ball-and-stick model of part of the crystal structure of cassiterite	
S4.	Photograph of cassiterite crystals	S6

S5.	Photograph of wood tin cassiterite	S6
S6.	Schematic vertical section across a typical hydrothermal mineralized granite cupola showing salient features of a shallow granite-related tin-mineralized system	S7
S7.	Map showing locations of major tin deposits and districts in the world, by deposit type	. S10
S8.	Graph showing grades and resource tonnages of major tin deposits in the world, by deposit type	.S11
S9.	Pie chart showing world tin reserves, by country, as a percentage of the world total of 4.7 million metric tons, in 2016	. S12
S10.	Pie chart showing tonnage and distribution of estimated world mine production of tin, by country, in 2015	. S12
S11.	Map of Alaska showing the locations of selected tin deposits	. S15
T1.	Chart showing common titanium-bearing oxide minerals and common titanium-bearing silicate minerals with their approximate titanium content	T5
T2.	Reflected-light photographs showing lamellae of hematite in ilmenite in hemo- ilmenite from the magmatic Lac Tio hemo-ilmenite deposit, and titaniferous magnetite and ilmenite from the magmatic La Blache iron-titanium-oxide deposit	T5
T3.	Map showing worldwide distribution of titanium deposits	
T4.	Graph showing comparison of approximate titanium dioxide content in titanium deposits of different deposit types	
T5.	Plot of titanium grade and tonnage for some igneous, metamorphic, and sedimentary deposits	
T6.	Pie charts showing estimated 2012 world mine production, by country, of ilmenite and rutile, and global reserves of ilmenite and rutile, in metric tons	
U1.	World map showing global distribution of major vanadium deposits, by deposit type	U3
U2.	Pie chart showing the world's leading vanadium-producing countries in 2012 by percentage of world production	U9
U3.	Graph showing major end uses of vanadium in the United States from 1970 to 2011	U9
U4.	Photographs of example sources and uses of vanadium	.U12
U5.	Grade-tonnage diagram of vanadium deposits for which data were available	
V1.	Photographs of example sources and uses of zirconium and hafnium	V3
V2.	Graphs showing global zirconium production and U.S. trade information for zirconium ores and concentrates	V4
V3.	World map showing selected zirconium and hafnium deposits and regions with modern coastal placer systems	V8
V4.	Diagrams showing examples of coastal depositional systems with an emphasis on barrier island location, morphology, and depositional environments	. V10
V5.	Diagrams showing influences on and locations of placer formation in coastal environments	

Tables

AI.	Crustal abundances of mineral commodities (elements) included in this volume	Ab
B1.	Summary of selected Federal laws relevant to mine permitting	B4
B2.	Historical summary of mine sites placed on the U.S. Environmental Protection Agency's National Priorities List	B8
В3.	Selected consortia devoted to identifying and implementing	
	environmental best practices associated with mining	B11
C1.	Selected antimony minerals	C7
C2.	Estimated world production and reserves of antimony in 2013	C9
C3.	Potential additional sources of antimony ore and concentrate, by country	C10
E1.	Selected properties of beryllium, which is a Group 2 alkaline earth metal	E5
E2.	Selected beryllium minerals	E8
E3.	Global and domestic types of magmatic-related beryllium resources	E10
E4.	Grade and tonnage data for selected beryllium deposits	E22
F1.	Location and grade-tonnage data for significant cobalt deposits of the world	F33
F2.	Cobalt concentrations in rocks, soils, waters, and air	F6
G1.	Fluorine concentrations in various types of rocks	G5
G2.	Concentrations of fluorine and other elements in waters	G6
G3.	Selected examples of the chemistry and mineralogy of mine waste	004
04.4	generated at fluorspar mines	
G1–1.	Selected fluorspar districts, deposits, and prospects of the world	
H1.	Selected properties of gallium, a Group 13 post-transition metal	
H2.	Concentrations of gallium in rocks, ore, coal, soils, and natural waters	
H3.	Gallium-bearing minerals—formulas, content, and occurrence	H13
H4.	Significant global and domestic deposit types from which gallium is obtained or is potentially extractable	H16
I1.	Classification of deposits that host germanium and indium resources	16
12.	Average estimated annual refinery production of germanium and indium,	
	by area, or 2011 and 2012	
I3.	Germanium concentrations in rocks, soils, and waters	
14.	Indium concentrations in rocks, soils, waters, and air	l17
J1.	Characteristics of graphite commodities, deposits, and uses, by commodity type	J2
J2.	Physical properties of graphite	
J3.	Selected information for graphite deposits and districts	
J4.	Estimates of world graphite resources, by country, commodity type, and	
•	resource category, in thousand metric tons of recoverable graphite	J18
K1.	Commercially and (or) scientifically important lithium-bearing minerals	
K2.	Lithium concentrations in soils developed on various types of bedrock	
L1.	Estimated world manganese ore reserves in 2012, in thousand metric tons	
	of contained manganese	L3

L2.	Total resources estimated for major land-based manganese deposits of the world	L13
L3.	Grade, tonnage, and quantity of contained manganese for eight manganese deposits and districts in the United States	L16
L4.	Background and above-background concentrations of manganese in rocks, soil, water, and air	L19
M1.	Selected properties of niobium and tantalum	M2
M2.	Selected niobium and tantalum oxide minerals and their end-member $\mathrm{Nb_2O_5}$ and $\mathrm{Ta_2O_5}$ contents or compositional range	M5
M3.	Major types of niobium and tantalum deposits, with key characteristics and examples	
M4.	Locations of selected niobium-tantalum deposits, with grade and tonnage	M10
N1.	Chemical formulas for selected platinum-group minerals as well as other common rock-forming minerals mentioned in this report	N6
N2.	Examples of rocks and ores with anomalous platinum-group-element concentrations that are not associated with magmatic deposits,	
	by deposit types	N70
N3.	Areas with significant placer platinum production, and estimates of cumulative production and grades	N23
N4.	Identified platinum-group-element and gold resources, summarized by deposit type and location	N29
N5.	Igneous intrusions and intrusive complexes that contain more than 97 percent of the world's identified platinum-group-element (PGE) and gold resources, in order of total contained PGEs	N74
N6.	Areal extent and stratigraphic thickness of layered intrusions with reef-type platinum-group-element deposits and some examples of large intrusions with no known deposits, in order of areal extent	
N7.	Platinum-group-element concentrations in samples of upper crust, loess, river sediment, and marine pelagic sediment	
N8.	Trace element geochemistry of waters from selected conduit-type, contact-type, and reef-type deposits	
N9.	Acid-base accounting for selected reef-type, contact-type, and conduit-type deposits.	
N10.	Grade and tonnage of mineralized rock remaining in platinum-group- element-bearing mineral deposits	N80
01.	List of the rare-earth elements found in natural deposits—the "lanthanides" plus yttrium	02

02.	List of selected rare-earth-element-bearing and yttrium-bearing ore minerals	010
03.	Active rare-earth mines by deposit type	012
04.	Advanced rare-earth-element (REE) exploration projects and the reported estimates of their REE resources by deposit type	014
P1.	Summary of rhenium, copper, and molybdenum grades, deposit tonnage, and amount of contained rhenium in the rhenium-bearing deposits shown in figure P3	P6
P2.	Rhenium data for porphyry copper and porphyry molybdenum deposits	P38
P3.	Concentrations of rhenium in water, sediments, soils, biota, and upper continental crust	P20
Q1.	Selenium minerals recognized by the International Mineralogical Association	
Q2.	A summary of selenium concentrations in various selenides and sulfides from deposits around the world	Q47
Q3.	Selenium concentration in sulfide minerals and other phases, in various deposit types	Q9
Q4.	Selenium concentrations in copper-nickel ores in the Sudbury basin, Ontario, Canada	Q11
Q5.	Selenium concentrations in selected Earth and lunar materials	014
Q6.	Estimated world selenium reserves in 2014, in metric tons	020
Q 7.	National Institutes of Health recommended dietary reference intakes for selenium	Q30
R1.	Tellurium-bearing minerals, many of which are mentioned in this chapter	R5
S1.	List of selected tin-bearing minerals	
S2.	Tin deposits with more than 1,000 metric tons of contained tin, including location, grade, and deposit tonnage	S32
S3.	Tin reserves of the world in 2016, in metric tons of contained tin	S11
S4.	Tin concentrations in rocks, soils, water, and air	S17
T1.	Classification of selected titanium mineral deposits based on their geologic setting and the processes through which they were formed	T3
T2.	Titanium resources of the United States	
T3.	Titanium mineral resources of the world (excluding the United States) for ilmenite (including titanomagnetite and leucoxene) and rutile (including	
	anatase and brookite)	
U1.	Location and grade-tonnage of vanadium mineral deposits	
U2.	Mineralogy of standard vanadium-bearing minerals in different deposit types	
U3.	Concentrations of vanadium in rock, soils, water, and air	U23

Conversion Factors

International System of Units to Inch/Pound

Multiply	Ву	To obtain
	Length	
angstrom (Å) (0.1 nanometer)	0.003937	microinch
angstrom (Å) (0.1 nanometer)	0.000003937	mil
micrometer (µm) [or micron]	0.03937	mil
millimeter (mm)	0.03937	inch (in.)
centimeter (cm)	0.3937	inch (in.)
meter (m)	3.281	foot (ft)
meter (m)	1.094	yard (yd)
kilometer (km)	0.6214	mile (mi)
	Area	
hectare (ha)	2.471	acre
square kilometer (km²)	247.1	acre
square meter (m ²)	10.76	square foot (ft²)
square centimeter (cm ²)	0.1550	square inch (ft²)
square kilometer (km²)	0.3861	square mile (mi ²)
	Volume	
milliliter (mL)	0.03381	ounce, fluid (fl. oz)
liter (L)	33.81402	ounce, fluid (fl. oz)
liter (L)	1.057	quart (qt)
liter (L)	0.2642	gallon (gal)
cubic meter (m³)	264.2	gallon (gal)
cubic centimeter (cm³)	0.06102	cubic inch (in³)
cubic meter (m³)	1.308	cubic yard (yd³)
cubic kilometer (km³)	0.2399	cubic mile (mi³)
	Mass	
microgram (μg)	0.00000003527	ounce, avoirdupois (oz)
milligram (mg)	0.00003527	ounce, avoirdupois (oz)
gram (g)	0.03527	ounce, avoirdupois (oz)
gram (g)	0.03215075	ounce, troy
kilogram (kg)	32.15075	ounce, troy
kilogram (kg)	2.205	pound avoirdupois (lb)
ton, metric (t)	1.102	ton, short [2,000 lb]
ton, metric (t)	0.9842	ton, long [2,240 lb]
	Deposit grade	
gram per metric ton (g/t)	0.0291667	ounce per short ton (2,000 lb) (oz/T)
	Pressure	
megapascal (MPa)	10	bar
gigapascal (GPa)	10,000	bar
	Density	
gram per cubic centimeter (g/cm³)	62.4220	pound per cubic foot (lb/ft³)
milligram per cubic meter (mg/m³)	0.00000006243	pound per cubic foot (lb/ft³)
	Energy	
joule (J)	0.0000002	kilowatthour (kWh)
joule (J)	6.241×10^{18}	electronvolt (eV)
	0.2388	calorie (cal)
joule (J) kilojoule (kJ)	0.2388	kilocalorie (kcal)

Conversion Factors—Continued

International System of Units to Inch/Pound

Multiply	Ву	To obtain
	Radioactivity	
becquerel (Bq)	0.00002703	microcurie (μCi)
kilobecquerel (kBq)	0.02703	microcurie (μCi)
	Electrical resistivity	
ohm meter (Ω -m)	39.37	ohm inch $(\Omega$ -in.)
ohm-centimeter (Ω-cm)	0.3937	ohm inch $(\Omega$ -in.)
	Thermal conductivity	
watt per centimeter per degree Celsius (watt/cm °C)	693.1798	International British thermal unit inch per hour per square foot per degree Fahrenheit (Btu in/h ft² °F)
watt per meter kelvin (W/m-K)	6.9318	International British thermal unit inch per hour per square foot per degree Fahrenheit (Btu in/h ft² °F)

Inch/Pound to International System of Units

	Length			
mil	25.4	micrometer (µm) [or micron]		
inch (in.)	2.54	centimeter (cm)		
inch (in.)	25.4	millimeter (mm)		
foot (ft)	0.3048	meter (m)		
mile (mi)	1.609	kilometer (km)		
Volume				
ounce, fluid (fl. oz)	29.57	milliliter (mL)		
ounce, fluid (fl. oz)	0.02957	liter (L)		
Mass				
ounce, avoirdupois (oz)	28,350,000	microgram		
ounce, avoirdupois (oz)	28,350	milligram		
ounce, avoirdupois (oz)	28.35	gram (g)		
ounce, troy	31.10 348	gram (g)		
ounce, troy	0.03110348	kilogram (kg)		
pound, avoirdupois (lb)	0.4536	kilogram (kg)		
ton, short (2,000 lb)	0.9072	ton, metric (t)		
ton, long (2,240 lb)	1.016	ton, metric (t)		
Deposit grade				
ounce per short ton (2,000 lb) (oz/T)	34.285714	gram per metric ton (g/t)		
Energy				
kilowatthour (kWh)	3,600,000	joule (J)		
electronvolt (eV)	1.602×10^{-19}	joule (J)		
Radioactivity				
microcurie (μCi)	37,000	becquerel (Bq)		
microcurie (μCi)	37	kilobecquerel (kBq)		

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32$$

Temperature in degrees Celsius (°C) may be converted to Kelvin (K) as follows:

$$K = {}^{\circ}C + 273.15$$

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

$$^{\circ}C = (^{\circ}F - 32)/1.8$$

Datum

Unless otherwise stated, vertical and horizontal coordinate information is referenced to the World Geodetic System of 1984 (WGS 84). Altitude, as used in this report, refers to distance above the vertical datum.

Supplemental Information

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (μ S/cm at 25 °C).

Concentrations of chemical constituents in soils and (or) sediment are given in milligrams per kilogram (mg/kg), parts per million (ppm), or parts per billion (ppb).

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L), micrograms per liter (μ g/L), nanogams per liter (μ g/L), nanomoles per kilogram (μ g/k), parts per million (μ g), parts per billion (μ g), or parts per trillion (μ g).

Concentrations of suspended particulates in water are given in micrograms per gram ($\mu g/g$), milligrams per kilogram (mg/kg), or femtograms per gram (fg/g).

Concentrations of chemicals in air are given in units of the mass of the chemical (milligrams, micrograms, nanograms, or picograms) per volume of air (cubic meter or cubic feet).

Activities for radioactive constituents in air are given in microcuries per milliliter (µCi/mL).

Deposit grades are commonly given in percent, grams per metric ton (g/t)—which is equivalent to parts per million (ppm)—or troy ounces per short ton (oz/T).

Geologic ages are expressed in mega-annum (Ma, million years before present, or 10⁶ years ago) or giga-annum (Ga, billion years before present, or 10⁹ years ago).

Concentration unit	Equals
milligram per kilogram (mg/kg)	part per million
microgram per gram (µg/g)	part per million
microgram per kilogram (μg/kg)	part per billion (10 ⁹)

Equivalencies

```
part per million (ppm): 1 ppm=1,000 ppb=1,000,000 ppt=0.0001 percent part per billion (ppb): 0.001 ppm=1 ppb=1,000 ppt=0.0000001 percent part per trillion (ppt): 0.000001 ppm=0.001 ppb=1 ppt=0.00000000001 percent
```

Metric system prefixes

```
tera- (T-)
                 10^{12}
                         1 trillion
giga- (G-)
                 10^{9}
                         1 billion
                 10^{6}
                         1 million
mega- (M-)
                 10^{3}
kilo- (k-)
                         1 thousand
hecto- (h-)
                 10^{2}
                         1 hundred
deka- (da-)
                 10
                         1 ten
                 10^{-1}
deci- (d-)
                         1 tenth
                 10^{-2}
                         1 hundredth
centi- (c-)
                 10^{-3}
milli- (m-)
                         1 thousandth
                 10^{-6}
                         1 millionth
micro- (µ-)
                 10^{-9}
                         1 billionth
nano- (n-)
                 10^{-12}
pico- (p-)
                         1 trillionth
                 10^{-15}
                         1 quadrillionth
femto- (f-)
                 10^{-18}
                         1 quintillionth
atto- (a-)
```

Abbreviations and Symbols

3TG tantalum, tin, tungsten, and (or) gold

Å angstrom

AC alternating current

ADTI Acid Drainage Technology Initiative
AFRG alkali-feldspar rhyolite-granite

 Ag_2S acanthite Ag_2Se naumannite Ag_4SeS aguilarite Ag_8GeS_6 argyrodite Ag_8SnS_6 canfieldite

AIDS acquired immunodeficiency syndrome

AIF₃ aluminum fluoride

 $AI(OH)_3$ gibbsite $AIMnO_2(OH)_2$ lithiophorite

Al₂O₃ aluminum oxide (alumina)

Al₂SiO₅ kyanite

AMD acid mine drainage
AMT audio magnetotelluric

API American Petroleum Institute
APS American Physical Society

ATPC Association of Tin Producing Countries

ATSDR Agency for Toxic Substances and Disease Registry

AuAg(S,Se) petrovskaite

BaCO₃ barium carbonate (witherite)

 ${\rm BaSi_{9}O_{16}(OH)_{4}}$ romanechite ${\rm BaSi_{2}O_{5}}$ sanbornite

BaSO₄ barium sulfate (barite)

BCMA beryllium-copper master alloy

 $BeAl_2O_4$ chrysoberyl $BeAlSiO_4(OH)$ euclase

BeCl₂ beryllium chloride
Be0 beryllium oxide
Be₂SiO₄ phenakite

 $\begin{array}{ll} \operatorname{BeSO_4} & \operatorname{beryllium\ sulfate} \\ \operatorname{Bi_2Se_3} & \operatorname{guanajuatite} \\ \operatorname{Bi_2Te_2S} & \operatorname{tetradymite} \end{array}$

Bg/kg becquerel per kilogram

°C degree Celsius

ca. circa

CaCO₃ calcium carbonate (calcite)

CaF₂ calcium fluoride (fluorite, also known as fluorspar)

 $\begin{array}{lll} \text{(CaMg)(CO}_3)_2 & & \text{dolomite} \\ \text{Ca(Mg, Fe$^{2+}$, Mn)(CO}_3)_2 & & \text{ankerite} \\ \text{(Ca,Na)}_2\text{Nb}_2\text{O}_6\text{F} & & \text{pyrochlore} \\ \text{CaO} & & \text{calcium oxide} \\ \text{CaSO}_4 & & \text{anhydrite} \\ \text{CaSO}_4 \bullet 2\text{H}_2\text{O} & & \text{gypsum} \\ \text{CaTiO}_3 & & \text{perovskite} \end{tabular}$

CaTiSiO, titanite

CaTiSiO₅ titanite or sphene

CBMM Companhia Brasileira de Metalurgia e Mineração

CCD carbonate compensation depth

CCZ Clarion-Clipperton zone

CeO cerium oxide

CERCLA Comprehensive Environmental Response,

Compensation, and Liability Act

CH₄ methane

CIGS copper-indium-gallium-(di)selenide

 ${
m cm}$ centimeter ${
m cm}^3$ cubic centimeter ${
m CO}_2$ carbon dioxide

 ${\rm Co_3(AsO_4)_2\cdot 8H_2O}$ erythrite ${\rm Co_3S_4}$ linnaeite ${\rm CoAsS}$ cobaltite

Congo (Kinshasa) Democratic Republic of the Congo

CoO(OH) heterogenite
CoSe₂ trogtalite

CPV concentrator photovoltaic
CRD carbonate replacement deposit

Cu(Co,Ni)₂S₄ carrollite $(Cu,Fe)_{12}As_4S_{13}$ tennantite $Cu_{13}Fe_2Ge_2S_{16}$ germanite Cu₉(Fe,Ni)₈S₁₆ talnakhite CuFeS, chalcopyrite Cu₅FeS₄ bornite Cu₉Fe₉S₁₆ mooihoekite stannite Cu₂FeSnS₄

(Cu,Ni,Co,Fe)(S,Se), selenium-rich villamaninite

 $\begin{array}{lll} \text{CuS} & \text{covellite} \\ \text{Cu}_2 \text{S} & \text{chalcocite} \\ \text{Cu}_9 \text{S}_5 & \text{digenite} \\ \text{Cu}_2 \text{Se} & \text{berzelianite} \\ \text{CuSe}_2 & \text{krutaite} \\ \end{array}$

 ${\rm Cu_3Se_2}$ umangite ${\rm (Cu,Zn)_{11}(Ge,As)_2Fe_4S_{16}}$ renierite DC direct current

DOD U.S. Department of Defense

DRC Democratic Republic of the Congo (Congo [Kinshasa])

EA environmental assessment

 EC_{50} effective concentration 50 (concentration that results

in 50 percent exhibiting decreased functionality)

EEZ Exclusive Economic Zone

Eh oxidation potential

EIS environmental impact statement EMPA electron microprobe analysis

EPA U.S. Environmental Protection Agency

FCC fluid catalytic cracking

 $\begin{array}{lll} \text{FeAsO}_4 \bullet 2\text{H}_2\text{O} & \text{scorodite} \\ \text{Fe}^2 \cdot \text{CO}_3 & \text{siderite} \\ \text{(Fe,Mn)(Ta,Nb)}_2\text{O}_6 & \text{tantalite} \\ \text{(Fe,Mn)WO}_4 & \text{wolframite} \\ \text{FeNb} & \text{ferroniobium} \\ \text{(Fe,Ni,Co)}_9\text{S}_8 & \text{pentlandite} \end{tabular}$

Fe₂O₃ iron oxide (hematite)

Fe³+O(OH)

Fe₃O₄

Fe₀O(OH)·nH₂O

FeOOH

FeS₂

Fe₁₋xS

FeSe₂

FeSe₂

Fese₂

Fese₂

Ferroselite

 $\begin{array}{lll} \text{FeTiO}_3 & & \text{ilmenite} \\ \text{Fe}_2 \text{Ti}_3 \text{O}_9 & & \text{pseudorutile} \\ \text{Fe}_2 \text{TiO}_4 & & \text{ulv\"{o}spinel} \\ \text{Fe}_2 \text{TiO}_5 & & \text{pseudobrookite} \\ \text{FeV} & & \text{ferrovanadium} \end{array}$

FL-T Fish Lake and Tangle

FONSI finding of no significant impact

ft foot g gram

g CO₂-equiv/kWh gram of CO₂ equivalent per kilowatthour

g/cm³ gram per cubic centimeter

g/d gram per day
g/L gram per liter
g/t gram per metric ton

Ga giga-annum (billion years before present, or 109 years ago)

GaAs gallium arsenide GaN gallium nitride

GARD Global Acid Rock Drainage
GeCl, germanium tetrachloride

GeH₄ germane

 $\begin{array}{lll} \operatorname{GeO_2} & & \operatorname{germanium\ dioxide} \\ \operatorname{GWh} & & \operatorname{gigawatt-hour} \\ \operatorname{H_2} & & \operatorname{hydrogen\ gas} \end{array}$

H₂0 water

 $\begin{array}{ccc} {\rm H_2S} & & {\rm hydrogen\ sulfide} \\ {\rm H_2Se} & & {\rm hydrogen\ selenide} \\ {\rm HCI} & & {\rm hydrogen\ chloride} \\ {\rm HDC} & & {\rm Hicks\ Dome\ Corp.} \\ {\rm HF} & & {\rm hydrofluoric\ acid} \\ {\rm HFO} & & {\rm hydrous\ ferric\ oxide} \\ \end{array}$

HFSE high-field-strength element

(Hf,Zr)SiO₄ hafnonHgS cinnabarHgSe tiemannite

HIV human immunodeficiency virus

HMIS Hazardous Materials Identification System

HREE heavy rare-earth element HSLA high-strength, low-alloy

IARC International Agency for Research on Cancer
ICP-MS inductively coupled plasma-mass spectrometry

IED improvised explosive device

IMA International Mineralogical Association

 $In(NO_3)_3$ indium nitrate

INAP International Network for Acid Prevention

IOCG iron oxide-copper-gold IREL Indian Rare Earths Ltd.

ISA International Seabed Authority

ISMI International Strategic Minerals Inventory

ITO indium-tin oxide

JORC Joint Ore Reserves Committee (Australia)

 $K(Mn^{4+},Mn^{2+})_{8}O_{16}$ cryptomelane $Kb_{2}Sb_{2}(C_{4}H_{2}O_{6})_{2}$ antimony/tartrate

kBq/kg kilobecquerel per kilogram

 $\begin{array}{ll} {\rm KFe^{III}}_3 \left({\rm OH} \right)_6 \! \left({\rm SO_4} \right)_2 & {\rm jarosite} \\ {\rm kg} & {\rm kilogram} \end{array}$

kg CaCO₃/t kilogram of calcium carbonate per metric ton

kg/cm² kilogram per square centimeter kg/m³ kilogram per cubic meter kg/t kilogram per metric ton

km kilometer

km² square kilometer km³ cubic kilometer

KMML Kerala Minerals and Metals Ltd.

KUCC Kennecott Utah Copper Corp.

lb pound

 LC_{50} lethal concentration 50 (concentration that leads to

50 percent mortality)

LCT lithium-cesium-tantalum LED light-emitting diode

Li₂CO₃ lithium carbonate (zabuyelite)

Li₂0 lithium oxide

LIP large igneous province

LOEL lowest observable effect limit

 $_{\log}$ f O_2 log of oxygen fugacity LREE light rare-earth element

 $\begin{array}{ll} m & \text{meter} \\ M & \text{molarity} \\ \text{m.y.} & \text{million years} \\ \text{m}^3 & \text{cubic meter} \end{array}$

Ma mega-annum (million years before present, or 10⁶ years ago)

MC-ICP-MS multiple collector-inductively coupled

plasma-mass spectrometry

MDEQ Michigan Department of Environmental Quality

MEND Mine Environment Neutral Drainage

mg milligram

mg Al/kg milligram of aluminum per kilogram

mg/d milligram per day
mg/kg milligram per kilogram
mg/L milligram per liter

mg/m³ milligram per cubic meter

 $(Mg,Fe)_3(Si,AI)_4O_{10}(OH)_2(Mg,Fe)_3(OH)_6$ chlorite

MgO magnesium oxide

Mkg/yr million kilograms per year

mm millimeter $Mn^{2+}Mn^{3+}{}_{6}(SiO_{4})O_{8}$ braunite $MnCO_{3}$ rhodochrosite MnO(OH) manganite MnO_{2} pyrolusite

MOFCOM Ministry of Commerce (China)

 $\begin{array}{ll} \text{monoclinic Na}_3(\text{AIF}_6) & \text{cryolite} \\ \text{MoS}_7, & \text{molybdenite} \end{array}$

MoSe, molybdenum (di)selenide

MRDS Mineral Resources Data System
MRI magnetic resonance imaging
MRS Materials Research Society

MSS monosulfide solution
MTR Maderia-Tore Rise
MVT Mississippi Valley-type
(Na,Ca,Ce)₂(Nb,Ti,Ta)₂(0,OH,F) pyrochlore group ???

 $Na_{15}Ca_{6}Fe_{3}Zr_{3}Si_{26}O_{73}(OH)_{4}CI_{2}$ eudialyte

(Na,Ca,K,Ba,Sr)_{0.3-0.7}

 Nb_2O_5

 $\begin{array}{ll} (\text{Mn,Mg,AI})_6 \text{O}_{12} \cdot 3.2 - 4.5 \text{H}_2 \text{O}) & \text{todorokite} \\ \text{NaCI} & \text{sodium chloride} \\ \text{NaHCO}_3 & \text{sodium bicarbonate} \\ \text{Na}_2 \text{O} & \text{sodium oxide} \\ \end{array}$

NEPA National Environmental Policy Act
NFPA National Fire Protection Association

niobium pentoxide

ng/L nanogram per liter

 ng/m^3 nanogram per cubic meter $(NH_4)^2BeF_4$ ammonium fluoroberyllate ???

NH₄ReO₄ ammonium perrhenate
NI National Instrument
(Ni,Co,Cu)Se₂ penroseite (blockite)

 $\begin{aligned} & \text{(Ni,Co)}_{2-x} \text{Mn(0,OH)} 4 \cdot \text{nH}_2 \text{O} & \text{asbolane} \\ & \text{(Ni,Co)}_3 \text{S}_2 & \text{heazlewoodite} \end{aligned}$

Ni(S,Se), selenium-rich vaesite

Ni(S), vaesite

NiMH nickel-metal-hydride

NIOSH National Institute for Occupational Safety and Health

NMRI nuclear magnetic resonance instruments

NPL National Priorities List (Superfund)

NREL National Renewable Energy Laboratory

NTP National Toxicology Program

OPEC Organization of the Petroleum Exporting Countries

org-Se(-II) organo-selenide

OSHA Occupational Safety and Health Administration

 P_2O_5 phosphorus pentoxide ???

 $\begin{array}{ll} {\rm PbMoO_4} & {\rm wulfenite} \\ {\rm Pb_3Sn_3,Sb_2S_{14}} & {\rm cylindrite} \\ {\rm Pb_5Sn_5Sb_2S_{14}} & {\rm franckeite} \end{array}$

PbS lead sulfide (galena)

PbSe clausthalite

PEM proton exchange membrane
PET polyethylene terephthalate

pg/L picogram per liter

pg/m³ picogram per cubic meter
PGE platinum-group element
PGM platinum-group metal

pm picometer
ppb part per billion
ppm part per million
ppt part per trillion

QSP quartz-sericite-pyrite

RDA recommended daily allowance

 ${
m Re}_2{
m O}_7$ native rhenium ${
m Re}_2{
m O}_7$ rhenium heptoxide ${
m REE}$ rare-earth element

ReMoCu₂PbS₆ copper-rhenium sulfide ???

 $\begin{array}{lll} {\sf REO} & {\sf rare-earth\ oxide} \\ {\sf ReO}_2 & {\sf rhenium\ dioxide} \\ {\sf ReO}_3 & {\sf rhenium\ trioxide} \end{array}$

ReS₂ rheniite

RF radio-frequency

SAF submerged-arc furnace

SAMREC South African Code for Reporting Exploration Results

Sb₂O₃ antimony trioxide (senarmontite)

 ${\rm Sb_2S_2O}$ kermesite ${\rm Sb_2S_3}$ stibnite ${\rm Sb_3O_6(OH)}$ stibiconite

SbCl₃ antimony trichloride

 $\begin{array}{lll} \text{Se} & & \text{selenium} \\ \text{Se(-II)} & & \text{selenide} \\ \text{Se(IV) or SeO}_3^{\ 2^-} & & \text{selenite} \\ \text{Se(VI) or SeO}_4^{\ 2^-} & & \text{selenate} \\ \end{array}$

Se0 native selenium

SEC U.S. Securities and Exchange Commission

SEDEX sedimentary exhalative

 $\begin{array}{ccc} \operatorname{SeO}_2 & \operatorname{downeyite} \\ \operatorname{SeO}_{2(g)} & \operatorname{selenium dioxide} \\ \operatorname{SG} & \operatorname{specific gravity} \end{array}$

SHRIMP sensitive high-resolution ion microprobe
SiO₂ silicon dioxide (quartz, amorphous silica)

 $\begin{array}{lll} \operatorname{SnCl_2} & & \operatorname{tin\;chloride} \\ \operatorname{SnO_2} & & \operatorname{cassiterite} \\ \operatorname{SO_{2(g)}} & & \operatorname{sulfur\;dioxide} \\ \operatorname{SO_4^{2-}} & & \operatorname{sulfate} \end{array}$

86Sr isotope 86 for strontium
 87Sr isotope 87 for strontium
 SSV sandstone-hosted vanadium
 SX-EW solvent extraction-electrowinning

Ta₂O₅ tantalum pentoxide

TBT tributyltin

TBTCI tributyltin chloride
TBTO bis(tri-n-butyltin) oxide

 $\begin{array}{lll} \text{Te(II)} & & \text{telluride} \\ \text{Te(IV)} & & \text{tellurite} \\ \text{Te(VI)} & & \text{tellurate} \\ \text{ThO}_2 & & \text{thorium dioxide} \\ \end{array}$

TiO₂ titanium dioxide (rutile, anatase, brookite)

TPT triphenyltin

TRE Tantalus Rare Earths
TREO total rare-earth oxide
TWA time-weighted average

UO₂ uranium dioxide

USGS U.S. Geological Survey

UST unidirectional solidification texture

 $egin{array}{lll} {\sf V_2O_5} & & {\sf vanadium\ pentoxide} \\ {\sf VLF} & & {\sf very\ low\ frequency} \\ \end{array}$

VMS volcanogenic massive sulfide
VRB vanadium redox-flow battery
VTM vanadiferous titanomagnetite
WGS 84 World Geodetic System of 1984
WHO World Health Organization

 $W0_3$ tungsten trioxide wt. % weight percent Y_20_3 yttrium oxide (yttria) ZnS zinc sulfide (sphalerite)

ZnSe stilleite

ZrO₂ zirconium dioxide (zirconia, baddeleyite)

 $\begin{aligned} & \text{ZrSiO}_4 & \text{zircon} \\ & \alpha\text{-AIO(OH)} & \text{diaspore} \end{aligned}$

 $\begin{array}{ll} \alpha\text{-tin} & \text{alpha-tin (also known as gray tin)} \\ \text{β-tin} & \text{beta-tin (also known as white tin)} \end{array}$

 δ -MnO₂ delta-manganese dioxide

 γ -AlO(OH) boehmite

μCi/mL microcurie per milliliter

μg Al/L microgram of aluminum per liter μg Mn/L microgram of manganese per liter

μg Mn/m³ microgram of manganese per cubic meter

μg/d microgram per day
 μg/g microgram per gram
 μg/kg microgram per kilogram
 μg/L microgram per liter

μg/m³ microgram per cubic meter

μm micrometer

If no more rows are deleted, reduce space after a bit so can delete pages xxix and xxx

Prepared by the USGS Science Publishing Network Reston Publishing Service Center Edited by J.C. Ishee and Stokely J. Klasovsky Illustrations and layout by Caryl J. Wipperfurth

For more information concerning this report, please contact:

Mineral Resources Program Coordinator U.S. Geological Survey 913 National Center Reston, VA 20192 Telephone: 703–648–6100

Fax: 703–648–6057

Email: minerals@usgs.gov Home page: http://minerals.usgs.gov

