Don DeAngelis
Wei-Ming Ni
Yuanshi Wang
Lu Zhai
Alex Kula
Shuang Xu
J. David Van Dyken
Bo Zhang
2020
<p><span>Stressors such as antibiotics, herbicides, and pollutants are becoming increasingly common in the environment. The effects of stressors on populations are typically studied in homogeneous, nonspatial settings. However, most populations in nature are spatially distributed over environmentally heterogeneous landscapes with spatially restricted dispersal. Little is known about the effects of stressors in these more realistic settings. Here, we combine laboratory experiments with novel mathematical theory to rigorously investigate how a stressorâ€™s physiological effect and spatial distribution interact with dispersal to influence population dynamics. We prove mathematically that if a stressor increases the death rate and/or simultaneously decreases the population growth rate and yield, a homogeneous distribution of the stressor leads to a lower total population size than if the same amount of the stressor was heterogeneously distributed. We experimentally test this prediction on spatially distributed populations of budding yeast (</span><i>Saccharomyces cerevisiae</i><span>). We find that the antibiotic cycloheximide increases the yeast death rate but reduces the growth rate and yield. Consistent with our mathematical predictions, we observe that a homogeneous spatial distribution of cycloheximide minimizes the total equilibrium size of experimental metapopulations, with the magnitude of the effect depending predictably on the dispersal rate and the geographic pattern of antibiotic heterogeneity. Our study has implications for assessing the population risk posed by pollutants, antibiotics, and global change and for the rational design of strategies for employing toxins to control pathogens and pests.</span></p>
application/pdf
10.1086/709293
en
University of Chicago Press
Effect of stressors on the carrying capacity of spatially distributed metapopulations
article