
8.1. Highlights
• For the State of Hawaiʻi, total carbon storage was projected to 

increase by about 6 percent (14.7 TgC) to 267.6 TgC in 2061.
• Carbon stored in living biomass was projected to decrease 

by approximately 1.3 percent by 2061, from 52.0 TgC to 
51.3 TgC; soil organic carbon was projected to increase 
from 183.6 TgC to 198.0 TgC.

• Net ecosystem production (NEP) for the State of Hawaiʻi 
was estimated at an average annual rate of 0.799 TgC/yr 
(mean annual NEP carbon flux density of 49 gC/m2/yr). 
When land-use change and disturbances were considered, 
statewide net ecosystem carbon balance (NECB) was 
estimated at an average annual rate of 0.595 TgC/yr (mean 
annual NECB carbon flux density of 36 gC/m2/yr). Both 
NEP and NECB were projected to decrease during the 
50-year projection period, indicating a reduction in statewide 
carbon-sink strength. Developed lands were projected to 
more than double (increasing by ~1,100 km2) by 2061 and 
account for 12.2 to 13.7 percent of the State’s land area. 
Conversion to development would account for an average 
net annual loss of 0.1 TgC/yr.

• Agricultural lands were projected to decrease sharply in 
the “business as usual” projection, with contraction rates 
(~45 km2/yr) more than double the rate of expansion 
(20 km2/yr). Agricultural expansion accounted for an 
average annual loss of 0.078 TgC/yr.

• Wildfire was projected to impact 41 km2/yr and burn 2,047 
km2 by 2061. Grasslands accounted for 41 percent of all fire, 
shrublands accounted for 42 percent, and forests accounted 
for 17 percent. Fire was most common in the dry moisture 
zone (average of 31 km2/yr), accounting for 76 percent of 
the annual burned area.

• Changes involving land-use transitions had the largest 
impact on total ecosystem carbon storage. Urbanization 
had the largest negative impact on total ecosystem carbon 
storage (from 4.0 to 7.4 TgC) and losses of agriculture had 
the strongest positive impact (from 7.4 to 10.4 TgC). By 
comparison, wildfire had a relatively small influence.

8.2. Introduction
Human caused changes in land use and land cover (LULC) 

can alter terrestrial ecosystem carbon stocks and carbon fluxes 
(Houghton and others, 1999). Since the first human occupants 
arrived more than 800 years ago, the native, natural landscapes 
of the Hawaiian Islands have undergone numerous waves of 
LULC change, from the first Hawaiians’ efforts to grow food, 
fiber, and fuel, to widespread deforestation and introduction of 
exotic invasive plant species following European contact, to the 
more recent increase in urbanization. Given Hawaiʻi’s volcanic 
composition, carbon-storage potential, and land-use history, 
it is important to assess the carbon sources and sinks under a 
range of controlling processes, including ecosystem changes 
resulting from climate change, wildfire, urbanization, and other 
anthropogenic drivers (Osher and others, 2003).

The Land Use and Carbon Scenario Simulator (LUCAS) 
model (Sleeter and others, 2015) was used to project changes in 
LULC and ecosystem carbon storage and flux under a “business 
as usual” (BAU) scenario for the State of Hawaiʻi. This report 
describes the model and corresponding parameters (section 8.3), 
results of the simulations (section 8.4), as well as some of the 
key uncertainties and limitations of this study (section 8.5).

8.3. Input Data and Methods
The LUCAS model was used to understand how changes in 

land use and land cover—in particular urbanization, agricultural 
expansion and contraction, wildfire, and vegetation dynamics—
affect carbon storage and fluxes for the State of Hawaiʻi. The 
LUCAS model is an integrated state-and-transition simulation 
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and stock-flow (SF) model, which was linked to the Integrated 
Biosphere Simulator (IBIS) to provide carbon-flux rates. 
The LUCAS model produces spatially explicit projections of 
land change while also tracking the flow of carbon between 
various pools. See Sleeter and others (2015) for a complete 
description of the LUCAS model, including the linkage to 
IBIS. A description of the software and modeling framework 
used to implement the LUCAS model can be found in Daniel 
and Frid (2012) and Daniel and others (2016). The ST-SIM 
software application (ver. 3.0.17) can be downloaded from Apex 
Resources Management Solutions (http://www.apexrms.com). 

8.3.1. State Variables and Scales
The modeling process covers most of the State of Hawaiʻi, 

including the islands of Hawaiʻi, Kahoʻolawe, Kauaʻi, Lānaʻi, 
Maui, Molokaʻi, and Oʻahu. The island of Niʻihau was not 
included in this analysis. Additionally, Hawaiʻi was subdivided 
into three moisture zones—dry, mesic, and wet—and subdivided 
into 16,146 1 × 1-km simulation cells (fig. 8.1). The temporal 
resolution of the model was set to annual timesteps.

The primary state variable tracked in the model was the 
state of each simulation cell. Each cell was assigned to 1 of 
189 unique state-class types representing the combination 

of 3 moisture zones, 7 islands, and 9 LULC classes (forest, 
grassland, shrubland, tree plantation, developed, agriculture, 
barren, water, and wetland). In addition to the state of each cell, 
the LUCAS model tracks the age and the time since transition 
(TST) of each cell. For this model we tracked the age of forests, 
grasslands, shrublands, and tree plantations; TST was tracked 
for fire occurring on the grassland state class. No changes were 
simulated for water and wetland state-class types.

8.3.2. Process Overview
Transition pathways are defined as the set of changes that 

can move a cell from one state to another. Transition pathways 
are defined for all possible conversions simulated within the 
model. These include transitions associated with urbanization, 
agricultural expansion, agricultural contraction, wildfire, shrub 
encroachment, forest management, and changes in the size and 
spatial distribution of moisture zones under future projections 
of climate change. Within each timestep the ordering of the 
transition pathways was conducted randomly. Temporally, 
transition probabilities can be specified as static or varying. 
For this model we identified a total of 7 transition groups, 14 
transition types, and 107 transition pathways (table 8.1). All 
transitions were modeled at an annual timestep.

Transition group Transition type Number of 
pathways

From state To state
Moisture zone LULC class Moisture zone LULC class

Agricultural expansion Agricultural expansion 9 All Forest, shrubland, 
grassland

All Agriculture

Agricultural contraction Agricultural contraction 9 All Agriculture All Forest, shrubland, 
grassland

Urbanization Urbanization 15 All Forest, shrubland, grassland, 
agriculture, barren

All Developed

Management Forest harvest 3 All Forest All Forest
Forest plantation 3 All Forest All Plantation
Plantation harvest 3 All Plantation All Plantation

Vegetation change Shrub encroachment 2 Dry Grassland Dry Shrubland
Mesic Mesic

Moisture zone change Dry to mesic 9 Dry All Mesic All
Mesic to dry 9 Mesic Dry
Mesic to wet 9 Mesic Wet
Wet to mesic 9 Wet Mesic

Wildfire submodel

Wildfire

High severity 9 All Forest All Grassland
Shrubland Grassland
Grassland Grassland

Medium severity 9 All Forest All Forest
Shrubland Shrubland
Grassland Grassland

Low severity 9 All Forest All Forest
Shrubland Shrubland
Grassland Grassland

[LULC, land use and land cover]
Table 8.1.   Transition pathways defined for the Land Use and Carbon Scenario Simulator (LUCAS) model.

http://www.apexrms.com


8.3. Input Data and Methods  109
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Shaded-relief base modified from U.S. Geological Survey National Elevation Dataset, 2015.
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Figure 8.1.  Maps showing state-class types (A) and moisture zones (B) used to initialize the Land Use and Carbon Scenario Simulator (LUCAS) 
model for Hawai‘i.Selmants_fig1b_chap8

Shaded-relief base modified from U.S. Geological Survey National Elevation Dataset, 2015.
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8.3.3. Model Parameterization

8.3.3.1. Transition Probabilities
Transition targets are used to model changes owing to 

agricultural expansion, agricultural contraction, urbanization, 
management, biome change, and moisture-zone change. 
Transition targets for agricultural expansion, agricultural 
contraction, and urbanization were based on a time series of 
change rates from remote-sensing-based mapping by the National 
Oceanic and Atmospheric Administrations (NOAA) Coastal 
Change Analysis Program (C-CAP). The C-CAP data provides 
classified land-cover images for Hawaiʻi for the years 1992, 2001, 
2005, and 2010 (NOAA, 2013). For these four dates and three 
temporal intervals we calculated the rate for each transition across 
the entire state. To represent this range of historical variability 
we sampled from a uniform distribution fitted to the minimum 
and maximum values from the C-CAP data (table 8.2). Transition 
targets to model changes in moisture zones were based on 
projections in Fortini and others (this volume, chap. 3). Maps of 

moisture-zone changes for the period 2000–2100 were used to 
calculate an annualized rate of change for each of the moisture-
zone conversions. These rates were then applied annually for each 
timestep within all Monte Carlo simulations of the model (table 
8.2). The management transition group consists of three transition 
types: forest harvest, forest-to-tree plantation conversion, and tree-
plantation harvest. Due to a lack of contemporary information, 
transition targets for forest and tree-plantation management were 
set to zero under the BAU scenario.

Compared to other transition types, wildland fire 
transitions were handled uniquely in the model using an 
approach that initiated wildland fire ignitions and then spread 
into adjacent pixels. The wildland fire size distribution and 
transition probabilities were based on the time series of burned 
area and severity mapped from Landsat imagery between 
2002 and 2011 using the Monitoring Trends in Burn Severity 
(MTBS) project’s mapping protocol for fires larger than 
0.4 km2 (Eidenshink, 2007), as described in Hawbaker and 
others (this volume, chap. 5). For each timestep and Monte 
Carlo simulation, the number and size of fires was randomly 
drawn from the baseline fire size distribution (table 8.3). Fires 

[prob, probability]

Transition type Moisture zone From class To class Mean area 
(km2)

Min area 
(km2)

Max area 
(km2)

Distribution 
type

Agricultural expansion N/A Forest, shrubland, grassland Agriculture --- 3 50 Uniform
Agricultural contraction N/A Agriculture Forest, shrubland, grassland --- 25 65 Uniform
Urbanization N/A Forest, shrubland, grassland, 

agriculture, barren
Developed --- 12 32 Uniform

Moisture zone change Dry Mesic All All 8 --- --- ---
Mesic Dry 19.42 --- --- ---
Mesic Wet 7 --- --- ---
Wet Mesic 3 --- --- ---

Table 8.2.   Transition targets and probabilities used in the Land Use and Carbon Scenario Simulator (LUCAS) model for the “business as usual” scenario.

Table 8.3.   Transition probabilities for the wildland fire transition type for different moisture zones, state classes, and years.

Year
Forest Shrubland Grassland

Dry Mesic Wet Dry Mesic Wet Dry Mesic Wet
2002 0.0004 0.0010 0.0006 0.0013 0.0053 0.0093 0.0005 0.0029 0.0003
2003 0.0043 0.0030 0.0039 0.0118 0.0162 0.0021 0.0082 0.0087 0.0008
2004 0.0006 0.0000 0.0000 0.0014 0.0000 0.0000 0.0011 0.0000 0.0000
2005 0.0036 0.0000 0.0000 0.0068 0.0002 0.0002 0.0633 0.0000 0.0001
2006 0.0014 0.0000 0.0000 0.0066 0.0000 0.0000 0.0157 0.0014 0.0000
2007 0.0074 0.0038 0.0000 0.0166 0.0027 0.0000 0.0397 0.0005 0.0000
2008 0.0053 0.0003 0.0000 0.0002 0.0018 0.0000 0.0025 0.0058 0.0020
2009 0.0032 0.0001 0.0000 0.0190 0.0017 0.0000 0.0016 0.0000 0.0000
2010 0.0015 0.0001 0.0000 0.0061 0.0003 0.0000 0.0088 0.0005 0.0000
2011 0.0000 0.0011 0.0010 0.0000 0.0025 0.0011 0.0033 0.0001 0.0002

Transition type Moisture zone From class To class Mean 
prob

Min 
prob

Max 
prob

Distribution 
type

Shrub encroachment Dry, mesic, wet Grassland Shrubland --- 0.006 0.0327 Uniform
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were initiated at randomly selected ignition points in burnable 
state classes (forest, shrubland, and grassland) and weighted 
by baseline burn probabilities for each state class (for example, 
grasslands had higher ignition probabilities than forests). Once 
initiated, fires would spread to adjacent pixels based on their 
transition multipliers (table 8.4) until the fire reached its randomly 
selected fire size or there were no more burnable pixels left to 
spread into. Fire spread was not adjusted to account for effects 
of slope or wind speed (daily weather were not used as inputs) 
as has been done with some other state-and-transition models 
(STSMs) (Liu and others, 2015); however, this had little effect 
on the simulated shapes and sizes of fires given the generally 
small size of fires in Hawaiʻi and the 1 × 1-km resolution of cells 
used in the model. As pixels were burned, they were randomly 
assigned a burn-severity category based on an additional set of 
transition multipliers (historical proportions for each state class 
and burn-severity class; table 8.5). The burn-probability category 
determined the state-class transition of a pixel (table 8.1). For both 
ignitions and spread, year-to-year variability was introduced by 
randomly selecting burn probabilities from one of the baseline 
years (2002–2011; table 8.4). Using this approach, future potential 
changes in the amount of area burned by wildland fires were a 
function of changes in the area of different burnable state classes.

Transition multipliers were also used to project changes 
in shrub encroachment; however, little is known about the rates 
of shrub encroachment in Hawaiʻi and large uncertainties exists 
surrounding the rates and pattern of conversion. In the dry and 
mesic moisture zones, grassland cells that had not experienced fire 
for 10 years became eligible for shrubland encroachment. For each 
Monte Carlo simulation, we sampled from a uniform distribution 

of values representing a 0.95 cumulative transition probability 
for 50 and 500 years without fire, resulting in annual transition 
probabilities ranging from 0.0327 to 0.006 (table 8.2).

8.3.3.2. Spatial Multipliers
Within the model, two types of spatial constraints were 

used to influence the pattern of LULC transitions. First, 
adjacency rules were established to drive transitions into cells 
immediately adjacent to existing cells classified in the “to” state 
class. For example, transitions into development (urbanization 
pathway) could only occur in cells immediately adjacent to 
existing developed cells. Second, spatial layers representing land 
ownership, protected lands, and land-use zoning were used to 
prohibit or limit changes from certain cells.

For the agricultural expansion, agricultural contraction, 
urbanization, and moisture-zone transitions, adjacency settings 
were established where candidate cells for each transition type 
were assigned a cell-based probability that was a linear function of 
the eight neighboring cells classified in the “to” class. The effect 
of this parameter setting results in cells with a higher number 
of neighbors being given a higher spatial multiplier value. Cells 
with no neighbors were assigned a transition multiplier value 
of zero, resulting in no possibility of transition. For the shrub 
encroachment transition, all cells with at least one neighbor were 
assigned values of one and cells with no neighbors were assigned 
a value of zero. The process for calculating adjacency probabilities 
was updated every 5 years for all transitions.

In addition to adjacency rules described above, a set of 
spatial maps was developed to further refine the location of 
modeled transitions. For the agricultural expansion pathway, 
a map of areas prioritized for agricultural production was 
obtained from the State of Hawaiʻi Office of Planning (http://
planning.hawaii.gov/gis/download-gis-data/). Cells classified 
as “zoned for agriculture” were assigned a spatial multiplier 
value of one; all other cells were assigned a value of zero 
(fig. 8.2). The same dataset was used to restrict urbanization 
where cells classified as “urban” were assigned a value of 
one. So as not to entirely limit urbanization from occurring in 
cells outside this zoned area, all other cells were assigned a 
spatial multiplier value of 0.5. Lastly, for both transitions, cells 
designated for conservation were assigned a value of zero, 
and were not allowed to experience a land-use conversion into 
agriculture or development (fig. 8.2).

Min area
(km2)

Max area
(km2) Proportion of events

0 1.0 0.5843
1.1 2.0 0.3983
2.1 5.0 0.1895
5.1 10.0 0.0885

10.1 25.0 0.0243
25.1 50.0 0.0073
50.1 75.0 0.0033
75.1 100.0 0.0018

100.1 200.0 0.0004

Table 8.4.   Distribution of wildfire sizes (burned area and patch size).

Table 8.5.  Burn-severity probabilities for different moisture zones and state classes.

Moisture zone
Forest Shrubland Grassland

Dry Mesic Wet Dry Mesic Wet Dry Mesic Wet
High 0.0087 0.1207 0.0052 0.0047 0.0637 0.0348 0.0150 0.0109 0.0056
Medium 0.0826 0.3324 0.3452 0.1325 0.3910 0.6902 0.1074 0.1620 0.2767
Low 0.9086 0.5469 0.6496 0.8629 0.5454 0.2750 0.8801 0.8271 0.7178
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Shaded-relief base modified from U.S. Geological Survey National Elevation Dataset, 2015.
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Figure 8.2.  Maps showing State of Hawai‘i Land-Use Districts which were used to generate spatial multiplier probabilities. A, 
Original source data. B, Urbanization spatial multiplier. C, Agricultural-expansion spatial multiplier (facing page).Selmants_fig2b_chap8

Shaded-relief base modified from U.S. Geological Survey National Elevation Dataset, 2015.
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Shaded-relief base modified from U.S. Geological Survey National Elevation Dataset, 2015.
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Figure 8.2.—Continued

Agricultural contraction was allowed to occur on all 
lands with the exception of “high priority agricultural lands” 
as classified by State of Hawaiʻi Office of Planning (http://
planning.hawaii.gov/gis/download-gis-data/); all cells within 
these areas were given a value of zero, whereas all other cells 
were allowed to transition out of agriculture. These areas were 
generally confined to Waimea on the Island of Hawaiʻi, Maui’s 
Central Valley, and near Lihue on Kauaʻi (fig. 8.2).

Changes in the spatial extent of moisture zones were 
limited to areas projected in Fortini and others (this volume, 
chap. 3). Maps of changes between dry, mesic, and wet 
moisture zones were obtained for the 2000–2100 period; cells 
where changes in moisture zone were projected to occur were 
assigned a value of one, whereas all other cells were assigned 
a value of zero.

8.3.4. Model Initialization

Each cell was assigned to 1 of 210 unique state classes 
based on the spatial intersection of moisture zones (Fortini 
and others, this volume, chap. 3), islands, and a map of LULC 
(Jacobi and others, this volume, chap. 2). The moisture-zone 
map was resampled to 1-km resolution using a nearest-
neighbor algorithm (fig. 8.1). To estimate the initial LULC 
for each cell, the carbon assessment for Hawaiʻi (CAH) 
land-cover map was first reclassified from its original 27 

classes to match the classification scheme described in section 
8.3.1. Next, the reclassified LULC map was resampled from 
its original 30-m resolution to 1-km cells using a majority 
algorithm (fig. 8.1). The origin and projection of both the 
moisture-zone and LULC map were set to match each other 
using a Universal Transverse Mercator Projection (UTM zone 
3, NAD83 datum). Lastly, a map of the State of Hawaiʻi was 
obtained from the State of Hawaiʻi Office of Planning (http://
planning.hawaii.gov/gis/download-gis-data/) and resampled to 
match the spatial parameters of the other two maps. The three 
spatial maps were then overlaid and each cell was assigned 
to one of the 210 unique combinations of moisture zone, 
island, and LULC class, resulting in the initial state-class map. 
The same initial conditions were used for all Monte Carlo 
simulations.

Age was tracked as a state-class variable for forests, 
shrublands, grasslands, and tree plantations; however, 
there are no known data describing the present-day age 
distribution of Hawaiʻi ecosystems. For forests, shrublands, 
and grasslands, age was randomly assigned to each cell from a 
uniform distribution between 0 and 300. For tree plantations, 
we assumed a uniform distribution of ages between 0 and 50. 
Initialization of time-since-transition was tracked for wildfire 
for the grasslands class. To initialize TST we assumed a 
uniform distribution of values between 0 and the average fire-
return interval for grasslands within each moisture zone—69 
years for dry grasslands and 502 years for mesic grasslands.
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8.3.5. Carbon Accounting Submodel
The carbon accounting submodel was designed to track 

the stocks and fluxes of carbon over time resulting from natural 
ecological processes (for example, growth or mortality) and 
changes in LULC, which can be functions of a change in 
climate (moisture-zone shifts), wildfire, and other anthropogenic 
drivers. The methods used to parameterize and run the 
integrated carbon submodel are based on Sleeter and others 
(2015), and follow a general SF or systems-dynamics approach 
and a tier 3 approach to carbon accounting, which requires 
locally specific, high-quality input data, recommended by the 
Intergovernmental Panel on Climate Change (IPCC, 2006). 
We use the term “flow pathways” to define the movement of 
carbon from one stock to another (for example, carbon flux). 
Flow pathways can occur automatically (for example, growth of 
biomass), or be related to transitions modeled in the STSM (for 
example, wildfire resulting in the flux of carbon from biomass 
to the atmosphere or deadwood pools). The SF model tracks the 
stock and flow of carbon across forest, grassland, shrubland, and 
tree-plantation state-class types. For all other state classes we 
assume carbon stocks are stable.

The SF submodel tracks carbon stored in the following 
pools: living biomass, litter, standing deadwood, downed 
deadwood, and soil. In addition, the model tracks carbon moved 
to the atmosphere by emissions, soil leaching from aquatic 
systems, and harvested wood products. Carbon is tracked on 
an annual timestep for each Monte Carlo simulation in forest, 
shrubland, grassland, and tree-plantation classes. Flow pathways 
include growth, litterfall, humification, emission, mortality, 
and harvest (table 8.6). Depending upon the flow type, the rate 
at which carbon is moved from one pool to another may vary 
based on state-class type, age, timestep, and (or) Monte Carlo 
simulation. Furthermore, flows of carbon between stock types 
are divided between “automatic” and “event-based” flows, where 
automatic flows occur for all cells in all timesteps, and event-
based flows only apply to cells that experience a state transition 
(Sleeter and others, 2015). For each timestep and Monte Carlo 
simulation, the order of flows was implemented at random.

We used the IBIS model to generate automatic flow rates 
for forest, shrubland, and grassland state classes. IBIS (Foley 
and others, 1996; Kucharik and others, 2000) is a modeling 
framework that follows basic rules of physics, plant physiology, 
and biogeochemistry. The original model combined features of 
a mechanistic model of canopy photosynthesis (Farquhar and 
others, 1980), a semi-mechanistic model of stomatal conductance 
(Ball and others, 1987), an algorithm on phenology (Botta and 
others, 2000), and several soil biogeochemical models (Parton 
and others, 1987, 1993; Verberne and others, 1990) in a single 
application. IBIS has the ability to simulate major land-surface 
processes, canopy physiology, vegetation phenology, long-term 
vegetation dynamics, ecosystem production, and carbon cycling.

The approach to developing automatic flow rates was 
based on methods developed by Sleeter and others (2015) 
which link the IBIS model to the SF submodel described here. 
A calibration simulation was run in IBIS using “cold start” 

procedures, which supply the SF submodel with automatic flow 
pathway rates. The IBIS cold-start simulation starts with bare 
ground for all cells and then simulates the growth of vegetation 
in response to average historical climate conditions for the 
region. To calibrate IBIS to local conditions we used estimates 
of net primary production (NPP) derived from gross primary 
production (GPP) from Selmants and others (this volume, chap. 
6) and aboveground living biomass described in Selmants and 
others (this volume, chap. 6). A series of IBIS model simulations 
were run until NPP and living biomass pools were stabilized at 
levels similar to observed conditions. Carbon flux rates from 
IBIS (in other words, automatic flows) were generated on annual 
timesteps and aggregated to the following age categories for the 
SF submodel: 0–10 years, 10–20 years, 20–50 years, 50–100 
years, and greater than 100 years old. All flow pathways were 
non-time varying, meaning no assumption was made as to how 
carbon fluxes may change under future conditions. The result of 
this assumption is, for example, that the rate of forest litterfall for 
a 50-year-old forest is not changed in future projection years.

The growth flow pathway moves carbon from the 
atmosphere to living biomass stock and is expressed as NPP. 
NPP was derived from MODIS GPP estimates described in 
Selmants and others (this volume, chap. 6). MODIS estimates 
of NPP are typically derived by modeling components of 
autotrophic respiration (Ra) and then subtracting Ra from GPP 
to yield estimates of NPP. However, the BIOME-BGC model 
of Ra requires the MOD15 leaf area index (LAI) product as 
an input, which is in part based on the MOD12Q1 land-cover 
product, and it was not possible to substitute our modified 
land-cover map into the MOD15 estimate of LAI. Here, NPP 
was estimated by calculating carbon-use efficiency (CUE; the 
quotient of NPP divided by GPP) for all pixels from the “off 
the shelf” 1-km-resolution MOD17 product with land-cover 
classes that corresponded with those of the land-cover map 
described in Jacobi and others (this volume, chap. 2), for the 
period 2002–2010. We then calculated the median CUE for each 
land-cover type used in this report (table 8.7) and multiplied the 
modified MOD17 estimates of GPP from Selmants and others 
(this volume, chap. 6) by these land-cover-specific CUE values 
to yield a statewide 500-m-resolution layer of terrestrial NPP. 
The statewide MODIS-derived estimates of NPP were used to 
calibrate the IBIS model simulation. Within the LUCAS SF 
submodel, the growth flow pathway was based on IBIS estimates 
of NPP for each state class and moisture zone combination. 
IBIS NPP estimates include the annual growth of biomass in 
aboveground and belowground vegetation, including roots, 
leaves, and wood. Owing to a lack of future projections of NPP 
under alternative climate scenarios, annual projections of growth 
for the SF submodel were derived from the IBIS-modeled mean 
NPP estimate and allowed to vary by ±5 percent annually.

Seven flow types (growth, litterfall, humification, mortality, 
deadfall, emissions, and leaching) were specified in the model 
for each combination of moisture zone, state class, and age 
class. The tree-plantation class was assigned flow rates from the 
wet forest state-class type. Growth is the annual rate of carbon 
accumulation in living biomass expressed as NPP. Litterfall is an 
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annual flux rate that includes leaf and root biomass moving from 
the living biomass to the litter stock. Humification is the annual 
decomposition rate of organic material from litter to soil organic 
matter. Mortality is an annual rate resulting from natural death 
of vegetation that also includes mortality resulting from land-use 
activities such as urbanization, wildfire, and harvest. Deadfall is 
the annual rate of transfer of carbon between standing and downed 
deadwood stocks. Emissions include the annual rate of respiration 
from litter and soil pools (heterotrophic respiration [Rh]) as well 
as emissions resulting from land-use change and disturbances. 
Leaching is the annual rate of carbon flux from the soil pool to 
the aquatic pool. Harvest is the rate of transfer of carbon from the 
living biomass pool to harvested wood products as a result of land 
use and land-use change.

Event-based flows are associated with transition pathways 
from the STSM. When the STSM applies a transition for 
a given cell the SF submodel applies a predefined set of 
additional flows to move carbon between stocks. In this model, 
event-based flows are specified for urbanization, agricultural 
expansion, and forest and tree-plantation harvest and associated 
with emission and harvest-flow types. When one of these 
transitions occurs on a cell, one or more flow pathways are 
invoked to move carbon between various stocks.

Carbon initial conditions were specified for the living-
biomass, soil, litter, standing-deadwood, and downed-deadwood 
stocks. The model was initialized to match, as closely as 
possible, estimates of living biomass for each state-class 
type, based on known reference data described in Hawbaker 
and others (this volume, chap. 5) and Selmants and others 
(this volume, chap. 6). Estimates of soil organic carbon were 
derived from the U.S. Department of Agriculture gridded Soil 
Survey Geographic (gSSURGO) Database (Soil Survey Staff, 
2015; see Selmants and others, this volume, chap. 6). For each 
combination of state class and moisture zone a mean carbon 

estimate was derived from the gSSURGO map to initialize 
the SF submodel. IBIS was used to derive initial estimates 
for living-biomass, litter, and both standing- and downed-
deadwood stocks and calibrated using carbon stock data from 
Hawbaker and others (this volume, chap. 5). For living biomass 
on forests and tree plantations, IBIS estimates (which include 
aboveground and belowground carbon) were compared to 
estimates of aboveground biomass based on the light detection 
and ranging (lidar)-derived reference map and the estimates 
of belowground biomass based on the power law equation 
described in Selmants and others (this volume, chap. 6).

8.3.6. Simulation Experiments
The model described above was used to project changes 

in ecosystem carbon under a BAU scenario where landscape 
changes were a function of the transition pathways and 
parameters described in section 8.3.3. For the BAU scenario 
we simulated changes in LULC and carbon during a 60-year 
projection period spanning the years 2001 through 2061 with 

Carbon-flow type State class type Flow pathway type From stock To stock
Growth All Automatic Atmosphere Living biomass
Litterfall All Automatic Living biomass Litter

Forest
Shrubland
Plantation

Automatic Down deadwood

Humification All Automatic Litter Soil
Mortality Forest

Shrubland
Plantation

Both Living biomass Standing deadwood

Deadfall Forest
Shrubland
Plantation

Automatic Standing deadwood Down deadwood

Emission All Both Living biomass Atmosphere
All Litter
All Soil
HWP Automatic Atmosphere

Harvest Forest Event Living biomass HWP
Plantation

Table 8.6. Carbon-flow types used within the Land Use and Carbon Scenario Simulator (LUCAS) model.

MOD12Q1 biome Median CUE
Broadleaf evergreen forest 0.495
Woody savanna 0.475
Closed shrub 0.545
Open shrub 0.484
Grassland 0.485

[Based on the quotient of net primary production divided by gross primary 
production from 1-km-resolution MOD17 product. CUE, carbon-use efficiency]

Table 8.7.   Estimated carbon-use efficiency for MOD12Q1 biomes 
used to calculate net primary production.

[HWP, harvested wood products]
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the first 10 years being used for model spin-up. During this 
spin-up period the landscape was fixed and no changes were 
allowed to occur. Monte Carlo replications of the model were 
run 100 times to reflect uncertainties in the projection of 
various state-class transitions. To evaluate impacts of major 
controlling processes on ecosystem carbon we conducted a 
series of sensitivity tests to analyze the impact of specific 
model parameters. Twenty Monte Carlo iterations were run for 
each of these scenarios.

8.4. Results and Discussion

8.4.1. Projections of Land-Use and Land-Cover 
Composition and Transitions

Four state classes composed 86.3 percent of Hawaiʻi’s 
land area in 2011: forest (33.8 percent), barren (19.1 percent), 
grassland (17.0 percent), and shrubland (16.4 percent). 
Agriculture (5.7 percent) and developed (6.2 percent) land 
uses accounted for most of the remaining land area. By 2061, 
the area collectively covered by the four main land-cover 
classes was projected to decrease slightly to 84.3 percent, 
however, composition among the four classes changed 
considerably (fig. 8.4). Forest area decreased to 32.7 percent 
and barren lands decreased to 18.6 percent of the State’s land 
area. The most significant changes were between shrubland 
and grassland composition; grassland area decreased to 10.2 
percent, whereas shrubland increased to 22.8 percent. Total 
land in agriculture decreased sharply to less than 1.0 percent 
of the State’s area, whereas developed land nearly doubled to 
12.9 percent.

The agriculture class was projected to experience the 
largest loss of any state class, decreasing to less than 180 km2 
by 2061, a net loss of 81.3 percent (fig. 8.3). Nearly all losses 
in agriculture were through conversion to forests, shrublands, 
or grasslands; losses to development averaged approximately 
2 km2/yr (fig. 8.4). For the first 30 years of the projection, 
agricultural contraction (~45 km2/yr) occurred at a rate more 
than two times greater than agricultural expansion (~20 km2/
yr) (fig. 8.4). However, by 2045, the rate of contraction was 
about equal to the expansion rate. Figure 8.5A shows the spatial 
location of where agricultural expansion was most common.

Under the BAU scenario, developed lands were projected 
to increase by an average of 1,094 km2 during the 50-year 
projection period, representing an increase of 107.7 percent 
over initial conditions (fig. 8.3). By 2061, development was 
projected to account for between 12.4 and 13.5 percent of the 
state land area. State classes converted to development were 
forests (9 km2/yr), grasslands (5 km2/yr), and shrublands  
(5 km2/yr); barren lands accounted for 2 km2/yr. For the first 
20 years of the projection period, agricultural lands were 
also contributors to urbanization; however, as agriculture 
is projected to decrease in area over time, its urbanization 

becomes minimal. Figure 8.5B shows the average annual 
transition probability for urbanization across 50 years and 100 
Monte Carlo iterations.

The major driver of change within the three forest 
classes was the projected change in moisture-zone 
composition (see Fortini and others, this volume, chap. 3) 
(fig. 8.4). Overall, forest area was projected to decrease by 
3.4 percent (170 km2) compared to 2011; however, change 
was not consistent across moisture zones. Dry forests were 
projected to increase 33.4 percent (274 km2), mesic forests 
were projected to decrease 29.6 percent (1,760 km2), and wet 
forests were projected to increase 1.2 percent (11 km2) by 
2061 (fig. 8.6).

Woody encroachment was the only change between 
vegetation types considered in the model, which resulted in 
changes from grasslands to shrublands. Across the dry and 
mesic moisture zones we estimated an average of 1,325 km2 of 
grasslands would be converted to shrublands during the 50-year 
projection. However, there was considerable uncertainty in 
this projection with estimates ranging from a low of 338 km2 
to a high of 2,265 km2 (fig. 8.4). Shrublands were projected to 
increase by 39.2 percent (1,058 km2), which was ubiquitous 
across all three moisture zones: dry shrublands increased from 
1,422 to 2,096 km2, mesic shrublands increased from 897 to 
1,223 km2, and wet shrublands increased from 382 to 440 km2 
(fig. 8.6). The area of grasslands decreased in both the dry and 
mesic moisture zones (from 1,492 to 823 km2 and from 1,052 to 
512 km2, respectively) and remained relatively stable in the wet 
moisture zone (fig. 8.6).

Across all state classes and moisture zones, wildfire 
was projected to burn an average of 41 km2/yr and a total 
of 2,047 km2 by 2061 (fig. 8.4). Grasslands accounted for 
41 percent of all wildfire projection, whereas shrublands 
accounted for 42 percent and forests accounted for 17 percent. 
Fire was projected to be most common in the dry moisture 
zone (average of 31 km2/yr), accounting for 6 percent of the 
annual area burned. The mesic moisture zone accounted for 17 
percent (7 km2/yr), whereas the wet moisture zone accounted 
for 6 percent (3 km2/yr). Low-severity fire accounted for 81 
percent of all projected fire (33 km2/yr), whereas medium-
severity fire accounted for 17 percent (7 km2/yr). High-
severity fires accounted for 2 percent of all fire (<1 km2/yr). 
The projected annual rates of fire across state classes, moisture 
zones, and severity classes are shown in figure 8.7.

8.4.2. Projected Change in Total Ecosystem 
Carbon Storage

Carbon fluxes were modeled for the seven main Hawaiian 
Islands (excluding Niʻihau) and for the forest, shrubland, 
grassland, and tree-plantation state classes. For state and island 
totals, stock estimates include carbon stored in soils across all 
state-class types. Overall estimates of living biomass, litter, 
and deadwood stocks were developed for only the four state 
classes where fluxes were modeled.



8.4. Results and Discussion  117

Selmants_fig3_chap8

500

1,000

1,500

500

1,000

1,500

2,000

2,500

3,000

3,050

3,100

3,150

3,200

2020 2030 2040 2050 2060
5,000

5,200

5,400

5,600

5,800

6,000

2020 2030 2040

La
nd

 ar
ea

, in
 sq

ua
re

 ki
lom

ete
rs

Year
2050 2060

0

1,000

2,000

3,000

2020201020102010 2030 2040 2050 2060
2,500

3,000

3,500

4,000

4,500

5,000
Forest Grassland Shrubland

Agricultural Developed Barren

Selmants_fig4_chap8

0

20

40

60

80

100

120
Agricultural contraction

Fire Moisture-zone change Shrub encroachment

Agricultural expansion Urbanization

2020 2030 2040 2050 2060
0

20

40

60

80

100

120

2020 2030
Year

2040 2050 2060 2020201020102010 2030 2040 2050 2060

La
nd

 ar
ea

, in
 sq

ua
re

 ki
lom

ete
rs

Figure 8.4.  Plots of projections of transition groups for the 2012–2061 projection period. The range of values represents the 
95-percent confidence interval across 100 Monte Carlo simulations. Dotted black lines show the mean estimates.

Figure 8.3.  Plots of projections of state-class area for the 2011–2061 projection period. The range of values represents the 95-percent 
confidence interval for each state class across 100 Monte Carlo simulations. Dotted black lines show the mean estimates.
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Figure 8.5.  Maps showing average annual transition probability across 50 timesteps and 100 Monte Carlo iterations for agricultural 
expansion (A), urbanization (B), shrub encroachment (C), and wildfire (D) in Hawai‘i.
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Initial IBIS-derived estimates of statewide total 
ecosystem carbon were about 2 percent lower than statewide 
estimates described in Selmants and others (this volume, chap. 
6). Total ecosystem carbon was estimated to increase from 
252.9 TgC in 2011 to 267.6 TgC by 2061, a net increase of 
14.7 TgC. Carbon stock density for the state was estimated 
at 15.5 kgC/m2 and was projected to remain relatively stable 
throughout the projection period. In 2011, the highest carbon 
stock densities were found on Kauaʻi (19.6 kgC/m2), Oʻahu 
(17.6 kgC/m2), and Maui (16.6 kgC/m2). By 2061, total 
ecosystem carbon storage was projected to increase on six of 
the major islands and remain relatively stable on Oʻahu (table 
8.8). Hawaiʻi Island stored the most carbon (its land area 

accounts for more than half the State’s area) at 153.7 TgC in 
2011 and was estimated to increase approximately 7.7 percent 
by 2061 (165.5 TgC).

Total carbon stored in the dry moisture zone was 
estimated to increase by 37.5 percent, from 46.1 TgC in 
2011 to 63.4 TgC in 2061. In the mesic moisture zone, total 
ecosystem carbon was projected to decrease by 17.6 percent, 
from 89.7 TgC to 73.9 TgC. Total ecosystem carbon storage in 
the wet moisture zone was projected to increase 11.3 percent, 
from 117.0 TgC to 132.3 TgC.

Tables 8.9 and 8.10 show carbon stock estimates for 
each island and land-cover class, respectively. Similar to 
results from Selmants and others (this volume, chap. 6), soils 
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Figure 8.6.  Plots of projections of forest, shrubland, and grassland state-class types across the dry, mesic, and wet moisture zones. The range 
of values represents the 95-percent confidence interval across 100 Monte Carlo simulations. Dotted black lines show the mean estimates.
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accounted for approximately 69 percent of carbon stored 
in terrestrial ecosystems, living biomass accounted for 24 
percent, and litter and deadwood stocks accounted for 8 
percent; these proportions remained relatively stable during 
the 50-year projection period. Total living biomass was 
estimated at 52.0 TgC in 2011 and decreased to 51.3 TgC by 
2061. Litter and deadwood was estimated at 27.9 TgC in 2011 
and increased 5 percent by 2061 to 29.4 TgC. Carbon stored 
in soils, across all state classes, was estimated at 183.6 TgC in 
2011 and increased 4 percent by 2061 to 198.0 TgC.

In 2011, carbon stored in living biomass was estimated 
at 52.0 TgC. By 2061, living biomass was estimated to hold 
51.3 TgC, a decrease of approximately 1.4 percent during 

the 50-year projection. Across all moisture zones, forests 
accounted for the vast majority of living biomass carbon (83 
percent), whereas tree plantations (9 percent), shrublands 
(7 percent), and grasslands (1 percent) accounted for the 
remainder. Projections of living biomass carbon across 
moisture zones varied considerably, owing largely to changes 
in land use, wildfire, shrub encroachment, and moisture-zone 
extent. The wet moisture zone remained relatively stable 
during the projection period, increasing by 2.3 TgC from 2011 
levels. Conversely, the mesic zone was projected to experience 
sharp decreases, from 20.1 TgC in 2011 to 15.5 TgC in 2061. 
Living biomass in the dry moisture zone was projected to 
increase from 2.9 TgC in 2011 to 4.4 TgC in 2061.
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Figure 8.7.  Plots of projections of fire by state class, moisture zone, and burn severity during the 2011–2061 projection period. The 
range of values represents the 95-percent confidence intervals of area burned across 100 Monte Carlo simulations. Dotted black lines 
show the mean estimates.
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Soil organic carbon was estimated to increase from 183.6 
TgC to 198.0 TgC between 2011 and 2061. However, when 
considering only carbon stored in the four state-class types where 
carbon fluxes were modeled (forest, shrubland, grassland, and 
tree plantation), soil organic carbon was estimated to increase 
from 151.7 TgC to 164.8 TgC in 2061. Wet forests stored more 
than three times the amount of carbon than any other state-class 
type (65.7 TgC in 2061), followed by Mesic forests which stored 
20.9 TgC. Tables 8.9 and 8.10 show the projected change in 
carbon stocks (by living biomass, soil, and litter and deadwood) 
between 2011 and 2061 for each island and land-cover class.

8.4.3. Projected Carbon Fluxes
Net ecosystem production (NEP) and net ecosystem carbon 

balance (NECB) are estimated for the State of Hawaiʻi and for 
each of the four state-class types considered in this assessment 
(forest, shrubland, grassland, and tree plantation). NEP is 
calculated as the sum of annual growth (NPP) minus Rh from litter 
and soil pools. NECB is calculated as NEP minus emissions from 
land-use change and disturbance. Due to constant changes in the 
state-class (and moisture-zone) area, NEP and NECB estimates are 
presented as totals (in kilotons of carbon [ktC]).

NEP for the State of Hawaiʻi was estimated at an average 
annual rate of 0.799 TgC/yr (49 gC/m2/yr). When land-use change 
and disturbances were considered, NECB was estimated at an 
average annual rate of 0.595 TgC/yr (36 gC/m2/yr). Both NEP and 
NECB were projected to decrease during the 50-year projection 
period indicating the strength of the carbon sink was decreasing. 
Forest NEP was projected to decrease steadily during the 
projection period, from approximately 0.754 TgC/yr in 2015 to 
0.549 TgC/yr in 2061. Forests in Hawaiʻi were projected to be a 
consistent, yet decreasing net sink of carbon, with a mean NECB 
estimate of 0.481 TgC/yr. However, the strength of the sink was 

projected to weaken towards the last half of the simulation period. 
Shrubland NEP was estimated at 0.091 TgC/yr and grasslands 
were estimated at 0.050 TgC/yr. When considering the effects 
of land-use change and wildfire, shrublands were a net sink of 
carbon at a rate of 0.066 TgC/yr, whereas grasslands were a 
weaker net sink at approximately 0.024 TgC/yr. Figure 8.8 shows 
estimates of NEP and NECB for each combination of state class 
and moisture zone.

8.4.3.1. Carbon Losses From Land-Use Change and 
Wildfire

Urbanization of forests, shrublands, and grasslands 
resulted in an average annual loss of ecosystem carbon storage 
of 97.9 ktC/yr. Forests accounted for the largest share of car-
bon loss at an average rate of 79 ktC/yr, whereas shrublands 
and grasslands accounted for 0.01 TgC/yr apiece. Expansion 
of agriculture contributed an additional average annual loss of 
0.078 TgC/yr, with 0.057 TgC/yr from forests, 0.009 TgC/yr 
from shrublands, and 0.012 TgC/yr from grasslands; however 
this loss was offset owing to higher rates of agricultural con-
traction. Over the 50-year projection, atmospheric emissions 
resulting from urbanization and agricultural expansion was 
estimated at 6.6 TgC with 4.6 TgC coming from forest conver-
sion, 0.9 TgC coming from shrubland conversion, and 1.0 TgC 
coming from grassland conversion. An additional 2.2 TgC was 
removed from forest harvest for use in wood products.

Carbon emissions from wildfire averaged 1.4 TgC 
(0.028 TgC/yr) across the 100 Monte Carlo simulations. 
However, there was considerable variability, with estimates 
ranging from 0.001 TgC/yr to 0.108 TgC/yr. Forest fire 
emissions accounted for approximately 58 percent of wildfire 
emissions (0.016 TgC/yr), whereas shrubland fire emissions 
accounted for approximately 23 percent (0.006 TgC/yr); 

Island
Total ecosystem carbon storage (TgC) Change in mean total 

ecosystem carbon storage
2011

2061
Mean Upper Lower (TgC) (Percent)

Hawaiʻi 153.7 165.5 166.7 164.1 11.8 7.7

Kahoʻolawe 0.8 0.8 0.9 0.8 0.0 2.9

Kauaʻi 28.1 28.6 29.1 28.1 0.6 2.0

Lānaʻi 3.0 3.1 3.1 3.0 0.1 4.2

Maui 31.3 32.9 33.2 32.5 1.6 5.0

Molokaʻi 8.8 9.3 9.5 9.2 0.5 5.6

Oʻahu 27.2 27.3 27.8 26.8 0.2 0.6

 Total 252.9 267.6 269.2 265.9 14.7 5.8

Table 8.8.   Current and projected future total ecosystem carbon storage and percent change in storage by 
island for the State of Hawai‘i.
[TgC, teragrams of carbon; Mean, mean of 100 Monte Carlo iterations; Upper, 97.5 percentile; Lower, 2.5 percentile]
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emissions from grassland fire accounted for an average of 
0.006 TgC/yr. Fire emissions across moisture zones were 
more evenly distributed than by state-class type; the mesic 
moisture zone accounted for 0.011 TgC/yr, the dry moisture 
zone accounted for 0.009 TgC/yr, and the wet moisture 
zone accounted for 0.008 TgC/yr. Projected emissions for 
all combinations of state-class type and moisture zone are 
shown in figure 8.9.

8.4.4. Effects of Major Controlling Processes
The major controlling processes on ecosystem carbon 

dynamics considered in this assessment include land use and 
land-use change (for example, urbanization and agricultural 
expansion and contraction), wildfire, vegetation change (for 
example, shrub encroachment into grasslands), and the effects 
of climate change on the composition of moisture zones. In 
order to understand the relative forcing of each process we 
conducted a series of sensitivity tests in which each model 
parameter was omitted from the simulations. We compared 
estimates of ecosystem carbon stock at the year 2061 for each 
of the eight resulting alternative scenarios.

Moisture-zone change, shrub encroachment, and agricultural 
contraction increased ecosystem carbon storage, whereas wildfire, 
urbanization, and agricultural expansion reduced ecosystem carbon 
storage (fig. 8.10). Of the model parameters, changes involving 
land-use transitions had the largest impact on total ecosystem 
carbon storage. When urbanization was excluded from the model, 
estimates of ecosystem carbon stock were 4.0–7.4 TgC higher than 
the BAU scenario. Similarly, when agricultural expansion was 
excluded, ecosystem carbon stock was estimated to be between 1.5 
and 3.5 TgC higher than in the BAU scenario. Compared to land-use 
changes, wildfire had a small overall impact.

Assumptions about the rate of agricultural contraction 
had the largest impact on ecosystem carbon estimates. When 
excluded from the model, ecosystem carbon was projected 
to be 7.4–10.4 TgC lower than the BAU scenario—roughly 
equal to the impact of urbanization, agricultural expansion, 
and wildfire combined. Additionally, the net result of both 
moisture-zone change and shrub encroachment was an 
increase in ecosystem carbon storage, with mean departures 
from the BAU scenario of 1.3 and 0.9 TgC, respectively.

8.5. Key Uncertainties and Limitations
In conducting an assessment such as this, it is important to 

acknowledge key uncertainties that could have large effects on 
projection results. Typically, the largest sources of uncertainty 
when making future projections are associated with projecting 
changes in complex socioeconomic systems. To overcome this, 
many studies have used narrative storylines to guide quantification 
of a wide range of future conditions. Examples of this approach 
include the IPCC’s Special Report on Emission Scenarios 
(Nakicenovic and Swart, 2000) and the Millennial Assessment 

(Raskin and others, 2005). However, using these global scenario 
frameworks can prove challenging at local and regional scales 
as scenario assumptions may be interpreted in a variety of ways. 
Various methods of scenario downscaling have been explored, 
particularly for IPCC SRES scenarios, however no such 
downscaling was readily available for the State of Hawaiʻi. To 
overcome this limitation, we developed a BAU scenario based on 
empirically derived measurements of LULC change resulting from 
urbanization, agricultural expansion and contraction, and wildfire. 
Historical rates of change were incorporated into the LUCAS 
model, whereas in each timestep and Monte Carlo simulation the 
model would sample from the empirical data. For transition types 
where there was large historical variability (for example, wildfire), 
the model would project a wide range of future outcomes across 
the 100 Monte Carlo simulations. However, for some transition 
types, the historical data revealed temporally consistent trends, 
which were then carried forward in the scenario projections. This 
was especially true for trends in agriculture where historical data 
revealed a consistent net decrease over time. As shown in the 
sensitivity analysis, assumptions made regarding the rate and 
trajectory of change in the agricultural sector can have profound 
impacts on ecosystem carbon storage. As such, future work should 
consider development of additional scenarios to explore alternative 
narratives in agricultural expansion and contraction for the State of 
Hawaiʻi.

Forest age is an important model parameter used to control 
carbon-flux rates within the SF model. However, little is known 
about the distribution of forest age for the State of Hawaiʻi. 
To overcome this data limitation, we assumed forest age was 
distributed uniformly across the landscape between 0 and 300 
years old, likely an incorrect assumption. Additional work should 
focus on refining our estimate of forest-age structure, either 
through plot-based inventories or through known species–biomass 
relationships. This level of detail was out of the scope of this 
assessment but should be explored to improve the carbon SF 
modeling approach.

Future changes in climate can impact ecosystem carbon 
dynamics in several ways, including increasing and (or) 
decreasing growth rates owing to changes in temperature, 
precipitation, and CO2 fertilization. Because of the geography 
of the State of Hawaiʻi (isolated, small relative area, highly 
variable topography) there is a general lack of downscaled 
climate data available for incorporation into studies carried 
out at the scales and resolution of this assessment. For this 
research we incorporated projections of changes in moisture 
zones resulting from climate projections associated with the 
IPCC SRES A1B scenario. Future efforts should consider 
expanding the moisture-zone modeling to include new climate 
scenarios (Representative Concentration Pathways) and 
climate models (Coupled Model Intercomparison Project, 
CMIP5) to reflect a range of plausible futures. Additionally, 
with improved climate-model downscaling for the State of 
Hawaiʻi, alternative projections of temperature, precipitation, 
and CO2 concentration could be incorporated into the LUCAS 
model to reflect changes in NPP which is used to drive the 
carbon SF model.
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Figure 8.8.  Distribution plots of net biome production (NBP) and net ecosystem production (NEP) during the projected future period 
(2011–2061) for the three major state-class types (forest, shrubland, grassland) and three moisture zones (dry, mesic, wet) considered in this 
assessment. Boxes represent the 25th and 75th percentile of years and whiskers represent the 10th and 90th percentile of years during the 
projected future period (2011–2061).
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Figure 8.9. Plots of 
projections of fire emissions 
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Dotted black lines show the 
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Projections of wildfire were based on a sampling 
protocol using a 10-year time series (2002–2011) from the 
Monitoring Trends in Burn Severity (MTBS) database. 
Because of the wide range of variability in the MTBS data, 
future projections of wildfire represented a wide range of 
future conditions. However, no long-term trend in wildfire 
was simulated owing to a lack of either empirically derived 
relationships of climate and fire or exogenous fire modeling 
as conducted in the assessment for the conterminous United 
States. Should additional downscaled climate data become 
available, alternative wildfire scenarios could be implemented 
as a means of exploring variability in this important source of 
terrestrial carbon emissions.

Land-management activities designed to increase 
terrestrial carbon storage were not explored for this 
assessment, but can readily be implemented using this 
modeling framework. Examples may include reforestation, 
development and utilization of carbon plantations, and biofuel 
production, among others. Work should be undertaken with 
local and state-level managers and policy makers to develop 
alternative land-management scenarios to explore the efficacy 
of increasing carbon storage and (or) sequestration rates.
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