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CONCEPTUAL MODELS OF BRINE EVOLUTION IN MAGMATIC-
HYDROTHERMAL SYSTEMS

By Robert O. Fournier

ABSTRACT

The depth of intrusion of a magmatic body is important in
regard to brine evolution and to the type and intensity of
hydrothermal alteration that is likely to be associated with that
intrusion. At a depth of intrusion of 6—7 km, and in the absence
of evaporite deposits somewhere in the section, nonmagmatic
water is not likely to be converted to brine unless there are
special circumstances, such as repeated magmatic intrusions
and repeated fracturing of very hot rock. In contrast, brine is
very likely to form from nonmagmatic water where the depth of
intrusion comes within about 3—4 km of the surface, and dilute
water is heated to above about 400-450 °C.

When pore-fluid pressures are controlled by hydrostatic
conditions, magmatic waters will evolve to highly saline brines
at depths less than about 10-12 km, irrespective of the initial
concentrations of salt and water dissolved in the magma. Dilute
hydrothermal fluids of meteoric origin and mixtures of meteoric
water and condensed magmatic gas (steam) are likely to form
convection systems that float upon the more saline and probably
hotter magmatic fluid. Double-diffusive convection is likely to
result from the temperature and salinity gradients.

Quasi-plastic flow and mineral deposition generally prevent
flow of water at hydrostatic pressure through rock at tem-
peratures above 350—450 °C. However, where there are steep
thermal gradients and a relatively rapid rate of change of stress,
such as where magma is rapidly injected from a deep environ-
ment into a more shallow environment, brittle deformation of
rocks may occur at temperatures in excess of 450 °C. Ground
water at hydrostatic pressure may flow into and through these
fractures and become heated to very high temperatures, possi-
bly flashing in great part to steam with the simultaneous
development of a small mass of brine. This situation should
persist for only a relatively short time before quasi-plastic' flow
and mineral deposition limit additional fluid circulation to tem-
peratures below 350-450 °C.

A generalized model is presented for the evolution of a
hydrothermal system within an oceanic volcano, such as at
Hawaii, in which a slowly rising magma reservoir maintains a
depth of about 3—4 km beneath the summit as the volcanic
edifice builds upon the sea floor. Significant amounts of highly
saline brine are likely to be generated from sea water when the
magma reservoir rises to within about 4—5 km of sea level.
After a volcanic island forms, fresh water may enter the top of
the hydrothermal system and float upon the brine. Sulfides are
likely to deposit below sea level within the chloride-rich brine
portion of the system, but these deposits are not likely to be
exposed during subsequent erosion. With continued growth of
the volcano above sea level, temperatures and pressures within
the hydrothermal system become appropriate for complete
evaporation of pore waters adjacent to the rising magma cham-
ber. Sodium sulfate- and sodium carbonate-rich brines form

above sea level where steam condenses and sulfur- and carbon-
rich gases react with the country rock.

What is generally thought of as supercritical behavior of a
fluid (no phase change upon heating or cooling) occurs only at
pressures greater than the hypercritical pressure, a pressure
great enough to ensure that the gas phase will retain all the salt
that was initially dissolved in the liquid phase at a lower tem-
perature. At hydrostatic conditions the hypercritical point for a
dilute water containing about 2,000 mg/kg total dissolved solids
would be at about 700 °C at a depth of 4.6 km, and for sea water
it would be at about 900 °C at a depth of 12.9 km.

INTRODUCTION

Studies of fluid inclusions in minerals from fossil hydrothermal
systems (Roedder, 1979) show that brines commonly occurred at
different times and in different parts of those systems. Descriptions
of brine-rich fluid inclusions that formed in hydrothermal systems
associated with shallow intrusive rocks are presented in many
articles, including Roedder (1971), Nash (1976), Eastoe (1978),
Bodnar and Bean (1980), and Reynolds and Bean (1985) Brines
may originate in many ways. Connate brines are encountered in
many deep sedimentary basins (White, 1965), and the formation of
brines by evaporation of closed basin lakes (Langbein, 1961;
Hardie and Eugster, 1970; Eugster and Jones, 1979) and the
interaction of meteoric water with evaporite deposits (White, 1968)
are well documented. Relatively little attention, however, has been
given to highly saline brines formed by the interaction of ordinary
waters with hot rocks that do not contain evaporites (Bischoff and
Pitzer, 1985; Fournier, 1985a). This paper stresses the importance
of including information about brine evolution from dilute water, sea
water, and magmatic gases in our conceptual models in order to
approximate what may happen in natural magmatic-hydrothermal
systems. Particular attention will be focused on the important effect
that depth of magmatic intrusion has on the generation of highly
saline brine from relatively dilute water of meteoric origin and from
magmatic gases, and a generalized model will be presented for the
evolution of a hydrothermal system within an oceanic volcano, such

as at Hawaii.
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FLUID CIRCULATION AND HEAT TRANSFER
IN MAGMATIC-HYDROTHERMAL SYSTEMS

It will be shown subsequently that the attainment of tem-
peratures in excess of about 400 °C is generally a prerequisite for
producing brines from dilute to moderately saline waters within
convecting hydrothermal systems. Therefore, attention will be
focused on the factors that are likely to limit the maximum tem-
perature that is attained by a convecting fluid at hydrostatic pres-
sure.

Models for fluid flow and heat transfer in hydrothermal systems
have been discussed by many investigators, including Elder (1965),
Bodvarsson and Lowell (1972), Lister (1974, 1980, 1983),
Ribando and others (1976), Cheng and Minkowycz (1977),
Cathles (1977, 1980, 1983), Norton and Knapp (1977), Norton
and Knight (1977), Norton (1978, 1984), Parmentier and Spooner
(1978), Torrance and Sheu (1978), Fehn and Cathles (1979),
Norton and Taylor (1979), Hartline and Lister (1981), Knapp and
Norton (1981), Hardee (1982), and Sieep (1983). One of the most
important parameters in these models is permeability, which is
generally assumed to have a constant value, or to change uniformly
in response to a variable, such as time or temperature. In natural
hydrothermal systems permeability is likely to change nonuniformly
and even to fluctuate during the life of the system. Processes that tend
to increase permeability are faulting (brittle fracture), thermal
cracking upon cooling, hydrofracturing, and dissolution of minerals.
Processes that tend to decrease permeability are quasi-plastic flow,
precipitation of minerals, and thermal expansion of rock. All of these
processes must be taken into account in our models.

Several factors influence whether a rock deforms by brittle
fracture or quasi-plastic flow, including the inherent strength of the
rock, depth of bural (confining pressure), temperature, state of
stress, and the rate of loading (rate of change of stress). Brittle, stiff
materials are able to accommodate increasingly large stress dif-
ferences until their strength is exceeded and they fail by fracture.
Relatively plastic, compliant materials are unable to accommodate
large stresses because they deform in response to relatively small
increases in stress difference. As rocks are heated and subjected to
greater confining pressure, they tend to exhibit a more ductile
response to increased stress difference. The situation is complicated,
however, because at a given temperature some materials deform by
quasi-plastic flow when the rate of loading is slow and by brittle
fracture when the rate of loading is rapid (Lama and Vatukuri,
1978). Thus, a relatively fast rate of change of stress may result in
brittle fracture and increased permeability, whereas, at the same
temperature, a relatively slow rate of change of stress may lead to
quasi-plastic deformation and a decrease in porosity and (or)
increase in pore-flud pressure.
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The maximum depths of earthquake foci probably give a good
indication of the depth at which quasi-plastic flow limits the down-
ward penetration of ground water above relatively shallow magmatic
bodies that are still hot. At Yellowstone National Park, information
is available about earthquake focal depths and the maximum
temperature likely to be attained by the hydrothermal system that
convects to the surface (Fournier and Pitt, 1985). Well-located
earthquakes seldom exceed about 4 km depth beneath the Yellow-
stone caldera but are much deeper outside the caldera. Chemical
geothermometers, mixing models, and phase relations in the system
NaCl-H,0, indicate that the maximum temperature likely to be
attained by the hydrothermal system is 350—430 °C (Fournier and
Pitt, 1985). Based on temperature profiles calculated from heat-flow
data for several localities in the Western United States and earth-
quake focal depths at those same locations, Smith and Bruhn (1984)
conclude that the temperature at which deformation changes from
frictional (brittle fracture) to quasi-plastic flow commonly ranges
from about 300-450 °C. Also, self-sealing by precipitation of
quartz and other minerals is likely to occur in the temperature range
350-500 °C when solutions are heated at constant pressure (Four-
nier, 1977, 1983a, 1983b; Sleep, 1983). Thus, permeability
reduction by physical and chemical processes becomes increasingly
important at temperatures above about 350 °C.

Those rocks situated at depth and in close proximity to a
magma probably are at too great a temperature to sustain the large
stress differences necessary to induce significant fracturing and
faulting. Where fracturing has occurred in rocks at temperatures
above about 350-450 °C, quasi-plastic deformation is likely to
close those fractures within a relatively short time. Therefore, in
most magmatic-hydrothermal systems convecting thermal waters at
hydrostatic pressure probably are separated from magma by a
region of hot rock that deforms quasi-plastically.

The above considerations lead to a model of a magmatic-
hydrothermal system in which thermal energy is transferred mainly
by conduction from very hot rock or magma to hydrostatically
pressured circulating water. Minor additional heat is transferred by
flow of fluids evolved from the crystallizing magma. The schematic
depth-temperature profile shown in figure 55.1 represents a situation
in which most of the fluid flow is restricted to a few relatively
permeable channels, and the base of the convecting hydrothermal
system (point B) is above the magmatic body (a simplified represen-
tation of real magmatic-hydrothermal systems in which convective
flow of heated fluid is likely to occur at the sides as well as the tops of
hot intrusive bodies). The temperature gradient for conductive heat
flow from magma or hot impermeable rock is shown by line MB.
Upward-flowing fluid in the convection system transfers heat rela-
tively efficiently, and eventually temperatures along the flow path
may approach an adiabatic profile (from B to A). If the temperature
at point B is less than the critical temperature, point C, the adiabatic
profile is nearly isothermal (line BA). The upper limit of the nearly
isothermal region is set by the boiling-point curve. The position of
the boiling-point curve is determined mainly by the location of the
water table and the salinity and gas content of the particular fluid in
the system.
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In summary, quasi-plastic flow and mineral deposition gener-
ally prevent flow of water at hydrostatic pressure through rock at
temperatures above 350450 °C. However, where there are steep
thermal gradients and a relatively rapid rate of change of stress, such
as where magma is rapidly injected from a deep environment into a
more shallow environment, brittle deformation of rock may occur at
temperatures in excess of about 450 °C. Ground water at hydro-
static pressure may flow into and through these fractures and become
heated to very high temperatures, possibly flashing in great part to
steam. However, this situation should persist for only a very short
time before quasi-plastic flow and mineral deposition limit additional
fluid circulation to temperatures below about 450 °C.

BEHAVIOR OF CHLORIDE-RICH SALINE
SOLUTIONS IN HYDROTHERMAL SYSTEMS

The following discussion is based on the experimentally deter-
mined behavior at hydrothermal conditions of the system NaCl-
H,O (Keevil, 1942; Olander and Liander, 1950; Copeland and
others, 1952; Sourirajan and Kennedy, 1962; Khaibullin and
Borisov, 1966; Hilbert, 1979; Galobardes and others, 1981;
Parisod and Plattner, 1981; Gunter and others, 1983; Bodnar and
others, 1985; Bischoff and others, in press), NaCl-KCl-H,O
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FIGURE 55.1.—Schematic depth-temperature profile for fluid flow (shown by
arrows) restricted mainly to a few relatively permeable channels above magmatic
heat source. Lettered points are discussed in text.
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(Ravich and Borovia, 1949), and sea water (Bischoff and Rosen-
bauer, 1984, 1985; Bischoff and Pitzer, 1985). In related articles
(Fournier, 1983b; 1985a), the pressure-temperature-composition
relations in the system NaCl-H,O given by Sourirajan and Ken-
nedy (1962) were used as a basis for constructing a model for the
behavior of saline solutions in hydrothermal systems. Results of
recent experimental studies (Bischoff and Rosenbauer, 1984, 1985;
Bodner and others, 1985; Bischoff and others, in press) and
theoretical modeling of the thermodynamics of the behavior of NaCl
in steam (Pitzer, 1983; Pitzer and Li, 1984; Pitzer and Pabalan, in
press) and in mixtures of H,O and CO, (Bowers and Helgeson,
1983) show that the Sourirajan and Kennedy (1962) results for the
solubility of NaCl in steam are probably considerably in error at
temperatures above 400 °C. For example, the isopleth of 0.4 weight
percent NaCl dissolved in steam in pressure-temperature space
according to the data of Sourirajan and Kennedy (1962) is com-
pared in figure 55.2 to the same isopleth using the model of Pitzer
and Pabalan (in press). Experimental data of Olander and Liander
(1950) are compatible with either isopleth, but the results reported
by Bodner and others (1985) clearly favor the Pitzer and Pabalan
model. In the remainder of this paper results of the Pitzer and
Pabalan (in press) model for the solubility of NaCl in steam will be
used.

At a given depth and hydrostatic load (a given pressure) more
saline solutions will boil at higher temperatures than less saline
solutions, and the critical points of more saline solutions are encoun-
tered at higher temperatures and higher pressures (greater depths)
than those of less saline solutions. Approximate boiling-point curves,
extending to the critical points, for pure water and 10 and 25 weight
percent NaCl solutions are shown in figure 55.3. Haas (1971)
calculated boiling-point curves for water and various salt solutions of
as much as 25 weight percent with an upper temperature limit of 330
°C. His results are slightly different from those shown in figure 55.3
because he assumed that hydrostatic pressure is controlled by the
weight of the overlying column of boiling solution, thus correcting for
changing density. The boiling-point curves shown in figure 55.3
were calculated with the assumption that the pressure-controlling
column of solution has a constant density of 1. This assumption
appears to be valid in some presently active hydrothermal systems
(Fournier, 1983b). The physical reality appears to be that at given
depths, fluid pressures within the hot part of the system are the same
as fluid pressures in the surrounding cold part of the system.
Lithostatic depths in figure 55.3 and subsequent figures were
calculated using an average rock density of 2.5 kg/m?.

Boiling-point curves for hydrostatic conditions are calculated
relative to the position of the water table. In many places that water
table is far below the Earth’s surface. In other places, artesian
systems are present in which the pressure-controlling water table is
elevated in distant hills or mountains. In still other places, hot springs
discharge onto the floors of lakes or the ocean, and boiling-point
curves adjust to the overlying column of lake or ocean water. Thus,
the 350 °C hot-spring waters discharging on the ocean floor at 21°
N. on the East Pacific Rise (Edmond and others, 1979) are below
boiling temperature because of their great depth.
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The boiling-point curves in figure 55.3 show temperature-
depth conditions at which liquids of given salinity will first start to
boil. Upflowing solutions start to boil as a result of decompression
when the boiling-point curve appropriate for the composition of the
particular fluid is first attained. However, as soon as boiling starts, a

slight departure from the initial boiling-point curve occurs because of

the increase in salinity of the residual solution as boiling progresses.
Adiabatic cooling that results from decompression of a relatively
dilute solution, starting at temperatures less than the critical tem-
perature, can result in a moderate increase in salinity, but will not
result in the generation of a brine. For example, adiabatic
decompressional boiling of a dilute solution that results in cooling
from 370—100 °C will be accompanied by the conversion of about
64.9 percent of the initial liquid to steam (calculated from data in
steam tables of Keenan and others, 1969), and the final residual
solution at 100 °C will be about 2.85 times more concentrated in
nonvolatile elements than the initial solution.

Isopleths of the solubility of NaCl in aqueous liquids in 10
weight percent increments from 0 to 90 weight percent projected
onto a temperature-pressure diagram are shown in figure 55.4.
These isopleths are boiling-point curves, but the depth axis is very
uncertain because of the previously discussed limitations and the
incorporation of significant amounts of salts other than NaCl into
natural brines. A liquid-saturation curve (or a total evaporation
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curve) separates a field of gas plus solid salt (at lower pressures)
from a field of gas plus liquid (at higher pressures). For the system
NaCl-H,O, the position of this liquid-saturation curve is fixed in
temperature-pressure space and is independent of the initial propor-
tion of NaCl and H,0O. For aqueous solutions containing mixed
salts, the position of the liquid saturation curve in temperature-
pressure space will depend on the nature of the salts that are present,
and precipitation of some salts will hkely take place within the gas
plus liquid (brine) field. The short-dashed line in figure 55.4 shows
the approximate position of the boundary separating fields of gas
plus liquid and gas plus solid when the fluid contains a mixture of
NaCl and KCl and the Na/K ratio in that fluid is appropriate for
coexisting albite and K-feldspar (Orville, 1963). The salinity of the
liquid phases steadily increases with increasing temperature along the
liquid saturation curve (the gas+ solid + liquid curve), whereas the
salinity of the gas phase increases with increasing pressure. At
salinities greater than about 30 weight percent the isopleths showing
solubilities in the liquid phase originate at the liquid-saturation curve
(the three-phase boundary that separates the field of gas plus solid
salt from the field of gas plus liquid) and terminate at critical points
(shown as dots for solutions with as much as 30 weight percent
NaCl). The double-dot-dashed line (fig. 55.4) is the critical curve
for the system NaCl-H,O. The positions of all these curves move in
temperature-pressure space as other salts are added to the system.
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Boiling-point curves and critical points of solutions show only
part of the important information that must be taken into account
when modeling magmatic-hydrothermal systems. General phase
relations exhibited by any chloride-rich solution of given salinity in
temperature-depth space are shown in figure 55.5A. The solid line
is a boiling-point curve for a solution of given salinity, ending at the
critical point, C. Extending to greater depth (higher pressure) and
higher temperature from the critical point is what may be thought of
as a condensation-point curve for a gas that contains the same
concentration of dissolved salt (an isopleth) that the initial liquid
contained at suberitical temperatures and pressures. Along the
condensation-point curve the gas is in equilibrium with a liquid that
is much more saline than the gas, and the salimty of this liquid
increases steadily and dramatically going from the critical point, C,
through point H to point E. In this discussion, point H is called a
“hypercritical” point (Fournier, 1985a). It marks the temperature
and pressure at which a fluid of given salinity behaves according to
what we normally think of as supercritical behavior; at greater
pressures the fluid will not boil or condense upon heating or cooling.
To the left of the dotted line that passes through point H the salinity
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of the gas phase decreases as temperature is increased at constant
pressure. In contrast, the salinity of the gas phase increases with
increasing temperature at constant pressure to the right of the dotted
line.

Boiling-point and condensation-point curves are schematically
shown in figure 55.58 for three compositions of fluid, equivalent to
X, Y, and Z weight percent NaCl, such that X<Y<Z. The
three boiling-point curves end at their respective critical points, C,,
C,, and C,. Gas of composition X is in equilibrium with liquid Y at
point m, and liquid Z at point n. At point p gas of composition Y is
in equilibrium with liquid Z. In actual water-salt systems, very large
increases in salinity are generally required to increase the boiling
point a few degrees at constant pressure, as shown in figure 55.4 for
solutions up to about 30—40 weight percent dissolved NaCl.
Isopleths of solubility of NaCl in steam (condensation-point curves)
for salinities as great as 20 weight percent are shown in red in figure
55.6, and in figure 55.7 these isopleths are shown in red superim-
posed on figure 55.4. As previously noted, a rising fluid that
intersects a boiling-point curve would become moderately more
saline as a result of decompressional boiling with separation of
steam, such as the fluid that follows path A in figure 55.5A. In
contrast, hot rising fluids that follow a cooling path that is to the
high-temperature side of the critical point so that the condensation-
point curve is intersected, such as path B in figure 55.5A, will
undergo a large increase in salinity. This will be discussed more fully
later.

In summary, more saline solutions have boiling-point curves at
higher temperatures and generally have critical points at much
greater depths than less saline solutions. For a solution of given initial
salinity, a condensation-point curve extending from the critical point
to higher temperatures passes through a pressure maximum (the
hypercritical point) and then loops back to intersect the liquid
saturation curve at about the melting point of the pure salt (figs.
55.5A, 55.5B, 55.6, 55.7) The hypercritical point marks the
temperature and pressure at which a fluid of given salinity will not
boil or condense upon heating or cooling. The depths and tem-
peratures at which these curves would be intersected in natural
systems will vary greatly depending upon various hydrologic param-
eters and the nature of the dissolved salts and partial pressures of
dissolved gases.

GENERATION OF BRINES
FROM DILUTE SOLUTIONS

Adiabatic decompression of a liquid, which causes its path in
depth-temperature space to intersect the boiling-point curve at a
temperature below the critical temperature, is likely to result in only
a moderate salinity increase. However, if the cooling path of an
ascending fluid brings it into the gas plus liquid field at a temperature
greater than the critical temperature, a highly saline solution (brine)
will condense from that ascending fluid. The NaCl concentrations of
liquids (brines) that will condense from two fluids, one containing
0.2 weight percent NaCl and the other 3.2 weight percent NaCl,
that intersect condensation-point curves at various temperatures as a
result of decompression are shown in figure 55.8.
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