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Studies of the 
Chesapeake Bay Impact Structure— 
Introduction and Discussion 

By J. Wright Horton, Jr.,1 David S. Powars,1 and Gregory S. Gohn1 
Abstract 

The late Eocene Chesapeake Bay impact structure on the 
Atlantic margin of Virginia is the largest known impact crater 
in the United States, and it may be the Earth’s best preserved 
example of a large impact crater that formed on a predominantly 
siliciclastic continental shelf. The 85-kilometer-wide (53-mile­
wide) crater also coincides with a region of saline ground water. 
It has a profound influence on ground-water quality and flow in 
an area of urban growth. 

The USGS-NASA Langley corehole at Hampton, Va., is 
the first in a series of new coreholes being drilled in the crater, 
and it is the first corehole to penetrate the entire crater-fill sec­
tion and uppermost crystalline basement rock. The Langley 
corehole is located in the southwestern part of the crater’s annu­
lar trough. A comprehensive effort to understand the crater’s 
materials, architecture, geologic history, and formative pro­
cesses, as well as its influence on ground water, includes the 
drilling of coreholes accompanied by high-resolution seismic-
reflection and seismic-refraction surveys, audio-magnetotellu­
ric surveys, and related multidisciplinary research. 

The studies of the core presented in this volume provide 
detailed information on the outer part of the crater, including the 
crystalline basement, the overlying impact-modified and 
impact-generated sediments (physical geology, paleontology, 
shocked minerals, and crystalline ejecta), and the upper Eocene 
to Quaternary postimpact sedimentary section (stratigraphy, 
paleontology, and paleoenvironments). 

The USGS-NASA Langley corehole has a total depth 
below land surface of 635.1 meters (m; 2,083.8 feet (ft)). The 
deepest unit in the corehole is the Neoproterozoic Langley 
Granite. The top of this granite at 626.3 m (2,054.7 ft) depth is 
overlain by 390.6 m (1,281.6 ft) of impact-modified and 
impact-generated siliciclastic sediments. These crater-fill mate­
rials are preserved beneath a 235.6-m-thick (773.12-ft-thick) 
blanket of postimpact sediments.

 1U.S. Geological Survey, Reston, VA 20192. 

A high-resolution seismic-reflection and seismic-refrac­
tion profile that crosses the Langley drill site is tied to the core 
by borehole geophysical logs, and it reveals the details of exten­
sional collapse structures in the western annular trough. Electri­
cal cross sections based on audio-magnetotelluric (AMT) 
soundings image a nearly vertical zone of high resistivity at the 
outer margin of the annular trough, possibly indicating fresh 
ground water at that location, and they show impedance trends 
that match the curvature of the structure. They also image the 
subsurface contact between conductive sediments and resistive 
crystalline basement, showing that the depth to crystalline base­
ment is relatively constant in the western part of the annular 
trough. 

Chemical and isotopic data indicate that saline ground 
water of the Virginia inland saltwater wedge or bulge is a mix­
ture of freshwater and seawater, and evidence for a mixing zone 
at the crater’s outer margin supports the concept of differential 
flushing of residual seawater to create the bulge. Ground-water 
brine in the central part of the crater was produced by evapora­
tion, and brine production from the heat of the impact is at least 
theoretically possible. 

Introduction 

This chapter begins with an overview of the Chesapeake 
Bay impact structure, including its geologic setting, the history 
of previous work, and the status of current research. This over­
view provides an introduction to more detailed studies reported 
in the volume. These reports contain data and interpretations 
from the USGS-NASA Langley corehole at Hampton, Va., 
which is the first corehole to basement in the structure, and from 
related coreholes and geophysical surveys. 

This chapter also explains some style conventions used in 
this volume. Discussions highlight some important results of 
each chapter, as well as scientific results and issues that tran­
scend the scope of individual chapters. 

The impact event.—Although our understanding of the 
impact event is likely to improve as investigations continue, 
researchers currently agree on the following scenario. The 
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impact event occurred 35 million to 36 million years ago, when 
the area that became eastern Virginia was covered by the Atlan­
tic Ocean. An asteroid or comet fragment about 3 kilometers 
(km; about 2 miles (mi)) in diameter collided with Earth at a 
velocity on the order of 20 km (12 mi) per second (Crawford, 
2002). It blasted through the shallow ocean, wet sediments, and 
rocks to leave a cavity about 38 km (24 mi) wide in the sea floor. 

This explosion, approximately 100 times greater than a 
detonation of Earth’s entire nuclear arsenal (Poag, 2002d), 
vaporized the projectile and billions of tons of water, sediment, 
and rock (Edwards and Powars, 2003). Some rocks and sedi­
ments melted instantly, and droplets solidified in the air before 
raining down as tektites as far away as Texas. The shock wave 
left extreme deformation features similar to those caused by 
nuclear explosions. Enormous volumes of water, sediment, and 
rock shot ballistically outward and upward to high altitudes, 
leaving a giant short-lived cavity in the water in addition to the 
hole in the seabed. 

Rebound of the crater floor was followed by gravitational 
collapse; the inward slumping and faulting of poorly consoli­
dated, wet sediments extended the crater to a width of about 85 
km (53 mi). Ejected material fell back to Earth, and the ocean 
water surged violently back into the open cavity, carrying a cha­
otic mixture of debris ranging from damaged microorganisms 
to house-size blocks (Edwards and Powars, 2003). Tsunamis 
spread outward in all directions. Fallout particles settled on the 
seabed, and a thick pile of sediments accumulated on top of the 
crater, preserving the evidence beneath the present mouth of 
Chesapeake Bay until the human needs for drinkable ground 
water led to its discovery in recent decades (Powars and Bruce, 
1999). 

The impact crater location and name.—The Chesapeake 
Bay impact crater underlies the southern part of Chesapeake 
Bay, its surrounding peninsulas, and a small part of the western 
Atlantic Ocean (fig. A1). This buried, late Eocene complex cra­
ter is the largest known impact crater in the United States and 
the seventh largest known on Earth (Earth Impact Database, 
2003). It may be the Earth’s best preserved and best studied 
example of a large impact structure formed in a predominantly 
siliciclastic continental-shelf environment. The Chesapeake 
Bay impact crater coincides closely with an unusual region of 
saline ground water originally called the Virginia inland saltwa­
ter wedge (Sanford, 1913). The impact structure, therefore, has 
a profound influence on ground-water flow and quality, includ­
ing salinity, across one of the fastest growing urban centers on 
the east coast of North America that increasingly depends on 
ground-water resources (Hampton Roads Planning District 
Commission, 1999). 

In this volume, the terms “Chesapeake Bay impact crater” 
and “Chesapeake Bay crater” refer to the actual crater depres­
sion, whereas “Chesapeake Bay impact structure” is used in a 
broader sense to include outlying impact-related structures, 
such as faults in the outer fracture zone (fig. A1). The terms can 
be used interchangeably where this distinction is irrelevant to 
the context. 

3

3

Figure A1. Regional map showing the location of the Chesapeake Bay 
impact structure, the USGS-NASA Langley corehole at Hampton, Va., and 
some other coreholes in southeastern Virginia. White dashed line indicates 
approximate location of schematic cross sections in figure A7. Locations of 
the central crater and outer margin are from Powars and Bruce (1999). The 
extent of the outer fracture zone (light gray) is based on Powars (2000) and 
Johnson and others (2001); the eastern part is speculative. Illustration 
modified from Powars, Johnson, and others (2002) and Edwards and Powars 
(2003). 

The Chesapeake Bay Impact Crater Project.—The Chesa­
peake Bay Impact Crater Project is a multidisciplinary research 
collaboration begun in 2000 to understand the physical charac­
teristics, geologic history, formative processes, and hydrologic 
implications of this buried structure. The project collaborators 
are described in the “Acknowledgments” section. 

Most of the chapters in this Professional Paper discuss 
studies of samples from the USGS-NASA Langley corehole 
(fig. A1) or geophysical studies in the vicinity. This corehole 
was the first of four coreholes drilled for this project during the 
years 2000 through 2002, and it was the first corehole to pene­
trate the entire sedimentary section and reach uppermost crys­



Studies of the Chesapeake Bay Impact Structure—Introduction and Discussion A3 
talline basement rock within the crater’s annular trough 
(fig. A1). Related studies of samples from additional coreholes, 
although mentioned in several chapters, are still in progress. 

The four coreholes drilled for the Chesapeake Bay Impact 
Crater Project during 2000 through 2002 are listed below and 
are plotted in figures A1 and A2: 

1.	 USGS Bayside corehole, in the western annular trough on 
the Middle Peninsula at Bayside, Va. (728.5 m, 2,390.2 ft 
total depth, year 2001) 

2.	 USGS-NASA Langley corehole, in the western annular 
trough in Hampton, Va. (635.1 m, 2,083.8 ft total depth, 
year 2000) 

3.	 USGS North corehole, in the western annular trough on 
the Middle Peninsula, Va. (435.1 m, 1,427.5 ft total 
depth, year 2001) 

4.	 USGS Dorothy R. Watkins Elementary School corehole, 
just outside the outer margin in Newport News, Va. 
(300.3 m, 985.3 ft total depth, year 2002) 

The Bayside, Langley, North, and Watkins School core-
holes are located approximately 8, 19, 24, and 27 km (5, 12, 15, 
and 17 mi), respectively, outside the central crater (fig. A2). All 
four cores penetrated impact-generated sediments of the 
Exmore beds, and the cores from Bayside and Langley sampled 
complete postimpact and crater sections down to Neoprotero­
zoic granites of a peri-Gondwanan basement terrane (Horton 
and others, this volume, chap. B). The short names “Bayside 
corehole,” “Langley corehole,” “North corehole,” and “Wat­
kins School corehole” are used in this volume. 

The USGS-NASA Langley corehole is described in online 
drilling reports (Gohn, Clark, and others, 2001; Powars, Bruce, 
and others, 2001). The Langley corehole is located at lat 
37°05'44.28" N., long 76°23'08.96" W. (North American 
Datum of 1927), at a ground-surface altitude of 2.4 m (7.9 ft) 
above the North American Vertical Datum of 1988. The core-
hole was drilled at the National Aeronautics and Space Admin­
istration (NASA) Langley Research Center in Hampton, Va. 
Drilling by the U.S. Geological Survey (USGS) and coopera­
tors (see “Acknowledgments”) took place in July–October 
2000, and geophysical logs were run in the hole on three occa­
sions. 

Measurements in this volume.—Geophysical, paleonto­
logic, and petrologic studies routinely use metric units for phys­
ical parameters. However, coastal plain stratigraphic and hydro­
logic studies, as well as the drilling industry, routinely use feet 
and fractions thereof as length units for stratigraphic thickness 
and depth. Borehole geophysical logs typically measure depth 
in feet, although unit systems for the measured parameters vary. 
To accommodate this mixture, this volume uses metric units for 
all measurements, with the following exceptions. Stratigraphic 
positions and thicknesses and general references to depths in 

cores and coreholes are made in meters or decimal fractions of 
meters with equivalent values in feet or decimal fractions of feet 
listed in parentheses, as in the example 73.3 m (240.6 ft). Sim­
ilarly, horizontal distances are given in kilometers or meters 
with miles or feet in parentheses, as in the example 11.7 km (7.3 
mi). Data collected in metric units are given in the text only in 
metric units, whereas data collected in feet and inches (in.) are 
given using both systems of measurement, as in the example 25 
cm (10 in.). Conversion factors are given after the volume table 
of contents. 

Previous Work 

Sanford (1913) was the first to recognize and name the 
Virginia inland saltwater wedge, and D.J. Cederstrom’s reports 
included a more comprehensive delineation of this feature and 
attributed it to differential flushing of seawater related to an 
Eocene basin fill north of the James River. Cederstrom con­
ducted a series of comprehensive regional hydrogeologic inves­
tigations of the York-James Peninsula (Cederstrom, 1945a, 
1957) and related studies in the southeastern Virginia Coastal 
Plain (Cederstrom, 1945b,c), providing lithologic logs of wells, 
biostratigraphic data analyzed by J.A. Cushman (USGS), and 
water-quality data (Cederstrom, 1943, 1946). 

Cederstrom’s (1957) subsurface Mattaponi Formation 
(term abandoned by Ward, 1984) included what we now recog­
nize as crater-fill deposits (the Exmore beds), as well as addi­
tional undisturbed sediments outside the crater beneath most of 
the central to outer Virginia Coastal Plain (Powars and Bruce, 
1999). Cederstrom proposed the “James River fault zone” to 
account for his interpretation of the erratic distribution and 
abrupt changes in thickness of strata. Knowledge of subsurface 
geology beneath the southeastern Virginia Coastal Plain was 
based mostly on water-well cuttings and geophysical logs until 
the late 1980s (Brown and others, 1972; Laczniak and Meng, 
1988; Meng and Harsh, 1988), at which time the surficial 
deposits had already been mapped in considerable detail 
(Johnson and others, 1987, and references therein). 

From 1986 to 1992, the analysis of samples from coreholes 
drilled by the USGS and the Virginia Department of Environ­
mental Quality (VDEQ) significantly advanced the understand­
ing of subsurface geology in southeastern Virginia (Powars and 
others, 1987, 1990, 1992; Poag and others, 1992). This work, 
combined with results of offshore drilling at Deep Sea Drilling 
Project Site 612, led to the initial recognition that an offshore 
layer of late Eocene impact ejecta (containing coesite, glass, 
and shocked quartz) had a likely source in the mid-Atlantic 
region (Bohor and others, 1988; Glass, 1989; Obradovich and 
others, 1989; Poag and others, 1991, 1992). 

Subsequently, the analysis of marine seismic-reflection 
data, in the context of borehole data, revealed the existence of a 
large crater (Powars and others, 1993; Poag and others, 1994). 
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Figure A2.  Map of southeastern Virginia showing locations of recently completed coreholes and geophysical surveys in relation to the 
Chesapeake Bay impact structure. AMT data are described by Pierce (this volume, chap. J), and seismic data collected near the Langley 
corehole are described by Catchings and others (this volume, chap. I). Seismic data (blue lines) collected on the Middle and Delmarva 
Peninsulas by the USGS in 2002 are being processed. 
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The seismic-reflection data were donated to the USGS by Tex­
aco, Inc., and Exxon Exploration Co. in 1993 and 1994. 

Structural and stratigraphic documentation of the Chesa­
peake Bay impact structure followed (Poag and Aubry, 1995; 
Koeberl and others, 1996, 2001; Poag, 1996, 1997, 2000; Poag, 
Hutchinson, and others, 1999; Poag, Plescia, and Molzer, 1999; 
Powars and Bruce, 1999; Powars, 2000). In 2000, the Virginia 
Museum of Natural History Foundation awarded the Thomas 
Jefferson Medal for Outstanding Contributions to Natural Sci­
ence jointly to C.W. Poag (USGS), D.S. Powars (USGS), and 
T.S. Bruce (VDEQ) for their combined efforts to map, eluci­
date, and bring to public awareness the Chesapeake Bay impact 
structure. 

Detailed, nontechnical accounts of the crater and its dis­
covery are presented in Poag’s (1999) book and Tennant’s 
(2001) series of articles. Tennant’s articles received the Walter 
Sullivan Award for Excellence in Science Journalism from the 
American Geophysical Union in 2002. 

Significantly, until the crater was discovered, there was no 
satisfactory explanation for the anomalous saltwater wedge 
(Powars, Bruce, Poag, and Mixon, 1994; Powars and Bruce, 
1999) or the region’s stratigraphic and structural complexities 
(Powars and Bruce, 1999; Powars, 2000). The literature on the 
Chesapeake Bay impact structure has included interpretations 
based on conceptual models of craters and crater processes 
(Melosh, 1989), analogies to other craters, and interpretations 
of seismic-reflection profiles. Some of the fundamental con­
cepts of this crater’s morphology, internal structure, and forma­
tive processes, although widely cited, have remained untested 
hypotheses. 

Accordingly, the Chesapeake Bay Impact Crater Project 
was undertaken in 2000 as a coordinated, multiagency effort to 
better understand the physical characteristics, geologic history, 
formative processes, hydrologic effects, and water-resource 
implications of this buried structure. Among specific interests 
are the structure’s influence on ground-water quality and avail­
ability in southeastern Virginia and planetary-science implica­
tions for understanding impacts in a continental-shelf environ­
ment. 

As described above, four deep coreholes for this project 
were completed in 2000 through 2002 (fig. A2). Various miner­
alogical, geochemical, isotopic, petrographic, sedimentologic, 
structural, and other methods of core-sample analysis are 
described in this volume. Nearly 23 km (14 mi) of land-based, 
high-resolution seismic-reflection and seismic-refraction sur­
veys were conducted on the York-James Peninsula in 2001 and 
on the Middle Peninsula in 2002, both crossing the outer annu­
lar trough and outer margin, and some short surveys were con­
ducted across parts of the central crater and its rim on the Del­
marva Peninsula (fig. A2). Publications highlighting the recent 
studies include those by Catchings, Saulter, and others (2001), 
Gohn, Clark, and others (2001), Powars, Bruce, and others 
(2001), Poag (2002c), Poag, Plescia, and Molzer (2002), 
Edwards and Powars (2003), Sanford (2003), Self-Trail (2003), 

and Poag and others (2004); see also the abstracts listed in 
appendix A1. 

The Chesapeake Bay Impact Structure 

The following sections provide an overview of the Chesa­
peake Bay impact structure’s complex form and structure, 
asymmetric layered marine target, and spatially associated land 
surface features. The term “target” is used for the area that was 
hit by the asteroid or comet fragment. 

Form and Structure 

An impact crater can be classified either as a simple crater, 
implying a bowl-shaped depression, or as a complex crater, 
implying a more complicated form that commonly includes a 
central uplift, a generally flat floor, and an inward collapse 
around its rim. Craters on Earth that exceed a diameter of about 
4 km (2.5 mi) are complex craters (French, 1998). 

The complex crater beneath Chesapeake Bay has an aver­
age width of about 85 km (53 mi), ranging from about 80 to 95 
km (50 to 59 mi), and it contains an excavated central crater also 
termed the inner basin (Poag, Hutchinson, and others, 1999; 
Powars and Bruce, 1999; Powars, 2000). The central crater is 
variously interpreted on the basis of geophysical data to be 
approximately 30–38 km (19–24 mi) in diameter and subquad­
rate in shape (Powars and Bruce, 1999; Powars and others, 
2003) or about 35–40 km (22–25 mi) in diameter and irregular 
in shape (Poag, Hutchinson, and others, 1999). Interpretations 
of seismic-reflection data suggest that the floor of the central 
crater penetrated crystalline basement about 1.3 km (0.8 mi) 
deeper than the lip of the outer rim and 1.6 km (1.0 mi) below 
sea level and that a mass of crystalline rock has a diameter of 
15–20 km (9–12 mi) and rises as a central peak (uplift) about 
900 m (2,950 ft) above the central crater floor (Poag, Plescia, 
and Molzer, 2002). 

The central crater is surrounded by a flat-floored annular 
trough about 24 km (15 mi) in width (Poag and others, 1994). 
The margin of the central crater is characterized by uplifted 
basement rocks and has been interpreted by Poag, Plescia, and 
Molzer (2002) as an irregular peak ring. The outer margin of the 
annular trough is roughly circular and is characterized by a ter­
raced zone of inwardly slumped fault blocks (Poag, 1996; 
Powars and Bruce, 1999). An outer escarpment ranges in relief 
from ~300 m (~1,000 ft) on the northwest to ~1,000 m (~3,300 
ft) or more on the southeast (Poag, 1996; Poag, Hutchinson, and 
others, 1999). The outer margin of the annular trough is delin­
eated by seismic profiles, which cross it at 61 locations (Poag, 
Plescia, and Molzer, 2002, p. 1083), and is generally considered 
to be the edge of the crater. 
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Figure A3.  Satellite image of Chesapeake Bay showing location of the buried impact structure and nearby Mesozoic to Cenozoic 
tectonic features. Tectonic features modified from Powars and Bruce (1999, fig. 1) and Powars (2000, fig. 1). 
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The crater is surrounded by an outer fracture zone (F in 
fig. A3) about 35 km (22 mi) in width that contains discontinu­
ous, concentric faults (Powars, 2000; Powars, Johnson, 
Edwards, and others, 2002) and radial faults (Johnson and oth­
ers, 2000; Powars, 2000). All of the crater features are well pre­
served beneath a blanket of postimpact sediments that is about 
150–400 m (490–1,300 ft) thick (Poag and others, 1994; Powars 
and Bruce, 1999). 

The initial interpretations of crater structure and form 
relied on the seismic-reflection profiles donated to the USGS by 
Texaco and Exxon (Powars and others, 1993; Poag and others, 
1994; Poag, 1996, 1997, 1999; Powars and Bruce, 1999). These 
profiles were generated from 48-fold, multichannel data col­
lected in Chesapeake Bay and its estuaries by Teledyne Explo­
ration in 1986. The USGS and the National Geographic Society 
generated more than 1,200 km (750 mi) of additional marine 
seismic-reflection profiles in 1996 from data acquired in a sin­
gle-channel digital format using an air-gun seismic source. 
Poag, Hutchinson, and others (1999) based their interpretations 
of the crater architecture on these data as well as the earlier Tex­
aco and Exxon data, noting that the single-channel seismic sys­
tem did not resolve the basement surface in the deeper, eastern 
part of the crater. 

Character of the Target 

When the Chesapeake Bay impact structure formed on the 
Atlantic continental shelf of eastern North America, the marine 
target had three main components arranged as stacked layers: 
crystalline rocks, clastic sediments, and seawater. The upper­
most target component consisted of seawater, estimated to have 
been in the range of 0–340 m (0–1,115 ft) deep at the impact 
site; water depths increased eastward across the structure as dis­
cussed below under the heading, “Water Depths—Impact and 
Postimpact.” 

The middle target component consisted of stratified, 
unconsolidated, mostly Lower and Upper Cretaceous siliciclas­
tic deltaic sediments capped by thinner, Upper Cretaceous to 
lower Tertiary shallow-shelf marine sediments. These preim­
pact target sediments formed an eastward-thickening wedge 
ranging in thickness from about 400 m (about 1,300 ft) on the 
west side of the structure to about 1,500 m (about 4,900 ft) on 
the east side (Powars and others, 2003). Beneath the coastal 
plain north of the impact structure in Maryland, preimpact sed­
iments dip toward the trough of the tectonic downwarp known 
as the Salisbury embayment (fig. A3), where they thicken to as 
much as 1,800 m (5,900 ft) about 90 km (60 mi) from the outer 
margin (Powars and Bruce, 1999). Preimpact Cretaceous and 
Cenozoic deformation of the target sediments is suggested by 
coastal plain subsurface mapping at the northern end of the 
Cape Fear-Norfolk structural block (J in fig. A3), south of the 
crater (Powars, 2000). 

The lowermost target component consisted of crystalline 
metamorphic and igneous rocks ranging in age from Paleozoic 
to Proterozoic and similar in general character to rocks exposed 

in the Appalachian Piedmont (Daniels and Leo, 1985; Horton 
and others, 1991). The tectonic significance of this crystalline 
basement in the Chesapeake Bay target region has been contro­
versial because of limited information, as exemplified by the 
wide range of interpretations as part of Laurentia (Sheridan and 
others, 1999), Gondwana (Lefort and Max, 1991), or an inter­
vening volcanic arc (Horton and others, 1991). 

The Paleozoic and Proterozoic rocks beneath the coastal 
plain and continental shelf, like those of the Piedmont, contain 
local rift basins of Triassic and Jurassic age. The outer margin 
of the Chesapeake Bay impact crater lies about 70 km (40 mi) 
east of the Petersburg-Studley rift basin, northeast of an 
unnamed basin, and just west of the offshore Norfolk rift basin 
(fig. A3). The crater lies west of a basement hinge zone, along 
which the upper surface of basement beneath sediments of the 
continental shelf deepens abruptly seaward from about 2 km (1 
mi) to more than 8 km (5 mi) below sea level (Klitgord and oth­
ers, 1988; Glover and Klitgord, 1995). The hinge zone is char­
acterized by a series of half grabens bounded by seaward-dip­
ping faults, tilted blocks bounded by landward-dipping faults, 
and associated sedimentary wedges, which are attributed to 
Jurassic rifting that preceded the opening of the Atlantic Ocean 
(Klitgord and others, 1988). Seismic-reflection interpretations 
in the region must distinguish extensional features associated 
with the late Eocene impact structure from those formed by the 
earlier rifting. 

Land Surface Features 

Although the Chesapeake Bay impact crater has no surface 
outcrops and can be sampled only by drilling, some features of 
the land surface are spatially associated with the buried crater. 
The surface geology at the USGS-NASA Langley corehole 
consists of shallow bay sediments that were deposited on an 
ancestral Chesapeake Bay floor when the late Pleistocene sea 
level was 5.5 m (18 ft) higher than the present sea level 
(Johnson, 1969). These bay-floor deposits form a flat land sur­
face known as the Hampton flat (Coch, 1971), and their associ­
ated shoreline is the Big Bethel scarp shown in figure A4. The 
Big Bethel scarp is about 4 km (2.5 mi) west of the Langley drill 
site. The Hampton flat and similar surfaces are commonly 
described as terraces. 

The geological literature characterizes the Virginia 
Coastal Plain geomorphology as a succession of terraces that 
descend in elevation toward the Chesapeake Bay, the Atlantic 
Ocean, and the large rivers (Oaks and Coch, 1973; Johnson and 
others, 1987; Mixon and others, 1989; Johnson and others, 
2001). Each terrace is composed of a terrace tread (or flat) that 
terminates in a landward scarp. The terrace treads are aggrada­
tional surfaces that formed by fluvial-estuarine, bay, and shal­
low-marine depositional processes (Johnson, 1969; Johnson 
and others, 1987, 2001). The valley-facing scarps formed by 
fluvial and estuarine erosion, and the coast-facing scarps 
formed by shoreline erosion. 
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Figure A4. Map of the lower Chesapeake Bay showing Pleistocene 
scarps and terraces in relation to the buried Chesapeake Bay impact 
structure and the USGS-NASA Langley corehole. Valley-facing scarps 
formed by fluvial and estuarine erosion, and coast-facing scarps 
formed by shoreline erosion. Sources: Johnson (1969), Coch (1971), 
Oaks and Coch (1973), Johnson and others (1987), Mixon and others 
(1989), Powars and Bruce (1999), Powars (2000), and Johnson and 
others (2001). 



Studies of the Chesapeake Bay Impact Structure—Introduction and Discussion A9 
The Big Bethel, Diamond Springs, Harpersville, and Ames 
Ridge scarps and the northern part of the Suffolk scarp approx­
imately overlie the outer margin of the buried crater and mimic 
its curvature at different locations as shown in figure A4. 
Johnson and others (1998) found that Miocene, Pliocene, and 
Pleistocene strata show draping and other evidence of differen­
tial movement near the scarps, possibly related to compaction 
around the buried crater’s margin. 

The USGS-NASA Langley Core 

Table A1 and figure A5 show the stratigraphic framework 
of the outer annular trough as revealed by the 635.1-m-deep 
(2,083.8-ft-deep) USGS-NASA Langley corehole at Hampton, 
Va. (L in figs. A1 and A2). The crystalline basement at this 
location consists of Neoproterozoic granite (Horton and others, 
2001; Horton, Aleinikoff, and others, 2002; Horton, Kunk and 
others, 2002; Horton and others, this volume, chap. B). The top 
of the granite at 626.3 m (2,054.7 ft) depth is overlain by 390.6 
m (1,281.6 ft) of impact-modified and impact-generated silici­
clastic sediments. These crater-fill materials are preserved 
beneath a 235.6-m-thick (773.12-ft-thick) blanket of postim­
pact sediments. 

Cretaceous sediments that were variably disturbed by the 
late Eocene asteroid or comet impact include crater units A and 
B; crater unit A is block faulted, locally fluidized, and grada­
tional upward into crater unit B, which shows extensive fluidi­
zation, infiltration, and mixing (Gohn and others, this volume, 
chap. C). These impact-modified sediments were scoured and 
covered by ocean-water resurge deposits of the Exmore beds 
(polymict, matrix-supported diamicton). The Exmore beds con­
sist of mixed Lower Cretaceous to upper Eocene sediment 
clasts (up to boulder size) and minor crystalline-rock clasts 
floating in a matrix of glauconitic, quartz-rich, muddy sand that 
contains Cretaceous, Paleocene, and Eocene fossils (Edwards 
and Powars, 2003; Self-Trail, 2003). The Exmore beds and their 
crystalline clasts are discussed in chapters C (Gohn and others), 
D (Frederiksen and others), and E (Horton and Izett). 

The oldest postimpact stratigraphic unit, the upper Eocene 
Chickahominy Formation, is discussed by Poag and Norris (this 
volume, chap. F). Chapter G by Powars and others and chapter 
H by Edwards and others describe the entire postimpact (upper 
Eocene to Quaternary) stratigraphic section. 

The stratigraphic framework in figure A5 and table A1 is 
used throughout this volume with one exception, chapter F, in 
which Poag and Norris use the stratigraphic framework of Poag, 
Table A1.  Stratigraphic units, ages, and contact depths below ground surface at the USGS-NASA Langley corehole, Hampton, Va. 

[The USGS-NASA Langley corehole has a total depth below ground surface of 635.1 meters (2,083.8 feet). The ground-surface altitude 
of 2.4 m (7.9 ft) is given relative to the National Geodetic Vertical Datum of 1988] 

Age Stratigraphic unit Base (ft) Top (ft) Base (m) Top (m) 

late Pleistocene Tabb Formation, Lynnhaven  7.2 0.0 2.2 0.0 
Member

Pliocene Yorktown Formation 76.3 7.2 23.3 2.2 

late Miocene Eastover Formation 224.5 76.3 68.4 23.3 

late Miocene St. Marys Formation 405.5 224.5 123.6 68.4 

early and middle Miocene Calvert Formation 470.9 405.5 143.5 123.6 

middle Miocene  Calvert Beach Member 456.1 405.5 139.0 123.6 

middle Miocene  Plum Point Member 461.1 456.1 140.5 139.0 

early Miocene  Newport News beds 470.9 461.1 143.5 140.5 

late Oligocene Old Church Formation 577.4 470.9 176.0 143.5 

late early Oligocene Drummonds Corner beds* 601.3 577.4 183.3 176.0 

late Eocene Chickahominy Formation 773.12 601.3 235.65 183.3 

late Eocene Exmore beds 884.0 773.12 269.4 235.65 

Early Cretaceous
  (+infiltration zones) crater unit B 1,451.7 884.0 442.5 269.4 

Early Cretaceous crater unit A 2,054.7 1,451.7 626.3 442.5 

Neoproterozoic Langley Granite* — 2,054.7 — 626.3 

*Units named and defined in this volume. 
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Koeberl, and Reimold (2004). A correlation diagram for part of 
the USGS-NASA Langley core (fig. A6) shows the distinction 
between the informal Exmore beds of Gohn and others (this vol­
ume, chap. C) and the informal Exmore breccia of Poag and 
Norris (this volume, chap. F). Poag and Norris (p. F2) use the 
term “Exmore breccia” for “the brecciated sedimentary crater-
fill deposits (underlain by either displaced sedimentary mega-
blocks or crystalline basement rocks, and overlain by the fallout 
layer)” including all but the very top of the Exmore beds as well 
as crater unit B. Poag and Norris also treat thin units (their “fall­
out layer” and “dead zone”) as a transitional interval distinct 
from the underlying Exmore breccia and overlying Chickahom­
iny Formation. In summary, the “Exmore breccia” of Poag and 
Norris is a general term for impact breccias of any type any­
where in the crater, whereas the “Exmore beds” of Gohn and 
others is a term restricted in order to distinguish matrix-sup­
ported polymict sedimentary breccias that formed as water­
resurge deposits from other kinds of impact breccias. 

Significant Results 

Of the ten chapters (B–K) on the Chesapeake Bay impact 
structure that follow this introduction, the first seven (B–H) 
present the results of multidisciplinary investigations of sam­
ples from the USGS-NASA Langley corehole. In chapter B, 
Horton and others discuss the petrography, structure, age, and 
thermal history of granitic basement rock beneath the Atlantic 
Coastal Plain at this location. The next three chapters (C–E) 
concentrate on impact-generated and impact-modified sedi­
ments in the Langley core. These include Gohn and others’ 
analysis of the physical geology in chapter C, Frederiksen and 
others’ interpretation of the paleontology in chapter D, and Hor­
ton and Izett’s investigation of shocked minerals and crystal­
line-rock ejecta in chapter E. Three additional chapters (F–H) 
address the postimpact sediments in the USGS-NASA Langley 
core. In chapter F, Poag and Norris interpret the record of early 
postimpact deposition and paleoenvironments in the upper 
Eocene Chickahominy Formation. Powars and others discuss 
the physical stratigraphy of the postimpact, upper Eocene to 
Quaternary sedimentary section in chapter G. In chapter H, 
Edwards and others present the paleontology of the upper 
Eocene to Holocene stratigraphic section. 

Two chapters (I and J) use recent geophysical investiga­
tions to decipher the subsurface geology in the western annular 
trough and outer margin of the impact structure. In chapter I, 
Catchings and others interpret the data from a land-based, high-
resolution seismic-reflection and seismic-refraction profile on 
the York-James Peninsula. In chapter J, Pierce discusses sub­
surface information gained from audio-magnetotelluric sound­
ings across the marginal area of the structure on the York-James 
Peninsula and the Middle Peninsula in southeastern Virginia. 

The volume concludes with chapter K by McFarland and 
Bruce on the distribution, origin, and relations to flow of 
ground-water salinity along the western margin of the Chesa­
peake Bay impact crater in eastern Virginia. These hydrologic 
studies show how the structure, distribution and properties of 
materials, and formative processes of the impact crater directly 
influence ground-water flow and quality in a region of major 
urban development that depends heavily on ground-water 
resources. 

Crystalline Basement Rocks 

The stratigraphic section revealed by the USGS-NASA 
Langley corehole at Hampton, Va. (fig. A5), includes the base­
ment rock concealed beneath 626.3 m (2,054.7 ft) of sedimen­
tary deposits and designated the Langley Granite of Horton and 
others (this volume, chap. B). The Langley Granite, newly 
described in that chapter and discussed in related abstracts 
(Horton and others, 2001; Horton, Aleinikoff, and others, 2002; 
Horton, Kunk, and others, 2002), is a peraluminous monzogran­
ite of Neoproterozoic age that is pervasively chloritized and 
nonfoliated. In chapter B, Horton and others point out that the 
absence of shocked minerals and discernible impact heating in 
the Langley Granite at this location provides boundary con­
straints for computational models of the impact. The top of the 
granite is weathered, but not saprolitized, and is nonconform­
ably overlain by the Cretaceous sediments. 

Recent tectonic models of eastern North America have 
interpreted little-known basement rocks in the Chesapeake Bay 
target region alternatively as a northern extension of the 
Roanoke Rapids volcanic-arc terrane (Horton and others, 
1991), as a remnant of Gondwanan Archean crust now in north­
west Africa that was left behind when the Atlantic Ocean 
opened (Lefort and Max, 1991), or as Mesoproterozoic (Gren­
villian) basement of Laurentia (Sheridan and others, 1999). 
Horton and others (this volume, chap. B) present evidence that 
the Langley Granite is Neoproterozoic in age and that it formed 
in a peri-Gondwanan magmatic arc. 

Impact-Modified and Impact-Generated Sediments 

The Lower Cretaceous fluvial sediments are nearly pris­
tine just above the granite. The study by Gohn and others (this 
volume, chap. C) indicates that, as confining pressure due to the 
thickness of overburden decreased upward, the water-saturated 
sand beds became increasingly fluidized, and the clay beds 
became more intensely fractured. Preimpact Upper Cretaceous 
and lower Tertiary marine sediments are missing from their nor­
mal stratigraphic position, but their disaggregated remnants are 
mixed into the upper part of the Lower Cretaceous sedimentary 
section. The overlying Exmore beds contain a mixture of clasts, 
including re-sedimented Cretaceous and Tertiary sediment 
clasts as well as sparse shocked minerals and crystalline ejecta. 
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The mixture suggests scouring and erosion of the nearfield 
ejecta and underlying sediments by the resurge of seawater and 
debris flows into the crater. 

The study by Frederiksen and others (this volume, chap. 
D) indicates that spore-pollen samples from crater units A and 
B are derived from the Cretaceous Potomac Group and that the 
upper part of crater unit B also contains microfossils derived 
from lower Tertiary formations. Their study of microfossils 
shows that the Exmore beds contain clasts that range in age 
from Early Cretaceous to late Eocene. Significantly, the 
Exmore contains microfossil species known only from the 
lower part of the middle Eocene and others known only from 
the uppermost middle Eocene and lowermost upper Eocene. 
Strata of these ages have never been recovered in the subsurface 
of the Virginia Coastal Plain but were once present and possibly 
have since been eroded away. In addition, some dinoflagellate 
cysts from the Exmore are fused, curled, fragmented, or other­
wise degraded, and this damage is attributed to heat and abra­
sion during the oceanic impact, as also discussed by Edwards 
and Powars (2003). Some calcareous nannofossils appear to 
have impact-induced fractures (Self-Trail, 2003). 

Horton and Izett (this volume, chap. E) confirm the pres­
ence of rare shocked quartz grains in the sandy matrix of the 
Exmore beds and in reworked crystalline-rock clasts in and just 
below the Exmore in the Langley core. Some crystalline-rock 
clasts are interpreted to be derived from ejecta because they 
contain shocked quartz and associated cataclastic fabrics. In the 
Langley core, nearly all of these clasts consist of variably por­
phyritic felsite. The contrast between relatively uniform crystal­
line-ejecta compositions at this site and more varied composi­
tions at the Bayside and North sites suggests that the ejecta were 
distributed unevenly, perhaps in rays (Horton and Izett, this vol­
ume, chap. E). The impact event provided a remarkable sam­
pling tool by excavating an enormous volume of target rock, 
including little-known basement terranes (Horton and others, 
1991; Rankin, 1994; Sheridan and others, 1999), and scattering 
fragments where they can be retrieved at shallower levels. 

Resurge deposits of the Exmore beds apparently were 
injected and mixed into variably liquefied, slumped sediments 
in the upper part of crater unit B, where Horton and Izett (this 
volume, chap. E) found shocked quartz in a single clast of felsic 
impact breccia (at 275.8 m (905.0 ft) depth), and where Fred­
eriksen and others (this volume, chap. D) reported the only two 
matrix samples from crater unit B found to contain Tertiary 
microfossils. These include one dinocyst sample (at 278.4 m 
(913.4 ft) depth) and one calcareous nannofossil sample (at 
298.5 m (979.3 ft) depth) that contain specimens of mixed Pale­
ocene and Eocene ages (Frederiksen and others, this volume, 
chap. D), although the nannofossil sample is from the top of a 
drilling run and could be contaminated (Gohn and others, this 
volume, chap. C). However, zones containing glauconite of 
marine origin, presumably of Late Cretaceous and Tertiary age, 
occur at irregular intervals throughout crater unit B in the matrix 

between blocks derived from the older Cretaceous Potomac 
Formation. 

Postimpact Sediments 

Three chapters decipher the depositional environments, 
physical stratigraphy, and paleontology of postimpact sedi­
ments in the Langley core. In chapter F, Poag and Norris use 
stable-isotope, foraminifera, and bolboformid analyses of cores 
from several sites inside the crater (including the USGS-NASA 
Langley, Bayside, and North cores) and a variety of geophysical 
data to interpret the regional record of early postimpact deposi­
tion and paleoenvironments of the upper Eocene Chickahominy 
Formation. They also propose that the uppermost and latest syn­
impact fallout deposit is contained in a thin, pyrite-bearing layer 
overlain by a thin postimpact “dead zone” as illustrated in figure 
A6. The oxygen and carbon isotopic data characterize three 
warm pulses that occurred during the deposition of the Chicka­
hominy Formation. They interpret this climate history as possi­
ble evidence for the Chesapeake Bay impact and other late 
Eocene impacts collectively exerting long-term influence on 
global climate that led to the early Oligocene mass extinction 
event. 

In chapter G, Powars and others use borehole geophysical 
logs to correlate lithostratigraphy of the Langley core with the 
land-based, high-resolution seismic-reflection data. They apply 
the correlated lithologic and geophysical data to characterize 
the physical stratigraphy of the postimpact, upper Eocene to 
Quaternary sedimentary section of the Langley core. Their cor­
relation with the seismic data indicates that the postimpact units 
have distinct seismic signatures and that they are faulted. Sig­
nificantly, most of the postimpact deposits are fine-grained sed­
iments that slowly filled and buried the crater and therefore pre­
served several upper Eocene to lower Miocene stratigraphic 
units not found in the Virginia Coastal Plain outside the struc­
ture. A newly recognized Oligocene stratigraphic unit, the 
Drummonds Corner beds (informal name) (fig. A5), is 
described in chapter G by Powars and others. 

In chapter H, Edwards and others present the paleontology 
of the postimpact upper Eocene to Quaternary stratigraphic sec­
tion in the Langley core and include data on dinoflagellates, dia­
toms, mollusks, silicoflagellates, calcareous nannofossils, 
ostracodes, foraminifera and bolboformids, and vertebrate 
remains. They characterize the depositional and paleoenviron­
mental record of the postimpact sediments and discuss sediment 
accumulation rates, the paleontology of the newly recognized 
Drummonds Corner beds (informal name), and the reworking 
of impact-damaged microfossils into postimpact units. Varia­
tions in the rate of sediment accumulation indicate at least two 
episodes of rapid filling at about 20 meters per million years 
(~20 m/m.y.; ~66 ft/m.y.) during the late Eocene and late 
Miocene and several unconformities during the early and mid­
dle Miocene at this site. 
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Water Depths—Impact and Postimpact 

The impact target was located on a gently sloping conti­
nental shelf where water depths increased seaward. Interpreted 
water depths for the western outer margin of the crater and esti­
mated seabed gradients are used to project water depths at the 
eastern outer margin. 

Target-water depth at the western outer margin of the 
crater.—At the crater’s western outer margin near Newport 
News, Va. (fig. A1, locality NN), the estimated late Eocene 
water depth of the target is between minimum and maximum 
limits of about 0 and 170 m (0 and 560 ft). This depth range is 
interpreted on the basis of data from three coreholes: one updip 
of the crater at Putneys Mill, Va. (P in fig. A1), one updip at 
Haynesville, Va. (H in fig. A1), and one north of the crater at 
Solomons Island, Md. (north of the area shown in fig. A1). 
Benthic and planktonic foraminifera from the uppermost preim­
pact unit, the Piney Point Formation, in these cores indicate 
middle Eocene paleodepths of about 20–150 m (about 60–490 
ft) (Poag, 1989; Bybell and Gibson, 1994; Gibson and Bybell, 
1994). Projections from these locations (because the Piney 
Point is not intact in the crater) along the paleoshelf slope indi­
cate middle Eocene water depths of about 20–170 m (about 60– 
560 ft) at the western outer margin. Subtracting 0–50 m (0–164 
ft) from the middle Eocene depths to account for eustatic sea-
level decline (Haq and others, 1988; Kominz and others, 1998) 
indicates late Eocene target-water depths of about 0–170 m 
(about 0–560 ft) at the western outer margin. 

Target-seabed gradient.—The target seabed probably had 
a gradient between minimum and maximum limits of about 
1:1,000 and 1:500; this range of gradients is based on Tertiary 
and modern analogs. A continental shelf gradient of 1:1,000 is 
approximately equivalent to the landward part of Tertiary 
reconstructions (for example, by Pekar and others, 2001) and 
the modern shelf as measured from Emery and Uchupi (1972). 
A gradient of 1:500 is approximately equivalent to the steeper, 
seaward part of Tertiary reconstructions (for example, by Steck­
ler and others, 1999; Pekar and others, 2001). 

Projected water depths across impact target.—The seabed 
gradients are used here to project target-water depth limits from 
the western outer margin to the center and to the eastern outer 
margin of the 85-km-diameter (53-mi-diameter) impact target. 
Projection of water paleodepths of 0–170 m (0–560 ft) from the 
western outer margin along a 1:1,000 gradient across the target 
yields paleodepths of 42.5–212.5 m (139–697 ft) at the center 
and 85–255 m (279–837 ft) at the eastern outer margin, whereas 
projection along a 1:500 gradient yields paleodepths of 85–255 
m (279–837 ft) at the center and 170–340 m (560–1,115 ft) at 
the eastern outer margin. The metric numbers are rounded in 
10-m increments and summarized below. 

On the basis of these projections, the estimated target-
water depths are in the range of about 0–170 m (0–560 ft) (mean 
value 85 m, 280 ft) at the western outer margin, about 40–260 

m (131–853 ft) (mean value 150 m, 492 ft) at the center, and 
about 80–340 m (263–1,115 ft) (mean value 210 m, 689 ft) at 
the eastern outer margin of the crater target. If the paleoshelf 
steepened abruptly at an undetermined clinoform rollover point 
between a landward gradient approaching 1:1,000 and a sea­
ward gradient approaching 1:500 as in some Tertiary recon­
structions (Steckler and others, 1999; Pekar and others, 2001), 
the water depths would be within these limits. 

Water depth after impact.—The postimpact Chickahom­
iny Formation was deposited in a circular depression over the 
crater as illustrated on the isopach map in chapter F (Poag and 
Norris, this volume, chap. F, fig. F11), and so the water paleo­
depth probably exceeded that of the preimpact target seabed. 
Benthic and planktonic foraminiferal assemblages in the Chick­
ahominy indicate a seabed paleodepth of about 300 m (984 ft), 
which is the outer neritic to upper bathyal environment (150– 
500 m (500–1,600 ft) depth) with restricted oxygen availability 
and high flux of organic carbon (Poag and Norrris, this volume, 
chap. F). Ostracodes also indicate that the Chickahominy For­
mation was mainly outer neritic to upper bathyal (Edwards and 
others, this volume, chap. H). 

Dating the Impact Event 

Chapters D, F, and H on paleontology of the Langley core 
agree that the age of the late Eocene Chesapeake Bay impact 
event is approximately 35.7 to 35.8 Ma (million years before the 
present). However, in chapter E, Horton and Izett present a 
weighted mean total fusion 40Ar/39Ar age of 35.3 Ma (±0.1 Ma 
at 1σ, ±0.2 Ma at 2σ) for 19 analyses of 4 North American tek­
tites, and they interpret this as the age of the impact event. 

Frederiksen and others (this volume, chap. D) determined 
from calcareous nannofossils that the Exmore beds belong to 
Zone NP 19/20 and that the impact occurred during the early 
part of the time represented by that zone at approximately 35.7– 
35.8 Ma. Poag and Norris (this volume, chap. F) give an extrap­
olated age of impact of about 35.78 Ma in their figures F6 and 
F26, while recognizing a range of uncertainty from 35.2 to 36.0 
as shown in gray in their figure F3. 

Edwards and others, in chapter H, independently calcu­
lated limits on sediment accumulation rates in the postimpact 
Chickahominy Formation based on zone boundaries and the 
Eocene-Oligocene boundary from the time scale of Berggren 
and others (1995); they note that Poag and Norris (this volume, 
chap. F) arrived at nearly identical rates by using slightly differ­
ent assumptions. Then, as shown in figure H10, Edwards and 
others projected the base of the Chickahominy Formation in the 
Langley core into the time scale of Berggren and others (1995), 
using these zone boundaries and sediment accumulation rates to 
yield a value of 35.7–35.8 Ma for the age of impact. They note 
that this value is ultimately based on the geomagnetic reversal 
time scale of Cande and Kent (1995), which is calibrated to iso­
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topic ages of 33.7±0.4 and 46.8±0.5 Ma; the calibration uses a 
cubic spline fit that does not take the age uncertainties into 
account (M.J. Kunk, USGS, written commun., 2003). 

For ages determined by different methods and having var­
ious accuracies, the age of impact of 35.7–35.8 Ma based on 
microfossil zones calibrated to Berggren and others’ (1995) 
time scale is not significantly different from the 35.3±0.2 Ma 
(2σ) age of tektites reported in chapter E by Horton and Izett. 

Structural Interpretation of Seismic Data 

The first parts of the crater to be subjected to more inten­
sive study in the current phase of deep coring and high-resolu­
tion seismic-reflection surveying are the outer annular trough 
and its outer margin. In 2001, the USGS completed a 9-km-long 
(5.6-mi-long) high-resolution, land-based seismic-reflection 
and seismic-refraction survey (common-depth-point interval 
2.5 m (8.2 ft)) on the York-James Peninsula (Catchings, 
Powars, and others, 2001; Catchings, Saulter, and others, 2001; 
Catchings and others, 2002). This seismic survey is linked to the 
adjacent Langley and Watkins School coreholes shown in fig­
ure A2 by borehole geophysical logs. The USGS investigators 
completed a similar 9-km-long (5.6-mi-long), high-resolution 
seismic survey along the Middle Peninsula (also crossing the 
outer annular trough and outer margin) in 2002 and obtained 4.6 
km (2.9 mi) of data on the southern Delmarva Peninsula across 
the inner rim and central part of the crater (fig. A2). The data 
processing and interpretation of these profiles are still in 
progress. 

In chapter I, Catchings and others (this volume) correlate a 
1-km-long (0.62-mi-long) high-resolution seismic-reflection 
and seismic-refraction profile with lithologic and geophysical 
logs from the adjacent Langley corehole to decipher subsurface 
stratigraphic and structural details in the western annular 
trough. A stratabound, extensional collapse structure in that part 
of the impact-disturbed sedimentary section is generally con­
fined to crater units A and B, with only a few minor offsets in 
the top of the Langley Granite, as shown by Catchings and oth­
ers (this volume, chap. I). The abundance of faults in this inter­
val increases upward, suggesting that extension increased in 
proportion to the decrease in overburden confining pressure. 
The top of the stratabound extensional fault system appears to 
be truncated at the base of the Exmore beds, except for a few 
faults that may be younger or reactivated, implying that forma­
tion of the extensional collapse structure largely preceded dep­
osition of the water-resurge debris flows. More structural anal­
ysis of the faults is needed to determine if they formed by 
vertical extension due to rebound or lateral extension associated 
with inward slumping of sediments in the annular trough. 

The high-resolution seismic data also provide guidance for 
interpreting the lower resolution marine seismic data, enabling 
the recognition of numerous collapse structures across the west­

ern annular trough (Powars and others, 2003). Most of these 
structures disrupt parautochthonous Cretaceous sediments, 
ocean-water resurge sediments, and postimpact sediments, 
thereby suggesting detachment zones within the sedimentary 
section. Many extensional collapse structures are formed by 
abundant short-displacement faults rather than a few normal 
faults of large displacement. 

The marine seismic data and preliminary interpretation of 
the high-resolution land-based seismic data can be used to dis­
tinguish the discontinuous, locally inclined or offset reflectors 
interpreted to be slumped fault blocks from overlying resurge 
deposits of the Exmore beds; these data can also be used to dis­
tinguish the more continuous horizontal reflectors that represent 
little-disturbed Cretaceous sediments outside the crater (Powars 
and others, 2003). These sediments appear to be faulted to a 
much lesser degree than the slump blocks. Inward-dipping nor­
mal faults and antithetic faults define the typically rotated 
slump blocks. A few major normal faults displace the sediment-
crystalline rock contact, indicating that they are relatively deep 
seated. 

Resurge-tsunami and overlying postimpact sediments bur­
ied the irregular upper surface of the slump blocks. Observed 
thickness variations, dip reversals, and fault displacements of 
these sediments probably result from differential compaction 
across the underlying irregular surface. The impact-generated 
resurge deposits are up to 100 m (330 ft) thick in the annular 
trough but abruptly thin to 7.5 m (24.6 ft) just outside the outer 
margin in the Watkins School corehole (Powars and others, 
2003). 

Interpretation of Audio-Magnetotelluric (AMT) 
Soundings 

Pierce (this volume, chap. J) discusses 18 tensor audio­
magnetotelluric soundings that were collected in 2000 and 2001 
to provide cross-section images of the electrical-response vari­
ations in traverses across the western outer margin of the crater 
(fig. A2). These soundings use the electromagnetic signals from 
distant lightning or atmospheric disturbances to determine vari­
ations in electrical resistivity of the earth as a function of depth 
(Vozoff, 1991). The orthogonal magnetic and electrical fields 
are measured to determine impedance tensors that account for 
anisotropy. Chapter J explains how resistivities were calculated 
from these impedances and used to construct two cross sections 
that show electrical-response variations in the structure as a 
function of depth on the York-James Peninsula and on the Mid­
dle Peninsula. 

The audio-magnetotelluric soundings and resultant electri­
cal cross sections of the York-James Peninsula and Middle Pen­
insula in Pierce’s chapter J show a nearly vertical zone of high 
resistivity at the outer margin of the annular trough, which can 
be used to map the structure. The high resistivity may be caused 
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by fresh ground water discharging from the Lower Cretaceous 
sediments at the outer margin, by cementation along the fault 
zone, or by compaction of the sediments as a result of the 
impact event. Impedance trends to the northwest on the York-
James Peninsula and to the northeast on the Middle Peninsula 
match the curvature of the structure. The electrical cross sec­
tions also image the lateral contact between conductive sedi­
ments and resistive basement, which is close to the technique’s 
depth limit of resolution. 

Hydrologic Effects and Water-Resources 
Implications 

The Chesapeake Bay impact crater coincides approxi­
mately with Virginia’s inland saltwater wedge in which saline 
ground water extends about 50 km (30 mi) landward of its nor­
mally expected position along the coast of southeastern Vir­
ginia. Powars and others (this volume, chap. G) describe it as a 
bulge rather than a wedge, because the saline ground water 
extends into shallower depths than in the region surrounding the 
crater. McFarland and Bruce (2002; this volume, chap. K) stud­
ied chemical analyses of water squeezed from sediment cores 
and pumped out of water wells in order to understand the rela­
tions between crater structure and ground-water salinity. These 
analyses included chloride, bromide, and chlorine-36, as well as 
stable hydrogen and oxygen isotopes and specific conductance. 

In chapter K, McFarland and Bruce present chemical and 
isotopic analyses of ground-water samples from the USGS­
NASA Langley, Bayside, and North cores and from water wells 
on the western margin of the impact structure. These analyses 
indicate that the high ground-water salinities of the Virginia 
inland saltwater wedge, or bulge, were more likely produced by 
mixing of freshwater and seawater than by other possible mech­
anisms. Vertical profiles of specific conductance and chloride 
concentrations indicate a zone of mixing along the western mar­
gin of the structure. These profiles also support the concept that 
the crater structure has caused differential flushing of residual 
seawater, older than 2 Ma and possibly as old as 35 Ma, to cre­
ate the saltwater bulge. 

Some chloride concentrations in ground water from the 
interior part of the crater (Kiptopeke well) exceed those of mod­
ern seawater. Stable hydrogen and oxygen isotopic ratios indi­
cate that these brines probably were produced by evaporation 
(McFarland and Bruce, this volume, chap. K). Sanford (2002, 
2003) has demonstrated that brine production from the escape 
of steam caused by the heat of the impact is at least theoretically 
possible. Future discovery of hydrothermal mineralization 
along pathways for escaping steam would favor this interpreta­
tion, whereas discovery of ground-water brines beneath the 
Atlantic Coastal Plain outside the crater would favor alternative 
explanations. 

Ground water is expected during the next several decades 
to provide much of the required increase in water supply for 
southeastern Virginia, one of the most rapidly growing areas on 
the Atlantic Coast. The potential influence of the Chesapeake 
Bay impact crater on the future of this region’s ground-water 
resource is profound. 

Conceptual Model 

A conceptual model of the Chesapeake Bay crater forma­
tion in stages, illustrated in figure A7, is derived from a synthe­
sis of the chapters in this volume and concepts of the cratering 
process as summarized by French (1998). The preimpact target 
on the Atlantic continental shelf consisted of three main compo­
nents as illustrated in figure A7A: (1) crystalline basement rocks 
deepening eastward; (2) poorly consolidated, water-saturated 
siliciclastic sediments, including nonmarine Upper Cretaceous 
and Lower Cretaceous beds and a veneer of marine Upper Cre­
taceous and Paleocene to upper Eocene beds; and (3) ocean 
water ranging in depth from about 0–170 m (0–560 ft) on the 
west side to about 80–340 m (263–1,115 ft) on the east side. 
Contact of the projectile produced shock waves in the target and 
projectile, vaporizing the projectile and causing vaporization, 
melting, and shock deformation in the target. 

Figure A7B illustrates the crater excavation stage in which 
shock-wave expansion into the target forced material outward, 
upward (ejecting high-velocity particles), and downward to 
form a bowl-shaped transient cavity or transient crater. The 
shock wave also caused shock deformation and associated 
faults and fractures, melts lining the transient cavity, outward 
excavation flow of material forming an ejecta curtain, and an 
uplifted rim. 

The transient water cavity is interpreted to have had about 
the same diameter as the transient cavity in underlying rocks 
and sediments on the basis of numerical simulations of marine-
target craters (Ormö and others, 2002; Shuvalov and others, 
2002). The numerical models indicate that the growing crater 
rim and ejecta curtain pushed the water aside to form a water 
surge, which eventually broke up and initiated tsunamis. 

As soon as the transient cavity ceased to expand, crater 
modification by gravity-driven processes occurred as illustrated 
in figure A7C. Rebound and collapse of the central crater and 
central uplift were accompanied by inward slumping of water-
saturated sediments within the annular trough beyond the cen­
tral crater and by the resurge of seawater and submarine debris 
flows into the cavity as documented in other marine craters (von 
Dalwigk and Ormö, 2001). The collapse structures are illus­
trated by images of seismic profiles in chapters F and I, and the 
impact-modified and impact-generated sediments are described 
and illustrated in chapters C, D, and E. The high-energy resurge 
debris flows were followed by settling of fallout particles and 
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Figure A7.  Schematic cross sections illustrating stages in a 
conceptual model of Chesapeake Bay crater formation. Dia-
grams show western half of crater along west-to-east profile as 
located approximately in figure A1. Modified from Edwards and 
Powars (2003). A, Preimpact target: Before the projectile hit, 
the ocean site consisted of three main layers: crystalline base-
ment rocks (deepening eastward), siliciclastic sediments (thick-
ening eastward), and ocean water deepening eastward from 
about 0–170 m (0–560 ft) to about 80–340 m (263–1,115 ft). 
B, Contact compression followed by excavation: Contact 
of the projectile produced shock waves, vaporizing the projectile 
and causing vaporization, melting, and shock metamorphism in 
the target. Expansion of the shock wave excavated a bowl-
shaped transient cavity in the target, producing shock metamor­
phism, melts, ejecta, and an ejecta curtain (drawn approximate­
ly as modeled to occur in about 30 seconds; Crawford, 2002). 
C, Crater modification (collapse, slump blocks, and water 
resurge): Collapse of the transient cavity was accompanied by 
inward collapse of slump blocks in poorly consolidated sedi-
ments of the annular trough (for example, to form crater units A 
and B; see A and B in diagram). The collapse expanded the cra­
ter beyond the central excavation to a total width of about 85 
km (53 mi). A violent resurge of ocean water and submarine 
debris flows filled the open cavity with water and debris. 
D, Postimpact burial: After the resurge currents deposited the 
Exmore beds, the crater was buried by marine sediments. The 
USGS-NASA Langley corehole is projected onto the section line. 



A18 Studies of the Chesapeake Bay Impact Structure—The USGS-NASA Langley Corehole, Hampton, Va. 
other material suspended in the water column, which led to a 
resumption of normal marine sedimentation. Figure A7D illus­
trates subsequent burial of the crater by postimpact sedimenta­
tion as documented in chapters F, G, and H. 

The studies in this volume are consistent with a model for 
internal structure of the sedimentary section of the annular 
trough of the Chesapeake Bay impact crater as consisting of 
slumped, normal-fault-bounded megablocks overlain by water­
resurge debris flows (Exmore beds). This model likely remains 
accurate for the large slump blocks at the outer margin. The 
shallow collapse structures are similar to shallow extensional 
features recently observed in the Silverpit crater of the North 
Sea (Stewart and Allen, 2002). 
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