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Chapter 3. Projecting End-of-Century Shifts in the Spatial
Pattern of Plant-Available Water Across Hawai'‘i to Assess
Implications to Vegetation Shifts

By Lucas B. Fortini," James D. Jacobi,' and Jonathan P. Price?

3.1. Highlights

* Anticipating potential shifts in plant communities has
been a major challenge in climate change ecology.
In Hawai‘i, where conservation efforts tend to be
habitat focused, the lack of projections of vegetation
shifts under future climate is a major knowledge gap
for developing management actions aimed at climate
change mitigation and adaptation.

* As afirst approximation of such changes, we have
modeled potential shifts of terrestrial vegetation across
the Hawaiian landscape between now and the end of this
century. Our approach relies on modeling the relation
between current climate and the distribution of broad,
climatically determined moisture zones (for example, dry,
mesic, and wet areas) that form the basis of natural land-
cover classification classes in Hawai‘i (for example, dry
forests, wet forests, mesic shrublands).

* In this approach we modeled the suitability of the landscape
to each moisture zone based on its relation to mean annual
temperature, wet season precipitation, and dry season
precipitation and then integrated these individual moisture-
zone models into landscape moisture-zone projections under
current and end-of-century climate scenarios.

* We integrated our moisture-zone projections into a detailed
Hawai‘i land-cover map to derive a first approximation of
climate-based shifts in land cover in Hawai‘i. The results
show we can accurately replicate the current distribution
of Hawaiian moisture zones using simple climate metrics
based on temperature and precipitation.

* Our resulting models identify areas in the landscape where
projected shifts in climate may lead to moisture-driven
vegetation shifts with clear consequences to overall carbon
storage across the archipelago.

'U.S. Geological Survey.

2University of Hawai‘i at Hilo.

3.2. Introduction

Sharp climate and elevation gradients in the main Hawaiian
Islands lead to huge vegetation variation over relatively short
distances. Hawai‘i possesses 25 of the 35 Holdridge global life
zones (Asner and others 2005), which results in large variability
in biomass across the Hawaiian landscape (Asner and others,
2009, 2011). This variability means potential climate shifts can
have major implications to land carbon through shifts in Hawai‘i
vegetation distribution. An important step in quantifying the
potential changes in carbon storage owing to projected climate
shifts is quantifying how the vegetation may change over time
under future scenarios. However, projecting potential shifts in
vegetation and plant communities has been a major challenge in
climate change research (Cramer and others, 2001). There are
clear implications of such shifts to the conservation of Hawaiian
native species and their habitat, especially given the number of
endangered species in Hawai‘i and their high vulnerability to
climate change (Fortini and others, 2013, 2015; Krushelnycky and
others, 2013). This gap in knowledge of potential vegetation shifts
in response to climate also hinders the quantification of shifts in
potential landscape carbon storage that can allow for evaluation of
the viability of carbon sequestration efforts (Bachelet and others,
2001; Lucht and others, 2006; Gibbs, 2007).

For a relatively small isolated land area such as Hawai‘i,
there are few research approaches available to help us explore
the potential climate-based shifts in vegetation. Vegetation-
distribution projections based on global vegetation models do not
typically apply to isolated islands. Although part of the reason
is the coarse spatial resolution of most global vegetation models
(Bonan and others, 2003; Gonzalez and others, 2010; Pavlick and
others, 2013), another major challenge arises from the numerous
differences among island and continental systems under which
vegetation models are parameterized. For instance, isolated
disharmonic flora (Ziegler, 2002), which lead to differences in
species richness (Ostertag and others, 2014), fire prevalence
and behavior (Benoit and others, 2009; Ellsworth and others,
2013), and ongoing biological invasions (Asner and others,

2008; Mascaro and others, 2008), indicate mechanistic models
parameterized for continental systems are of limited applicability
to Hawai‘i and other isolated archipelagos.
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Given the lack of data necessary for the proper
parameterization of mechanistic vegetation models in Hawai‘i
and other similarly isolated islands (Hartig and others, 2012),
we attempt to provide a coarse first approximation of the
impacts of projected climate shifts to vegetation across
Hawai‘i using a simple yet novel approach. Our approach
relies on modeling the relation between current climate and
the distribution of broad climatically determined moisture
zones that form the basis of natural land-cover classification
classes in Hawai‘i (for example, dry forests, wet forests,
mesic shrublands; Gagne and Cuddihy, 1990; Gon, 2006;
Rollins, 2009; Price and others, 2012). In this approach we
first model the suitability of the landscape to each moisture
zone based on variability of mean annual temperature (MAT),
wet season precipitation, and dry season precipitation and then
integrate these individual models into landscape moisture-
zone projections under current and end-of-century climate
scenarios. Additionally, we use a novel calibration algorithm
to ensure unbiased projections of prevalence among modeled
moisture-zone classes under current and future climate.
Lastly, to approximate how these shifts in moisture zone may
differentially impact forests, shrublands, and grasslands across
Hawai‘i and their carbon storage potential, we integrate our
moisture-zone projections to a Hawai‘i GAP Analysis Program
(HIGAP) vegetation structure map (Jacobi and others, this
volume, chap. 2).

3.3. Input Data and Methods

3.3.1. Land-cover Data and Processing

As baseline data for our projections, we used the map of
current distribution of moisture zones across Hawai‘i (Price
and others, 2012). The moisture-zone map describes the
variability of plant-available moisture across Hawai‘i and has
been used in most recent land-cover mapping efforts for the
islands. This moisture-zone classification is primarily based
on annual precipitation and potential evapotranspiration (thus
also being a function of temperature and humidity), but also
considers the distribution of independently derived vegetation
moisture zones (Jacobi, 1989). The moisture-zone map is
based on three generalized moisture classes (dry, mesic, and
wet) that reflect the way vegetation types are commonly
subcategorized in Hawai‘i (for example, wet versus mesic
forests). In broad terms these moisture classes can be
described as areas where the difference between mean annual
precipitation (MAP) and potential evapotranspiration (PET) is
more than 1,661 mm (wet), between 0 and 1,660 mm (mesic),
and less than 0 mm (dry) (Price and others, 2007). Prior to all
analyses, we resampled the moisture-zone map to 500-m pixel
resolution using a majority filter to reduce the computational
time required to run models (fig. 3.1).

3.3.2. Projecting Moisture-Zone Distributions
Under Current and Future Climate

We projected current and future distribution of moisture
zones across the Hawaiian Islands using an approach based on
the comparative suitability of the Hawaiian landscape to each of
the three moisture zones considered. In this approach, we create
baseline and end-of-century landscape projections based on multiple
iterations of our moisture-zone model (fig. 3.2). Each iteration
of the model uses a stratified random sample of the baseline map
(the training set) to determine the suitability of the landscape to
each moisture zone based on climate predictors alone (individual
moisture-zone models) using a boosted regression tree approach
(BRT; fig. 3.3). Hence, individual iterations only provide partial
coverage of landscape under current climate because projections
are not applied to parts of landscape used for model fitting to avoid
overfitting. We chose BRT based on the method’s overall good
performance in similar efforts to model ecological distribution
patterns (Elith and others, 2008; Hastie and others, 2011). An initial
test showed similar accuracies for moisture-zone models based on
simpler Mahalanobis distance-based methods. However, owing to
the smaller computational requirements and wider acceptability of
BRT, we used BRT for the remainder of our reported models. BRT
is an increasingly common ecological modeling method frequently
used in species distribution modeling owing to its good model fits.
To merge individual moisture-zone models into a single projection
(a multi-moisture-zone projection), we used a simple algorithm
that assigns a moisture zone to each landscape cell based simply
on which moisture zone has the highest model-derived suitability
for that location (fig. 3.4). Comparisons with a simpler multinomial
BRT approach showed that it provided less accurate and more biased
model outputs compared to our approach.

All individual BRT models use optimal settings found
in preliminary tests including using a 0.01 learning rate, a tree
complexity of 5, and a 0.5 bag fraction (Elith and others, 2008).
The number of trees in each model was optimized to balance
predictive power versus generalization of models (Hijmans and
others, 2012). All models and analyses were developed in the R
programming language (R Core Team, 2014) using the dismo,
gbm, and raster packages (Ridgeway, 2005; Hijmans and others,
2012,2014)

3.3.2.1. Model Replicates

To limit the effect of individual training points to projection
outcomes, we ran each model step 200 times using 80 percent of
the baseline moisture-zone map for model fitting (the training set,
n=51,992) and 20 percent for model evaluation (the evaluation set,
n=12,998). Each model iteration splits the data using a stratified
random sampling algorithm with respect to moisture-zone
prevalence across islands in the original baseline map. Our approach
was based on two sets of model runs (see Moisture-zone model
workflow box below): a first step used to fit and calibrate our models
(see section 3.3.2.2; figs. 3.2 through 3.4) and a second step to apply
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200 model iterations

Landscape MZ projection
Landscape MZ projection

Landscape MZ projection

Figure 3.2. Diagram illustrating the combination of multiple partial-coverage landscape moisture-zone projections into a final landscape moisture-
zone projection. Final projection values are based on most frequent moisture-zone projection across iterations for each raster cell. MZ, moisture zone.

I Dry
Mesic

Subset locations inside/outside wet
Wet

MZ areas (training set)

Use data above to create statistical model relating

wet MZ distributiuon to climate predictors

Apply model to determine
suitability of remaining locations
to MZ (evaluation set)

Figure 3.3. Diagram illustrating the fitting of the model describing the suitability of the landscape to individual moisture zones. This process uses
the baseline moisture-zone map (fig. 3.1) for model training and evaluation. MZ, moisture zone.
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Combine MZ suitability

maps based on
Dry MZ suitability highest values Landscape MZ suitability

Mesic MZ suitability
Wet MZ suitability

I Dry
Mesic
. Wet

Model calibration:
+ Add constant to each MZ suitability map and
repeat cycle until prevalence of landscape projection equals

baseline prevalence.
* Repeat entire process 200 times to
calculate mean calibration values.

Figure 3.4. Diagram illustrating the integration of individual moisture-zone suitability models (fig. 3.2) into landscape moisture-zone projections.
This iterative procedure includes a calibration step to minimize bias in landscape projections. Resulting Landscape moisture-zone projections do not
have 100 percent landscape coverage as locations used for model fitting are excluded from output maps. MZ, moisture zone.

4 Moisture-zone model workflow: N
Step 1: Model fitting and calibration under current climate (200 iterations)

 For each iteration:

» Randomly split baseline cover and predictor maps into training (80 percent) and evaluation (20 percent) sets
» For each moisture zone (fig. 3.2):
+ Fit BRT model using training set
* Create moisture-zone suitability map using fitted model and evaluation set
* Create landscape moisture-zone projection based on all moisture-zone suitability maps (fig. 3.3)
+ Calibrate landscape projection so its biome prevalence equals baseline prevalence

* Create mean calibration constants from all fitting and calibration iterations

Step 2: Model projections for baseline and future scenarios (200 calibrated runs, fig. 3.4)
* For each model iteration (baseline and future scenarios):
» Re-apply moisture zone fitted models with mean calibrations
* To current climate dataset

* To future climate dataset
Step 3: Create final current and future landscape projections

* Create final maps based on most frequent moisture-zone projection across model runs




26 Baseline and Projected Future Carbon Storage and Carbon Fluxes in Ecosystems of Hawai'i

the calibrated models under current and future climate to create
our final landscape moisture-zone projections (see section 3.3.2.3;
fig. 3.2).

3.3.2.2. Model Calibration Runs

Although the winner-takes-all approach to integrate
multiple vegetation models into a single landscape model has
been previously used (Tovar and others, 2013), we introduce a
novel and simple calibration procedure that aims to minimize
bias in final projections (fig. 3.3). This is necessary because
there may be differences in model sensitivity and fit across
individual moisture zones that could lead to bias in a final
landscape classification. If this bias is consistent across model
iterations, a standard model averaging approach will not reduce
it. Hence, in this procedure, after evaluating current moisture-
zone projection bias in terms of deviations in moisture-zone
prevalence between baseline moisture-zone distribution and
current model projections for the evaluation set, a search
algorithm incrementally adds or subtracts a constant to the
suitability scores of each individual moisture zone until the
subsequent landscape moisture-zone projection has prevalence
across moisture zones within 1 percent of baseline prevalence.
This calibration routine is analogous to presence/absence
thresholding algorithms commonly used in species distribution
models aimed at yielding projections with equal omission and
commission errors (Jiménez-Valverde and Lobo, 2007; Liu
and others, 2011). We repeated the model fitting, evaluation,
and calibration steps 200 times using different evaluation and
training sets to determine the final average model calibration
constants to be applied in all calibrated final models.

3.3.2.3. Calibrated Model Runs and Final Projections

Following calibration, we projected 200 replicates of our
model across the archipelago based on our current and future
climate predictors, along with the average calibration values
calculated above (fig. 3.4). The output of individual replicates
does not yield a complete moisture-zone coverage map for
current climate as the calibrated model is not applied to the
training set locations to avoid overly confident projections.
However, as each model replicate assigns the most likely
moisture zone for 20 percent of the landscape, the final mean
landscape projection under current and future climate is based
on the most frequently predicted moisture zone for a given
location. Lastly, we quantify uncertainty in our final model
projections by calculating the ensemble committee agreement
across all model iterations. This is calculated as the frequency
at which the projected cover for a location is projected across
all model replicates, where, for instance, a value of 0.8 indicates
that 80 percent of model iterations assigned the same moisture
zone to a given location.

3.3.2.4. Projection Integration with Land Cover

To determine the implications of moisture-zone changes
to Hawaiian land cover, we integrated our current and future

moisture-zone projections with a coarse vegetation map based
on the carbon assessment for Hawai‘i (CAH) land-cover map
by Jacobi and others (this volume, chap. 2). The CAH map is a
detailed representation of current vegetation distribution across
the main Hawaiian Islands based on multiple data sources
resulting in 48 cover classes. As with other Hawaiian land-cover
maps (Rollins, 2009), the CAH land-cover map stratifies most
non-anthropogenic cover types into moisture-zone subclasses.
For the purpose of our simplistic land-cover analysis, we
grouped the original classes into forest, shrubland, and grassland
general classes resampled to 500-m resolution, excluding all
original CAH land-cover classes that did not clearly fit into
these three categories (table 3.1). This step not only simplified
cover types considered but also removed all moisture-zone
associations from the HIGAP map. We then simply merged our
modeled moisture-zone map with the moisture-less HIGAP map
using either the current or future moisture-zone projections.
This overlay analysis allowed us to get a first approximation

of the differential impact of projected moisture-zone shifts in
forest, shrubland, and grassland areas across the state.

3.3.3. Environmental Predictors

We derived all climatic variables used as predictors in
our models from current and future monthly temperature
minimums and maximums (Tmin, Tmax) and precipitation
data. We obtained current monthly precipitation and Tmin and
Tmax data from 250-m resolution datasets (Giambelluca and
others, 2013, 2014). We calculated mean annual wet season
(November—April) and dry season (May—October) temperature
and precipitation using the R package “raster” based on the
monthly rainfall and temperature data (Hijmans and others,
2014). We calculated future yearly and seasonal climatic
indicators using the same procedure as for the baseline data.
However, before calculating yearly and seasonal indicators
we derived the end-of-century values for monthly Tmin,
Tmazx, and precipitation by integrating climate projections
with current climate estimates. To do that, we first calculated
the projected change between 1990 and 2010 and between
2080 and 2100 for each monthly variable developed from the
Hawaiian Regional Climate Model (HRCM) with 1-km spatial
resolution for Maui and 3 km for all other islands (Zhang and
others, 2012). We then added these delta values to current
monthly climate values before recalculating all yearly and
seasonal variables. The HRCM-based climate projections
show an average of 2.5 °C warming over the islands, but with
a clear increased warming at higher versus lower elevations
(3.4 °C versus 2.2 °C, respectively), as documented in
previous studies (Beniston and others, 1997; Diaz and Bradley,
1997; Rangwala and others, 2013). Predicted precipitation
shifts include increased precipitation in windward wet areas of
Hawai‘i and Maui, but general slight drying trends across the
drier areas of the State.

The HRCM is based on the Weather Research and
Forecasting model ver. 3.3 and uses the SRES A1B emission
scenario and the mean of multiple CMIP3 global circulation
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Revised Hawai‘i GAP Analysis Program cover classes and their relation to our simplified land-use map integrated with current and future moisture-

[Data from Jacobi and others (this volume, chap. 2). HIGAP, Hawai‘i GAP Analysis Program]

HIGAP cover class Simplified cover

HIGAP cover class Simplified cover

class class
Alien dry forest Forest Alien mesic grassland Grassland
Alien mesic forest Forest Alien wet grassland Grassland
Alien wet forest Forest Native Deschampsia grassland Grassland
Closed Hala forest Forest Native bog community Other
Closed koa—ohia mesic forest Forest Wetland vegetation Other
Closed koa—ohia wet forest Forest Cultivated agriculture Other
Closed ohia dry forest Forest Developed open space Other
Closed ohia mesic forest Forest Low—intensity developed Other
Closed ohia wet forest Forest Medium-intensity developed Other
Kiawe dry forest and shrubland Forest High—intensity developed Other
Low-stature ohia wet forest Forest Very sparse vegetation to unvegetated Other
Mixed native—alien dry forest Forest Water Other
Mixed native—alien mesic forest Forest Alien dry shrubland Shrubland
Mixed native—alien wet forest Forest Alien mesic shrubland Shrubland
Native mesic to dry forest and shrubland Forest Alien wet shrubland Shrubland
Open koa—mamane dry forest Forest Mixed native—alien dry cliff community Shrubland
Open koa—ohia mesic forest Forest Mixed native—alien mesic shrubs and grass Shrubland
Open koa—ohia wet forest Forest Mixed native—alien wet shrubs and grasses Shrubland
Open ohia dry forest Forest Native wet cliff community Shrubland
Open ohia mesic forest Forest Native dry shrubland Shrubland
Open ohia wet forest Forest Native mesic shrubland Shrubland
Mixed mamane—naio-native trees dry woodland Forest Native wet shrubland Shrubland
Plantation forest Forest Uluhe ferns and native shrubs Shrubland
Alien dry grassland Grassland Coastal strand vegetation Shrubland

models (GCMs) (Zhang and others, 2012). The HRCM
projections are based on a substantial regional dynamic
climate model which replicates the regional and island
climate mechanisms that largely dictate local climate, such

as extreme orographic-based precipitation gradients and
trade-wind inversions (Zhang and others, 2012). Because

of computational limitations, only a single end-of-century
climate projection is available from the HRCM. Although this
limits our analysis to consider a single future climate scenario,
without this downscaled effort, preliminary analysis showed
available GCM outputs commonly used elsewhere are too
coarse to represent the steep environmental gradients present
across the archipelago.

We selected MAT, wet season precipitation, and dry season
precipitation as our three predictors of moisture-zone distribution.
Preliminary analysis showed models using a combination of MAT
and MAP performed as well or better than most other possible
two-climatic-variable combinations. However, the substitution
of MAP with wet and dry season precipitation greatly improved
the accuracy of our models, especially in areas where seasonal

precipitation patterns are markedly different from annual values
(Price and others, 2012).

3.4. Results

3.4.1. Current Moisture-Zone Projections and
Model Evaluation

Opverall, the current broad geographical pattern of potential
moisture-zone distribution across the Hawaiian landscape
was well replicated using our three predictors (fig. 3.5). The
accuracy of our landscape model based on our calibrated
multi-moisture-zone projections for current climate was very
high (0.938+0.002 s.d.). An error matrix comparing our mean
current projection with the original moisture-zone baseline
map shows what types of errors were most common in our
projections (table 3.2). Overall, the dry moisture zone was our
most accurately predicted moisture zone (0.957 accuracy), and
the mesic zone was our least accurately predicted moisture zone
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(0.899 accuracy). Although the general distribution of moisture
zones across all islands was well replicated by our model,

in a few small areas our model had difficulties in properly
representing the extent of certain moisture-zone features. For
instance, our model tended to underestimate the extent of moist
areas on the top of the Waianae range on the island of O‘ahu
and the mesic areas on the top of the island of Lana‘i (fig. 3.5).
As expected, our ensemble committee agreement shows
transition zones between moisture zones as areas of greater
uncertainty in our current projections, but owing to the high
accuracy of our models these areas are generally small (fig. 3.6).
Additionally, several areas across the Island of Hawai‘i also
have relatively low within-model agreement, indicating greater
uncertainties in our projections. Because of the high overall
model accuracy, the uncalibrated current projections showed
very small differences in prevalence among moisture zones
when compared to the original basemap (table 3.2). Fortunately,
our model calibration algorithm was able to reduce these

small biases by adding small calibration constants (<5 percent
adjustments) without any change in the overall classification
accuracy. In preliminary models where biases in projections
were larger, the calibration routine effectively removed bias and
consequently raised model accuracies.

Table 3.2.
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3.4.2. Future Moisture-Zone Projections Across
the Archipelago and Individual Islands

Our future moisture-zone projection shows the suitability
of the Hawaiian landscape to moisture zones by the end of the
century (fig. 3.7). Our model-agreement map for future projections
shows the uncertainty in projections is also concentrated in
ecotones (fig. 3.8). Differences between figures 3.3 and 3.5
highlight areas that, by the end of the century, are projected
to become more climatically suitable to a moisture zone other
than the one present today. In quantitative terms, the extent of
mesic areas across the archipelago is projected to decrease by
32 percent, with smaller extent increases for both dry and wet
habitats (table 3.3). Although the decrease in the extent of mesic
areas is large, this value hides an even greater underlying shift
in distribution of mesic forest areas across the state where, by
the end of the century, only 45 percent of current mesic areas are
projected to remain in mesic conditions. This difference between
mesic-extent change and projected areas remaining in mesic
conditions is due to some of the loss in current mesic areas being
counterbalanced by transition into mesic conditions in some other
areas by the end of the century (table 3.4).

Comparison of actual and modeled baseline moisture-zone

prevalence as a proportion of total land area across the seven main

Hawaiian Islands.

Moisture  Actual baseline Predicted baseline prevalence:
zone prevalence Uncalibrated model ~ Calibrated model

Dry 0.451 0.446 0.449

Mesic 0.292 0.300 0.295

Wet 0.256 0.255 0.256

Table 3.3. Summary of projected shifts in moisture-zone extent and prevalence between current and projected future conditions.
Moisture  Current Projected future  Current proportion  Projected future proportion ~ Percent change  Percent of current
zone area (km?) area (km?) of land area of land area in total area area unchanged
Dry 7,290 8,440 0.449 0.52 15.78 88.9
Mesic 4,790 3,270 0.295 0.201 -31.73 45.2
Wet 4,160 4,540 0.256 0.279 8.98 92.0
Table 3.4. Transition matrix illustrating the amount of area shifting among moisture-zone classes between current and projected future conditions.

Projected future area (km?) by source moisture zone

Future moisture zone

Total projected future

Dry Mesic Wet area (km?)
Dry 6,483 1,925 32 8,440
Mesic 800 2,164 303 3,270
Wet 9 700 3,829 4,540
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3.4.3. Projected Moisture-Zone Shifts Across
Islands

The analysis of moisture-zone changes by individual island
groups (Kaua‘i, O‘ahu, Maui Nui [the islands of Maui, Moloka‘i,
Lana‘i, and Kaho‘olawe], and Hawai‘i) shows considerable
variability in projected change in the prevalence of the three
moisture zones across islands (figs. 3.9, 3.10). In terms of changes
in overall extent of moisture zones across islands (fig. 3.9), both
O‘ahu and Kaua‘i are projected to see large increases in the
extent of dry moisture-zone areas (>50 percent gain), with related
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large decreases in mesic moisture-zone areas (>75 percent loss).
However, this overall change in moisture-zone extent hides drastic
changes in the distribution of the mesic moisture zone across

the islands. The results summarizing the proportion of current
moisture zones left unchanged between now and the end of the
century show that nearly 50 percent of current mesic moisture-
zone areas on Maui and Hawai‘i Island by the end of the century
become more suitable for dry or wet moisture zones (fig. 3.10). On
Kaua‘i and O‘ahu this shift is even more extreme, with less than
25 percent of current mesic moisture-zone areas persisting by the
end of the century.
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3.4.4. Translating Moisture-Zone Shifts into
Climate-Based Land-Cover Shifts

In the context of broad cover types currently present
across the Hawaiian chain, interesting patterns emerge in
projected moisture-zone changes (figs. 3.11, 3.12). The loss of
mesic areas and increase in dry areas across the archipelago
happens primarily in areas currently forested, followed
by smaller areas in grasslands. More specifically, the shift
towards the dry moisture zone does is not manifested equally
across the three vegetation classes (table 3.5). Nearly all
mesic-moisture-zone loss within forested areas results from
mesic forest switching to dry forest. Similarly, three quarters
of the extent loss in mesic moisture zone within grasslands is
attributed to a dry grassland expansion. However, the overall
contraction of mesic moisture zones within shrubland areas,
albeit small, is attributed to shifts towards wet shrubland
vegetation. Looking at island differences for these shifts, the
slight increase in extent of wet moisture-zone areas across
the archipelago mostly happens in shrublands on the Island of
Hawai‘i (fig. 3.13).

3.5. Discussion

Based on the relatively high accuracy of our current
model projections, the distribution of moisture zones across the
landscape seems strongly related to average climatic conditions.
This is partially expected, as moisture zones are clearly
dependent on atmospheric climate (Price and others, 2012).
The small number of classes and the coarse (500-m) scale of
analysis also likely helped with minimizing fine-scale variation
that would otherwise not be easily explained by our simple
correlative model. With these strong moisture-zone—climate
relationships, we were able to recreate and project the Hawaiian
moisture zones using climatic variables different from the
information used to create the original moisture-zone maps and
that are not available for future climate scenarios.

Table 3.5.
shrubland, and grassland areas.

Baseline and Projected Future Carbon Storage and Carbon Fluxes in Ecosystems of Hawai'i

By applying our models to projected end-of-century
climate conditions, we are able to provide a first approximation
of how the distribution of moisture zones is likely to shift.
Except for the large contraction of the wet moisture zone on the
west side of Hawai‘i Island, wet moisture zones are projected
to remain relatively unchanged between now and the end of the
century in both distribution and extent across the seven main
Hawaiian Islands. This is also largely the case for current dry
moisture zones except for some dry moisture-zone areas in
Hawai‘i Island displaced by the upward movement of mesic
moisture zones. The large contractions of mesic areas across the
state follow an increasing pattern from Hawai‘i to Kaua‘i, with
most of these areas shifting towards drier moisture zones.

3.5.1. Understanding Model Errors and
Uncertainties

Particularly noteworthy areas of consistent model error
include small wet areas on top of O‘ahu and Lana‘i known to
be influenced by fog interception (Ekern, 1964). Indeed, these
areas of model discrepancy may be useful to identify locations
where factors beyond those directly related to temperature and
precipitation may drive differences in plant-available moisture
across the archipelago. For instance, relative humidity has been
shown to be a strong determinant of tree-line position at higher
elevations on Maui (Crausbay and others, 2014). Substrate age and
other non-climatic factors may also be important to explain other
model discrepancies and patterns at finer spatial scales (Price and
others, 2012).

Although our model replicates the pattern of potential
moisture-zone distribution across the Hawaiian landscape well, it
is still worthwhile to explore the reasons for discrepancies between
the model and our original baseline moisture-zone map. First,
our approach requires a relevant set of environmental predictors.
Although we assessed multiple possible combinations of climatic
indicators commonly used in similar analyses, these bioclimatic
variables are entirely based on precipitation and temperature
and do not account for climate extremes that may be important

Summary of projected shifts in land-cover class based on integrating moisture-zone shifts with current distribution of forest,

Land-cover class

Current percent of land  Projected future percent

Percent change from Percent unchanged

area of land area current from current
Dry forest 5.1 9.8 94.3 92.5
Mesic forest 11.6 6.3 -45.4 41.0
Wet forest 18.8 19.3 2.7 92.8
Dry shrubland 8.8 9.0 2.4 85.4
Mesic shrubland 5.4 43 -20.3 53.5
Wet shrubland 24 32 37.0 93.0
Dry grassland 9.0 10.6 17.6 93.1
Mesic grassland 6.4 4.4 -31.7 51.9
Wet grassland 1.5 2.0 30.5 71.0
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in defining landscape vegetation patterns (Crausbay and others,
2014). For example, cloud cover, potential evapotranspiration, and
fog deposition are all additional variables that may be important
in better defining the distribution of Hawaiian moisture zones;
however, these variables are notoriously difficult to estimate for
the current climate and even harder to adequately project into

the future (Hawkins and Sutton, 2011; Knutti and Sedlacek,
2013). Another source of model errors may be inaccuracies in

the moisture-zone data used. Indeed, the moisture-zone map

is partially based on past archipelago maps of mean annual
precipitation (Giambelluca and others, 1986) that are known to
have discrepancies when compared to more recent estimates
(Giambelluca and others, 2013). Nevertheless, we expect errors
in the baseline moisture-zone map to be relatively small given the
coarse scale of our analysis.

Regarding future projection uncertainties, our ensemble
committee-agreement map (that represents an estimate of
model agreement among multiple iterations) only encapsulates
a portion of the uncertainty inherent in future projections.
Future expansion of this analysis with additional climate
projection scenarios, as they are made available, will likely
show a much more complete picture of future projection
uncertainty. Nevertheless, preliminary analyses using
alternative modeling approaches and alternative baselines
yielded consistent trends of increases in dry and wet areas
at the expense of mesic areas. This indicates that projection
uncertainty owing to model choice and starting conditions is
not unacceptably large.

3.5.2. Projected Moisture-Zone Shifts in the
Context of Hawaiian Climate Trends

In general, the projected moisture-zone shifts follow broad
patterns of current and projected climate trends. Projected
precipitation shifts are generally expected to make wet areas
wetter and dry areas drier, both at the global and regional level
(Zhang and others, 2012; Collins and others, 2013). However,
examining the differences among islands shows that patterns
in our moisture-zone projections are slightly more complex.
Namely, expansion of the wet moisture zone occurs on
windward (wet) Hawai‘i and Maui but not on O‘ahu or Kaua‘i.
Conversely, expansion of the dry moisture zone occurs on the
leeward (dry) side of every island except Hawai‘i. This larger
expansion of the dry moisture zones at the northwestern end
of the archipelago matches coarse global future projections of
precipitation change (Keener and others, 2012). These projected
drying trends also occur in the context of recent decreases in
streamflow (Bassiouni and Oki, 2013) and precipitation (Chu
and Chen, 2005; Krushelnycky and others, 2013).

One major uncertainty in our moisture-zone-shift
projections is the high-elevation areas on Maui and Hawai‘i
influenced by the trade-wind inversion. The frequency
and intensity of the trade-wind inversion is known to raise
temperatures and cap cloud formation in areas above 2,000 m in
elevation, and hence raise insolation and decrease precipitation
and relative humidity (Cao and others, 2007). This feature of
Hawaiian climate has a major impact on the distribution of
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vegetation at higher elevations, effectively limiting the height
of the forest line on these islands (Kitayama and Mueller-
Dombois, 1992; Loope and Giambelluca, 1998). Until recently,
there has been considerable debate about the response of trade-
wind inversions to regional and global climate shifts (Still and
others, 1999; Sperling and others, 2004), but global and regional
analysis increasingly point to a likely increase in frequency of
the trade-wind inversion that would lead to persistently drier
conditions (Lauer and others, 2013; Crausbay and others, 2014).

Although the HRCM simulations replicate the patterns
of increased temperature and decreased precipitation in areas
above the trade-wind inversion (Zhang and others, 2012),
contrary to expected changes in the trade-wind inversion from
other analyses, HRCM future projections seem to include a
more varied pattern of precipitation change for areas above
the trade-wind inversion including areas with more, less, or
equal precipitation. This makes some of the projected spread
of the wet moisture zone in high-elevation windward Maui
and Hawai‘i and the conversion of the top of Maui from dry to
mesic likely optimistic.

3.5.3. Temperature-Induced Drought and
Vegetation Change

The general increase in dry areas and decrease in mesic
areas between present and the end of the century occur
in areas that suggest some of these trends will be driven
by expected temperature increases. In fact, there is ample
research that documents temperature amplification of plant
stress and drought (Kolb and Robberecht, 1996; Barber and
others, 2000; Park Williams and others, 2013) through greater
evapotranspirative demand (Weiss and others, 2009). Recent
research has shown that temperature is a strong driver of
drought conditions across the southwestern United States
including in temperate forests (Barber and others, 2000;
Park Williams and others, 2013). Many other studies further
highlight the importance of temperature to drought impacts
in terms of mortality, stress, and overall vegetation change
(Adams and others, 2009; Weiss and others, 2009; Allen and
others, 2010; McDowell and others, 2011).

3.5.4. Implications of Projected Vegetation Change
to Hawaiian Conservation Efforts

The generally large projected decreases in mesic areas
across the state and especially on the islands of Kaua‘i
and O‘ahu, have potentially large implications relative to
conservation of highly valuable native-species habitat. Mesic
habitats in Hawai‘i are zones of high species diversity because
they contain elements from both wet and dry habitats (Gagne
and Cuddihy, 1990; Price, 2004; Gon, 2006). However,
because this moisture zone is optimal for timber production,
agriculture, and ranching, large parts of this habitat have been

altered from their natural condition, resulting in a loss of
native-species diversity.

The reduction in extent of the mesic zone is directly
linked to an increase in the future extent of dry habitat.
Although the original Hawaiian dry-plant communities
were also known to harbor a great diversity of plant
species, particularly woody taxa (Rock, 1913; Gagne and
Cuddihy, 1990), much of this habitat zone, particularly
below 1,000-m elevation, has already been substantially
altered by human land use, invasive species, and fire. An
expansion of the area of dry habitat will likely result in an
increase in areas impacted by fire, which are then quickly
colonized by invasive grass species, and the likelihood
of more fires further increases. When a fire starts in a dry
habitat, it can easily spread into the adjacent mesic habitats
and cause substantial damage to the species composition and
vegetation structure of that community. Beyond the broad
categorical projected shift of mesic areas to dry areas, most
of the existing native dry communities are on the wetter end
of the dry moisture zone range, which suggests impacts of
projected climate shifts within stable moisture-zone areas
may also be significant.

Besides the significant pattern of mesic-to-dry moisture-
zone switch projected in our models, one other projected
change with clear conservation implication is the likelihood
of the nearly complete loss of the wet forest habitat on the
western side of the Island of Hawai‘i. Although the reduction
of the wet forest in this area is spatially compensated by
projected wet zone expansion at higher elevation windward
areas on Hawai‘i Island, the native plant species adapted to the
wet habitat in the Kona area (for example, Cyanea marksii and
Cyrtandra menziesii) will likely be lost (Price, 2004).

Our newly designed approach opens the door to several
improvements to vegetation and habitat modeling in Hawai‘i
and elsewhere. We are currently refining our modeling
approach to consider differences in limiting factors to the
distribution of individual vegetation classes. We are also
exploring modeling improvements that would allow for the
consideration of finer vegetation classes that are more easily
relatable to on-the-ground management efforts. With these and
other improvements, we can use our models as a steppingstone
to develop mechanistic models for the region that can provide
a wealth of information on the processes that drive the
projected shifts our analysis identifies.

Nevertheless, our projections can still be used to
characterize coarse vegetation changes and the long-term
consequences to carbon storage across the landscape. To do so,
the integration of our projections with multiple fire, landscape-
management, and use scenarios, along with the assessment of
aboveground and belowground carbon storage will provide
an unprecedented detail of carbon stocks across the Hawaiian
landscape and the potential future shifts. As such, our results
are used in Sleeter and others (this volume, chap. 8) to refine
land-use and land-cover scenarios for the archipelago and
project terrestrial carbon storage and CO, fluxes.
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