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Multiply By To obtain
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kilometer (km) 0.6214 mile (mi)
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Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
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ICP-MS inductively coupled plasma mass spectrometry
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Abstract
Harrat Rahat is an alkali basalt, continental, intraplate 

volcanic field located within the central-western part of the 
Kingdom of Saudi Arabia. The northern quarter of Harrat 
Rahat contains evolved volcanic products that achieve trachyte 
compositions (>60 weight percent SiO2). Within the Al Efairia 
volcanic center, pyroclastic-flow and -surge deposits that reflect 
explosive trachyte volcanism (and minor exposed lava domes 
that reflect effusive trachyte eruptions) sit at the surface as 
the youngest expression of volcanic activity within this part 
of the Harrat Rahat volcanic field. Five trachyte deposits 
emplaced explosively have been identified within the Al Efairia 
volcanic center based on geologic mapping, petrography, 
geochemistry, and paleomagnetism. These units are the 
trachytes of Um Rgaibah, Gura 5, Gura 4, Al Efairia, and 
Al Qayf, in descending stratigraphic order. Here, we present 
14 40Ar/39Ar analyses from four of these units, which yield 
eruption ages of 4.2±5.2 thousand years (ka) for the trachyte 
of Um Rgaibah, 79.7±1.6 ka for the trachyte of Gura  5, 
84.3±1.6 ka for the trachyte of Gura 4, and 88.0±1.8 ka for 
the trachyte of Al Efairia. The eruption age of the trachyte 
of Al Qayf has been constrained to between 410.3±3.4 and 
418.8±1.9  ka using paleomagnetic correlations and 40Ar/39Ar 
ages from overlying and underlying intermediate composition 
lava flows. Most of these trachytes have distinct geochemical 
compositions, petrographic characteristics, and directions of 
remanent magnetization. The exceptions are for the trachytes 
of Gura 4 and Gura 5, which overlap in their geochemical, 
petrographic, paleomagnetic, and geochronologic affinities. 
Based on these similarities, we interpret the trachytes of Gura 
4 and Gura 5 to have erupted during a closely spaced (a few 
decades) time interval from the same magma batch but from 
craters that are >2 kilometers (km) apart. The eruption of the 
trachyte of Al Efairia at 88.0±1.8 ka is the result of a different 
magma batch that erupted a few thousand years prior to the 
trachytes of Gura 4 and Gura 5. The Al Efairia volcanic center 
is remarkably different from the Matan volcanic center located 
~10 km to the north, which has also erupted young (<150  ka) 
trachytes. The Matan volcanic center has been shown to 

produce trachyte compositions only after eruption of basalt 
followed by intermediate lava flows, whereas only trachyte 
compositions have erupted within the Al Efairia volcanic 
center over this same time interval.

Introduction
The Arabia Plate hosts more than 15 continental, 

intraplate volcanic fields that stretch >3,000 kilometers (km) 
from the Gulf of Aden to the Mediterranean Sea (fig. 1). In 
total, these volcanic fields cover an area of ~180,000 square 
kilometers (km2) and have constructed one of the largest 
preserved alkalic volcanic provinces on Earth (Coleman and 
others, 1983). Volcanic activity initiated ~30 million years 
ago (Ma) and has continued to the present day with the most 
recent eruption in 1937 C.E. near the town of Dhamar, Yemen 
(Coleman and others, 1983; Brown and others, 1989; Camp 
and Roobol, 1989; Camp and others, 1991, 1992; Shaw and 
others, 2003; Duncan and Al-Amri, 2013; Moufti and others, 
2013; Duncan and others, 2016; Dietterich and others, 2018; 
Downs and others, 2018, 2023; Stelten and others, 2018, 
2023a,b). Most eruptions associated with the late Cenozoic 
Arabian intraplate volcanic fields produced mafic lava flows 
and scoria cones (basalt and hawaiite) with minor intermediate 
magmas (mugearite and benmoreite) and even fewer evolved 
magmas with >60 weight percent SiO2 (trachyte and comend-
ite). These more evolved late Cenozoic magmas are mostly 
confined to the Harrat Rahat volcanic field and composite 
Harrat Khaybar, Ithnayn, and Kurá volcanic fields in Saudi 
Arabia (Moufti, 1985; Camp and Roobol, 1989, 1991; Camp 
and others, 1991; Roobol and Camp, 1991; Moufti and others, 
2013; Stelten and others, 2018). Quantification of eruption 
ages, extents and volumes, and understanding eruptive 
behavior is fundamental to interpreting the evolution of a 
predominantly mafic volcanic field such as Harrat Rahat.

Here we investigate a series of explosively emplaced 
trachyte pyroclastic deposits within the northern part of 
the Harrat Rahat volcanic field in western Saudi Arabia 
(figs.  1,  2). These trachytes erupted from a cluster of high-
standing vents within a part of Harrat Rahat that is termed 
the Al Efairia volcanic center (names of volcanic features 
largely follow Moufti [1985]). Field relations, geochemistry, 
petrography, paleomagnetism, and 40Ar/39Ar radiometric ages 
have allowed us to assemble a high-resolution map of trachytes 
that erupted explosively within the Al Efairia volcanic center 
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Figure 1. Map of the Harrat Rahat 
volcanic field (outlined in black) and 
the study area in the northern part 
of the volcanic field. The inset map 
at the top right shows the location 
of the Arabian Shield (purple) and 
Arabia-Plate-hosted volcanic fields, 
also called harrats (red), in their 
regional tectonic context.
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Figure 2. Geologic map of the Al Efairia volcanic center (modified from Downs and others, 2019). Only the most explosively 
emplaced trachyte deposits are highlighted and geomorphic features of interest are labeled. Surrounding mafic lava flows and 
scoria cones, silicic lava domes, Proterozoic rocks, and Quaternary alluvium are shown, but not discussed in detail in the text.

(fig. 2). Overall, these volcanic products represent the most 
explosive products from Harrat Rahat and allow their geologic 
context with surrounding mafic and intermediate lava flows 
and scoria cones to be resolved. Additionally, we consider these 
deposits and their eruptive behavior in the context of trachyte 
lava domes and pyroclastic deposits from the Matan volcanic 
center to the north (Stelten and others, 2018).

Geological Setting
Harrat Rahat is the largest volcanic field located entirely 

within the Kingdom of Saudi Arabia at ~20,000 km2 in area 
and a volume of ~2,000 cubic kilometers (km3) (Camp and 
Roobol, 1989, 1991). Volcanic and magmatic activity initiated 
~10 Ma and continues to the present day with the most recent 
eruption historically documented in 1256 C.E. (Al-Samhūdī, 
1488; Camp and others, 1987; Camp and Roobol, 1989; Moufti 
and others, 2013). Volcanic rock types, as mapped by Camp 
and Roobol (1989, 1991), include >95 percent basalt and 

hawaiite with the remaining eruptive products consisting of 
mugearite, benmoreite, and trachyte (nomenclature after Cox 
and others, 1979). Mafic and silicic volcanism yield various 
characteristic landforms based on eruptive styles. Some of the 
more distinctive landforms include lava domes and pyroclastic-
flow deposits constructed during the eruption of trachytic 
magmas (fig. 3). Trachytes are almost exclusively restricted to 
the northern part of Harrat Rahat in the Matan volcanic center, 
Al Efairia volcanic center, and a single trachyte eruption at 
Al Wabarah (Moufti, 1985; Stelten and others, 2018; Downs 
and others, 2019). Here, we focus on the geochronology and 
field relations of the most explosively emplaced trachyte 
eruptive products from the Al Efairia volcanic center.

Mafic magmas erupted over the entire ~10-million-year 
history of Harrat Rahat. Quaternary volcanic strata restricted 
to northern Harrat Rahat were subdivided into seven units 
(units Qm

1
 through Qm

7
 of Camp and Roobol, 1989, 1991, 

based on the degree of erosion, amount and size of loess-
filled depressions on lava-flow surfaces, archeological 



4  Active Volcanism on the Arabian Shield—Geology, Volcanology, and Geophysics

arguments, and historical records) spanning from ~1.7 Ma 
to 1256 C.E. (Camp and Roobol, 1989, 1991). These seven 
units were underpinned by eight K-Ar radiometric ages 
(Pellaton, 1981; Camp and Roobol, 1989), and refined to 
lasting from 10.31 Ma to the present with 25 40Ar/39Ar ages 
from Moufti and others (2013). Trachytes are known to be 
among the youngest eruptive products based on stratigraphic 
superposition. Two trachytes within the Al Efairia volcanic 
center were dated by K-Ar in the 1980s (Pellaton, 1981), 
yielding ages of 2.13  Ma for the trachyte of Al Efairia (all 
unit names are from Downs and others, 2019) and 1.47 Ma 
for the trachyte of Um Rgaibah. However, many of these 
K-Ar ages from Harrat Rahat are known to be anomalously 

old based on more recent 40Ar/39Ar dating (Downs and  
others, 2018, 2019; Stelten and others, 2018, 2023) and  
no explosively emplaced trachytes from the Al Efairia 
volcanic center have previously been dated by the 40Ar/39Ar 
method. We present 14 40Ar/39Ar ages from the most 
widespread trachyte pyroclastic deposits within the  
Al Efairia volcanic center.

Moufti (1985) described the stratigraphy and assigned 
names to the trachytic pyroclastic deposits of the Al Efairia 
volcanic center. He recognized the sequence of eruptions, 
from oldest to youngest, as unnamed tuff and dome (includes 
our trachyte of Al Qayf), followed by the trachytes of 
Al Efairia, Gura 4, Gura 5, and Um Rgaibah. The present 

A

C D

B

 Trachyte of Um Rgaibah lava dome,
summit spine, and pyroclastic apron

Trachyte of Al Efairia crater

    Trachyte of Al Efairia
 pyroclastic-flow deposits
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     Trachyte of Al Efairia

     
outer crater

Trachyte of Al Efairia

 Trachyte of Al Efairia
inner crater

Trachyte of Al Efairia
        outer crater

Figure 3. Photographs of the trachytes of Um Rgaibah and Al Efairia, and juvenile pumice from the trachyte of Gura 4. A, Photograph 
looking northwest at the lava dome, summit spine, and surrounding pyroclastic apron of the 4.2±5.2-thousand-year-old (ka) trachyte of 
Um Rgaibah. The crater for the 88.0±1.8-ka trachyte of Al Efairia is in the back left of the photograph. Photograph by Andrew Calvert, 
2014. B, Photograph looking southeast at the two nested craters that make up the vent for the 88.0±1.8-ka trachyte of Al Efairia. The 
inner crater has undergone partial resurgence. Photograph by Andrew Calvert, 2014. C, Photograph of interbedded pyroclastic-flow 
and -surge deposits of the trachyte of Al Efairia erupted at 88.0±1.8 ka. Photograph by Drew Downs, 2016. D, Moderately inflated pumice 
clast from the 84.3±1.6-ka trachyte of Gura 4. Scale interval is 1 centimenter. Photograph by Hannah Dietterich, 2016.
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investigation confirms and builds on that work. These trachyte 
deposits cluster along a high-standing (~100 to 400 meters [m] 
above the surrounding volcanic plain) north-to-south lineament 
in northern Harrat Rahat termed the main vent axis. The most 
prominent trachyte landforms are lava domes, craters, and 
a widespread, relatively level plain of pyroclastic-flow and 
-surge deposits with deep (>20  m  in places) incised drainage 
channels. Some of the trachytes formed craters during eruption 
whereas others erupted as Peléan lava domes and spines before 
undergoing collapse and generating pyroclastic-flow deposits 
consisting of poorly to moderately inflated juvenile clasts 
hosted within a fine-grained, poorly sorted matrix (fig. 3A–D). 
Pumiceous air-fall-tephra deposits are rare, but not entirely 
absent (Moufti, 1985; Camp and Roobol, 1989; Downs and 
others, 2019). Pyroclastic-flow and bedded-surge deposits can 
attain thicknesses of multiple tens of meters, which thin away 
from their sources over the course of no more than ~10 km for 
the most widespread pyroclastic deposit. Minor sub-Plinian 
air-fall-tephra deposits have been identified, but Plinian air-fall-
tephra deposits are considered unlikely.

Methods

Discrimination of Geologic Map Units
Individual explosively emplaced trachyte deposits were 

mapped in the field and on aerial and shaded-relief images, 
with contacts confirmed by a combination of hand-specimen 
and thin-section petrography, whole-rock geochemistry, and 
paleomagnetic studies. The geologic contacts between volcanic 
units from these investigations are presented as a 1:75,000-
scale and 1:25,000-scale map by Downs and others (2019) 
and at 1:100,000 scale by Robinson and Downs (2023). The 
distribution of deposits, their source vents, and stratigraphic 
sequences agree with reconnaissance geologic mapping and 
detailed stratigraphic sections and observations presented by 
Moufti (1985). We also present 14 40Ar/39Ar ages from the 
trachytes of Al Efairia, Gura 4, Gura 5, and Um Rgaibah. 
Names of units were chosen from geographic landforms, most 
of which were previously employed by Moufti (1985) and 
Camp and Roobol (1989, 1991), and adopted by Downs and 
others (2019) and Robinson and Downs (2023).

To aid in mapping, juvenile material from poorly inflated 
pumice clasts and dense lava domes (64 samples) were 
collected for major-oxide and trace-element analyses by X-ray 
fluorescence (XRF) spectrometry and inductively coupled 
plasma mass spectrometry (ICP-MS) at the GeoAnalytical 
Laboratory at Washington State University in Pullman, 
Washington, by the methods of Knaack and others (1994) and 
Johnson and others (1999). Detailed XRF and ICP-MS methods 
are discussed by Downs and others (2018) and all whole-rock 
chemical compositions are provided by Downs (2019).

40Ar/39Ar Radiometric Dating

Samples for 40Ar/39Ar dating were collected from all 
explosively emplaced trachytes exposed within the Al Efairia 
volcanic center except the trachyte of Al Qayf, which yielded 
no acceptable material to be directly dated. Both dense 
feldspar-rich crystalline groundmass and sanidine crystal 
separates were used for analyses. Each sample was crushed in 
a roller mill, ultrasonicated, and the 250 to 355-micrometer-
size fraction was concentrated. Approximately 150 milligrams 
(mg) of material was prepared for groundmass and ~50 mg of 
sanidine was separated using a Frantz LB-1 Magnetic Barrier 
Laboratory Separator, and carefully handpicked under a 
binocular microscope. Samples were packaged in copper foil, 
bracketed by packets of Bodie Hills sanidine monitor minerals 
(9.7946±0.0033 Ma; Fleck and others, 2019), encapsulated 
in quartz vials that were wrapped in 0.5-millimeter-thick 
cadmium foil to shield samples from thermal neutrons during 
irradiation, and irradiated for 1 hour in the central thimble 
of the U.S. Geological Survey TRIGA reactor in Denver, 
Colorado, (Dalrymple and others, 1981) at a power level of 
1 megawatt. The reactor vessel was rotated continuously and 
oscillated vertically during irradiation to minimize vertical and 
lateral neutron flux gradients.

Argon isotope analyses were conducted at the U.S. 
Geological Survey in Menlo Park, California, using a MAP216 
single-collector mass spectrometer with a Baur-Signer 
source and a Johnston MM1 electron multiplier. Argon was 
extracted from fluence monitors in a single heating step (that 
is, total fusion) using a New Wave CO2 laser, whereas argon 
from groundmass separates of unknown age was extracted 
in 7 to 15 discrete temperature steps (typically spanning the 
temperature range of 550 to 1,400  degrees Celsius [°C]) 
using a molybdenum-shielded custom-resistance furnace 
with a molybdenum crucible. Sanidine crystal separates were 
analyzed by laser total fusion using the New Wave CO2 laser 
coupled with the MAP216 mass spectrometer. Extracted argon 
was exposed to a 4-ampere tungsten filament, 125  kelvin 
cold finger, and two SAES St-175 getters (one operated 
at 300 °C, and one at room temperature) to remove active 
gases. Prior to measurement of argon isotopic composition, 
samples were degassed at 500 °C until undesirable gases (for 
example, water, nitrogen, and hydrocarbons as measured by a 
Granville-Phillips Series 835 vacuum quality monitor) were 
reduced to acceptable levels. Instrumental mass discrimination 
was calculated by repeated measurement of air, assuming 
atmospheric 40Ar/36Ar = 298.56±0.31 (Lee and others, 2006). 
Ages were calculated using the decay constants recommended 
by Steiger and Jäger (1977). Uncertainties in 40Ar/39Ar ages 
are reported at the one-sigma level unless otherwise noted 
(table  1) and include propagated uncertainties in counting 
statistics and J values.
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Paleomagnetism

Paleomagnetic secular variations were measured from 
juvenile trachyte pumice clasts within the Al Efairia volcanic 
center to assess the timing of their eruptions. Though the 
paleomagnetic directions are used in conjunction with the 
40Ar/39Ar ages, the ages do not have the precision to indicate 
whether multiple eruptions were contemporaneous within 
decades to centuries.

Paleomagnetic samples were collected, processed, and 
interpreted using the methods of McElhinny (1973). We 
collected eight cores, each 10 centimeters (cm) long, at each 
field site using a handheld, gasoline-powered, 2.5-cm coring 
drill, and oriented exclusively by sun compass. A 2.5-cm-long 
specimen from each core was measured using an automated 
cryogenic magnetometer and then subjected to alternating-
field demagnetization to remove secondary components 
of magnetization. An isothermal component from nearby 
lightning strikes was the most frequent source of secondary 
magnetization in these volcanic rocks. The characteristic 
direction of remanent magnetization for each site was 
calculated using Fisher statistics on data from (1) line fits of 
data on vector component diagrams, (2) plane fits on equal-area 
diagrams, and (3) mixtures of lines and planes data. We present 
site mean directions of magnetization for each group in table 2 
with statistics, including 95-percent confidence limits.

Explosively Emplaced Trachytes
Trachyte of Al Qayf

The trachyte of Al Qayf is the stratigraphically lowest, 
and therefore oldest, of the explosively emplaced trachytes 
exposed within the Al Efairia volcanic center. The source 
vent for this unit is unknown and presumed to be buried by 
younger volcanic products, but a poorly exposed crater ~1 km 
northwest and west of current outcrops is a probable source 
(fig. 2). This pyroclastic deposit is only exposed over 1.4 km2 
and reaches 2.2 km in length (or >3 km from its potential 
source). Assuming a thickness between 10 and 15 m (these 
thicknesses are used to calculate a conservative volume 
estimate of all units discussed), the dense rock equivalent 
(DRE) volume of the exposed trachyte of Al Qayf is between 
0.01 and 0.02 km3.

Moderately inflated juvenile pumice clasts are aphyric. 
Geochemically, most of the trachyte deposits of the Al Efairia 
volcanic center are distinct with whole-rock concentrations 
of TiO2, FeO*,5K2O, and Zr being particularly useful for 
designation purposes (fig. 4). For this unit, all TiO2 analyses 
yield 0.23 weight percent, FeO* ranges from 4.9 to 5.0 weight 
percent, K2O ranges from 5.1 to 5.2 weight percent, and Zr 
ranges from 1,150 to 1,200 parts per million (ppm) (fig. 4).

5FeO* indicates total iron expressed as FeO.

Table 2. Paleomagnetic analyses from explosive trachyte deposits of the Al Efairia volcanic center.

Unit name Site1 Easting2 Northing2 Cores 
used3 Exp.4 I5 D6 α957 k8 R9 Pole lat. 

(°N)10

Pole long. 
(°E)10

Trachyte of Um 
Rgaibah R17DC018 599693 2665835 8/8 Li 27.5° 8.4° 3.6° 240 7.9709 77.6 178.7

Trachyte of Gura 5 R17DC019 596693 2665991 8/8 Li 50.4° 339.4° 3.0° 345 7.9797 70.5 335.7
Trachyte of Gura 4 R17DC020 594953 2666345 8/8 Mx 51.3° 346.3° 3.2° 306 7.9771 75.6 346.1
Trachyte of 
 Al Efairia R17DC017 600521 2662364 8/8 Mx 37.8° 4.3° 2.6° 477 7.9853 85.1 165.0

1Alphanumeric identifier.
2Eastings and northings are given in the World Geodetic System of 1984 (WGS84) datum using the Universe Transverse Mercator (UTM) zone 37R projection.
3Number of cores used out of the number of cores originally collected at the site.
4Treatment of the demagnetization procedure, where Li indicates that a vector component lines analysis was used and Mx indicates that a mixture of lines and 

planes was used to define the mean remanent direction.
5Remanent inclination, in degrees.
6Remanent declination, in degrees.
7Radius of the 95-percent confidence limit about the mean direction.
8Estimate of the Fisher precision parameter.
9Length of the resultant vector.
10Location of the virtual geomagnetic pole calculated from the mean direction of the site.
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Figure 4. Plots showing whole-rock chemical compositions of the explosively erupted trachytes from the Al Efairia 
volcanic center. The upper left shows a total alkali versus silica plot (after Cox and others, 1979), in weight percent, with 
the alkaline and subalkaline fields (after Irvine and Baragar, 1971) defined. The gray field shows the compositional range of 
all volcanic rocks in the Al Efairia volcanic center as determined by Camp and Roobol (1989), Downs and others (2018), and 
Stelten and others (2018). The remaining three plots show selected major-oxide and trace-element concentrations versus 
total iron (all iron as FeO [FeO*]) to demonstrate the distinctions between each unit using whole-rock geochemistry. All 
whole-rock chemical compositions are provided by Downs (2019).

Trachyte of Al Efairia

The trachyte of Al Efairia is a series of pyroclastic-flow 
and -surge deposits (fig. 3C) that underlies the trachytes of 
Um Rgaibah, Gura 4, and Gura 5 (Moufti, 1985), and overlies 
the trachyte of Al Qayf. This unit erupted from two nested 
craters (fig. 2). The first and largest is a ~1.8-km-diameter by 
~30-m-deep crater, which has mugearite and hawaiite scoria-
cone and lava-flow material exposed within its crater wall. The 
second is a ~800-m-diameter crater and is completely nested 
within the first crater (fig. 3B). This second crater has undergone 
posteruptive uplift of both the trachyte of Al Efairia and previ-
ously erupted hawaiite lava flows. The trachyte of Al Efairia 
covers an area of at least 66.8 km2 with the pyroclastic deposits 
reaching at least 9.0 km from the crater. The DRE volume for 

this unit is estimated to be between 0.57 and 0.86  km3, making 
it the most voluminous and widespread trachyte eruption within 
Harrat Rahat. Pyroclastic deposits from this eruption(s) climbed 
barriers >150 m higher than their source located ~1.5 km away.

Poorly inflated juvenile pumice clasts contain 1–10 per- 
cent K-feldspar (anorthoclase and sanidine) as large as 4 mil-
limeters (mm) in size and <1–10 percent clinopyroxene, of 
which a minor amount is aegirine, as large as 1 mm. Whole-
rock TiO2 concentrations range from 0.10 to 0.12 weight  
percent, FeO* ranges from 4.2 to 4.6 weight percent, K2O 
ranges from 4.9 to 5.3 weight percent, and Zr ranges from 
1,355 to 1,560 ppm (fig. 4). These are the only pyroclastic 
deposits that contain abundant lithic clasts, which include 
Proterozoic metasedimentary and metaigneous rocks, as well 
as previously erupted mafic volcanic rocks from Harrat Rahat.
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Trachyte of Gura 4

The trachyte of Gura 4 underlies the trachytes of Um 
Rgaibah and Gura 5 and overlies the trachyte of Al Efairia. 
Its eruption produced a ~500-m-diameter by ~100-m-deep 
crater (fig. 2). The crater wall exposes older benmoreite lava 
flows and part of a basaltic scoria cone. Trachyte of Gura 
4 pyroclastic deposits cover at least 18.2 km2 with some 
flowage deposits reaching at least 5.5  km from the crater. 
The pyroclastic-flow deposits were emplaced energetically 
enough to climb topographic barriers >150  m higher than their 
source crater located >1.5 km away. A conservative estimate 
of the DRE volume for this unit is between 0.15 and 0.22 km3. 
Because of the weakly consolidated nature of the pyroclastic-
flow deposits, it is easily erodible and includes many small, 
isolated patches of pyroclastic-flow deposits around its 
margins. These are easily distinguished from the similar 
patchy pattern of the trachyte of Al Efairia in that this unit has 
a distinctive brown outcrop color in aerial imagery whereas 
the trachyte of Al Efairia is distinctively bright yellow.

The trachyte of Gura 4 contains poorly to moderately 
inflated juvenile pumice clasts (fig. 3D) with 1–40 percent 
K-feldspar (anorthoclase and sanidine) as large as 10 mm in 
size and ≤1 percent aegirine as large as 1 mm. Whole-rock 
chemical compositions for this unit overlap in all major-oxide 
and trace-element abundances with those from the trachyte 
of Gura  5 (fig. 4). For this unit, TiO2 ranges from 0.05 to 0.09 
weight percent, FeO* ranges from 3.8 to 4.2 weight percent, 
K2O ranges from 4.6 to 4.8 weight percent, and Zr ranges from 
1,960 to 2,170 ppm (fig. 4).

Trachyte of Gura 5
The trachyte of Gura 5 is stratigraphically situated 

below the trachyte of Um Rgaibah and above the trachyte of 
Gura 4. The eruption of this unit formed a ~200-m-diameter 
by ~25-m-deep crater (fig. 2). A small sliver of an older 
mugearite lava flow is exposed within the crater wall. Part of 
the trachyte has been uplifted during a failed eruption, which 
is preserved as a ~300-m-diameter by ~50-m-high cryptodome 
located ~400 m south of the crater (fig. 2). The trachyte of 
Gura 5 pyroclastic deposits cover an area of ~1.7  km2 with the 
pyroclastic-flow deposits reaching ~800 m to the northeast and 
~1.7 km to the southwest of its source crater. The DRE volume 
for the trachyte of Gura 5 is estimated to be between 0.01 and 
0.02 km3.

Juvenile pumice clasts from this unit are poorly 
to moderately inflated with 5–20 percent K-feldspar 
(anorthoclase and sanidine) as large as 2 mm and rare 
sub-millimeter aegirine. For this unit, whole-rock TiO2 
concentrations range from 0.05 to 0.06 weight percent, FeO* 
range from 3.9 to 4.1 weight percent, K2O ranges from 4.5 to 
4.7 weight percent, and Zr ranges from 2,085 to 2,125 ppm 
with a single sample yielding a result of 3,180 ppm (fig. 4).

Trachyte of Um Rgaibah

The trachyte of Um Rgaibah is the stratigraphically high-
est, and therefore youngest, unit within the Al Efairia volcanic 
center. It directly overlies the trachytes of Gura  5,Gura 4, and 
Al Efairia. It consists of a prominent ~600-m-diameter lava 
dome with a spine at the top that rises to ~1,260 m above sea 
level and towers >300 m above the surrounding volcanic plain 
(fig. 3A). The lava dome is situated within a crater, which is 
poorly exposed with only a small part visible along the dome’s 
northwest margin (fig.  2). This crater is interpreted to be 
responsible for at least two distinct pyroclastic-flow deposits 
and an air-fall tephra of limited extent (fig. 5A–B). A third 
pyroclastic-flow deposit caps the sequence (fig. 5A–B) and the 
large (>1 m diameter in places) dense trachyte clasts near the 
lava dome are suggestive of emplacement during Peléan dome 
collapse. This unit covers an area of ~11.8 km2 and reaches at 
least 3.9 km distance from the high-standing spine located at 
its vent. The DRE volume for the trachyte of Um Rgaibah is 
estimated to be between 0.10 and 0.15 km3.

Juvenile pumice clasts and lava dome samples from 
this unit are mostly aphyric with <1 percent K-feldspar 
(anorthoclase and sanidine) as large as 1 mm and ≤1 percent 
clinopyroxene as large as 1 mm. For this unit, whole-rock  
TiO2 concentrations range from 0.19 to 0.22 weight percent, 
FeO* ranges from 5.3 to 5.6 weight percent, K2O ranges  
from 5.2 to 5.3 weight percent, and Zr ranges from 1,060 to 
1,455 ppm (fig. 4).

Timing of Trachyte Volcanism
The 14 40Ar/39Ar analyses used to calculate ages for the 

trachytes of Um Rgaibah, Gura 5, Gura 4, and Al Efairia 
indicate that trachytes within the Al Efairia volcanic center are 
much younger than previously proposed by Pellaton (1981) 
(table 1). Our 40Ar/39Ar analyses (table 1; all errors are at the 
one-sigma level unless otherwise stated) have yielded an age 
of 4.2±5.2 ka for the trachyte of Um Rgaibah, 79.7±1.6  ka 
for the trachyte of Gura 5 (weighted mean of three ages), 
84.3±1.6  ka for the trachyte of Gura 4 (weighted mean of two 
ages), and 88.0±1.8 ka for trachyte of Al Efairia (weighted 
mean of five ages). In contrast, Pellaton (1981) reported 
K-Ar ages of 1.47 Ma for the trachyte of Um Rgaibah and 
2.13  Ma for the trachyte of Al Efairia. Similar discrepancies in 
trachyte ages were reported within the Matan volcanic center 
by Stelten and others (2018, 2023b). Pellaton (1981) reported 
K-Ar ages of 1.38  Ma for the trachyte of Matan, 660 ka for 
the trachyte of Gura 2, and 270 ka for the trachyte of Dabaa 1, 
whereas Stelten and others (2018, 2023b) reported 40Ar/39Ar 
ages of 121.5±1.4  ka for the trachyte of Matan, 93.8±2.1 ka 
for the trachyte of Gura 2, and 17.6±1.8 ka for the trachyte 
of Dabaa  1. Moufti and others (2013) and Downs and others 
(2018, 2023) also report 40Ar/39Ar ages from mafic eruptive 
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Figure 5. Photographs of pyroclastic deposits of the trachyte of Um Rgaibah. A, Photograph of the basal, middle, and upper 
pyroclastic-flow deposits and the air-fall-tephra deposit of the 4.2±5.2-thousand-year-old (ka) trachyte of Um Rgaibah at  
~2.5 kilometers (km) to the northeast of the vent. B, Photograph of the basal, middle, and upper pyroclastic-flow deposits 
and the air-fall-tephra deposit of the 4.2±5.2-ka trachyte of Um Rgaibah at ~1.5 km to the northeast of the vent system. 
Photographs by Drew Downs, 2015.

products that tend to be significantly younger than previous 
K-Ar ages from northern Harrat Rahat.

One of the more remarkable results to come from 
our dating efforts is the recognition that the trachyte of 
Um Rgaibah erupted during the Holocene (although at the 
95-percent confidence level its age uncertainty extends 
into the late Pleistocene) at 4.2±5.2 ka. The Holocene age 
overlaps well with a 36Cl cosmogenic surface-exposure age 
of 9.0±2.5 ka from this unit by Stelten and others (2020, 
2023a). Combining the 40Ar/39Ar and 36Cl results yields a 
weighted mean eruption age of 6.9±2.9 ka. This makes it 
only the second Holocene eruption from Harrat Rahat to 
be documented. The other is the historically recorded 1256 
C.E. basalt of Al Labah that erupted at the northern end of 
the Harrat Rahat volcanic field near the city of Al Madīnah 
(Al-Samhūdī, 1488).

The other three trachyte eruptions dated here all have 
broadly similar ages (table 1), but they are consistent with 
their stratigraphic superpositions as mapped in the field 
(trachytes of Al Efairia, Gura 4, and Gura 5 in ascending 
stratigraphic order). Despite the measured age of each deposit 
being consistent with the stratigraphic order, their 40Ar/39Ar 
ages overlap at the 95-percent confidence level. We therefore 

undertook paleomagnetic studies (table  2) to further refine 
the understanding of this cluster of eruptions. The trachyte of 
Gura 4 has an inclination of 51.3° and declination of 346.3° 
(with a 3.6º uncertainty at the 95-percent confidence level), 
whereas the trachyte of Gura 5 has an inclination of 50.4° 
and declination of 339.4° (with a 3.0º uncertainty at the 
95-percent confidence level). The inclination and declination 
values of both units overlap at the 95-percent confidence level 
(table  2 and fig. 6). Additionally, both units are geochemically 
indistinguishable (fig. 4) and yield overlapping 40Ar/39Ar ages 
at the 95-percent confidence level (table 1). The overlapping 
ages alone indicate that these two units share an eruptive time 
interval on the order of no more than ~5,000  years from their 
age uncertainties. Based on the usual rates of geomagnetic 
secular variation (4 to 5° per century in the western United 
States; Champion and Shoemaker, 1977), these paleomagnetic 
directions establish that these eruptions occurred within a 
few decades to centuries of each other. Therefore, we infer 
that both the trachytes of Gura 4 and Gura 5 erupted over a 
geologically brief time interval at ~80 ka.

At 88.0±1.8 ka, the trachyte of Al Efairia also overlaps 
at the 95-percent confidence level with the trachytes of 
Gura  4 and Gura 5. However, with an inclination of 37.8° and 
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Figure 6. Plot of site mean directions of remanent magnetization (black dots) and ovals at 95-percent confidence 
of paleomagnetic directions measured on four explosively emplaced trachyte deposits within the Al Efairia volcanic 
center. Plot is in lower hemisphere equal-area stereographic projection.

declination of 4.3° (with a 2.6° uncertainty at the 95-percent 
confidence level), the direction of remanent magnetization 
of the trachyte of Al Efairia is sufficiently different from the 
trachytes of Gura 4 and Gura 5 to represent a longer time 
break (fig. 6). Statistical analyses (after Bogue and Coe, 1981) 
were performed on the trachytes of Gura 4 and Gura 5 and 
yield a 3±1 percent chance that the similarities in measured 
remanent magnetizations are the result of random occurrence. 
The same analysis on the trachytes of Al Efairia and Gura 
4 yield a 72±16 percent that the similarities in measured 
remanent magnetizations are the result of random occurrence. 
Thus, the differences in the 40Ar/39Ar age, geochemistry, and 
paleomagnetism of the trachyte of Al Efairia indicate that it 
represents a distinct volcanic event despite occurring within a 
few thousand years of the trachytes of Gura 4 and Gura 5.

The trachyte of Al Qayf has not been directly dated; 
however, Downs and others (2019) provide paleomagnetic and 
40Ar/39Ar age constrained stratigraphic evidence for the age 
of this trachyte pyroclastic deposit. This unit directly overlies 
the benmoreite of As Zayinah, a lava flow with a 40Ar/39Ar age 
of 418.8±1.9 ka (Downs and others, 2019), which provides a 
maximum eruption age. The trachyte of Al Qayf also overlies 

an undated trachyte lava dome (trachyte of Um Znabah 6; 
Downs and others, 2019) and underlies an undated mugearite 
lava flow (mugearite of Um Znabah 6; Downs and others, 
2019). These undated units are time correlative based on 
similar directions of remanent magnetization, which therefore 
means that the trachyte of Al Qayf is also time correlative 
with them, based on its stratigraphic position. The trachyte of 
Um Znabah 6 underlies a mugearite lava flow with a 40Ar/39Ar 
age of 410.3±3.4 ka, which provides a minimum eruption 
age. Therefore, the eruption age of the trachyte of Al Qayf is 
constrained between 410.3±3.4 and 418.8±1.9 ka, making it 
one of the oldest known trachyte eruptions within northern 
Harrat Rahat.

Comparison with the Matan Volcanic 
Center

One of the fundamental discoveries about the Al Efairia 
volcanic center is how it differs in eruptive behavior compared 
to the Matan volcanic center located ~10 km to the north 
along the trend of the main vent axis. Stelten and others (2018, 
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2023b) used field relations, geochemistry, and geochronology 
(both 40Ar/39Ar radiometric and 36Cl cosmogenic surface-
exposure ages) to demonstrate that there is a predictable, and  
repeated, eruptive sequence within the Matan volcanic center.  
This sequence started ~150 ka and encompasses four repeatable 
compositional sequences of basalt followed by intermediate 
composition magmas (hawaiite, mugearite, or benmoreite) and  
ending with trachyte eruptions. Based on geochemical and 
isotopic evidence that each sequence resulted from an episode 
of mantle-derived basalt injected into the crust, Stelten and 
others (2018, 2023b) used the time between eruptions of 
different compositions to calculate the time interval necessary 
to differentiate from basalt to intermediate composition magmas 
(≤2  thousand years on average) and then further to produce 
trachyte (maximum of 6.6±4.3 to 22.5±3.2 thousand years).

Unlike the Matan volcanic center, volcanism within the 
Al Efairia volcanic center since the eruption of the trachyte of  
Al Efairia at 88.0±1.8 ka has only been trachytic. This implies 
that there is an important difference between the Matan volcanic 
center and the Al Efairia volcanic center. Both volcanic centers 
must be receiving mantle-derived basaltic magma injected 
into the crust to either fractionate or add heat to the system to 
produce trachytic magmas. Yet, only in the Matan volcanic 
center do the mafic or intermediate magmas reach the surface 
during eruptions prior to trachyte erupting (Stelten and others, 
2018, 2023b).

Conclusions
Whereas most of the volcanic fields situated on the Arabia 

Plate are comprised of continental, intraplate basalts, there 
are a few volcanic fields that erupted trachytic magmas. The 
northern part of Harrat Rahat within the central-western part 
of the Kingdom of Saudi Arabia is one  
of these volcanic fields, with numerous young trachyte 
eruptive products. We investigated the young, explosively 
emplaced trachyte volcanic products within the Al Efairia 
volcanic center within the northern quarter of Harrat Rahat. 
These young pyroclastic-flow and -surge deposits erupted 
from craters or were generated during the collapse of hot lava 
dome material. In total, five distinct explosively emplaced 
trachyte units—the trachytes of Um Rgaibah, Gura 5, Gura 4,  
Al Efairia, and Al Qayf—were mapped based on their inter-
preted eruptive center and field observations, petrography, 
geochemistry, and paleomagnetism, and all but one (trachyte 
of Al Qayf) have been directly dated by the 40Ar/39Ar method. 
Our 40Ar/39Ar geochronology yields eruption ages of 4.2±5.2 ka 
for the trachyte of Um Rgaibah, 79.7±1.6  ka for the trachyte of 
Gura  5, 84.3±1.6 ka for the trachyte  of Gura 4, and 88.0±1.8  ka 
for the trachyte of Al Efairia. Using paleomagnetic correlations 
and 40Ar/39Ar ages from surrounding intermediate composition 
lava flows, we infer that the trachyte of Al Qayf erupted 
between 410.3±3.4 and 418.8±1.9 ka. The trachyte of Um 
Rgaibah at 4.2±5.2 ka is only the second Holocene eruption 
documented within Harrat Rahat, the other being a basaltic 

eruption (basalt of Al Labah) in 1256 C.E. at the northernmost 
limit of the volcanic field.

Geochemistry, petrography, paleomagnetism, and 
geochronology all indicate that the trachytes of Um Rgaibah, 
Al Efairia, and Al Qayf erupted from distinct magma batches, 
whereas the trachytes of Gura 4 and Gura 5 overlap in 
petrographic textures, whole-rock chemical compositions, and 
paleomagnetic directions. The similarities in geochemistry 
and petrography argue for the trachytes of Gura 4 and Gura 5 
to have erupted from the same magma batch and the overlap 
in directions of remanent magnetization (at the 95-percent 
confidence level) indicate that these two units erupted within 
decades of each other at most.

Trachytes have also erupted from the Matan volcanic 
center, which is located ~10 km north of the Al Efairia 
volcanic center. Matan volcanic center trachyte eruptive 
products also have predominantly late Pleistocene eruption 
ages (<150 ka), but there is a fundamental difference in their 
eruptive sequence. Trachyte deposits from the Matan volcanic 
center follow a predictable pattern wherein basalt erupts, 
followed by intermediate composition eruptions, which are 
then followed by the eruption of trachyte (Stelten and others, 
2018, 2023b). This eruptive sequence is proposed to be related 
to the timescales by which mantle-derived basaltic magmas 
differentiate to create intermediate and evolved magmas.
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