Mary Catherine Hill
Evan R. Anderman
2001
Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity-equation approach; the equations are derived by taking the partial derivatives of the semi-analytical particle-tracking equation with respect to the parameters. The ADV2 Package is verified by showing that parameter estimation using advective-transport observations produces the true parameter values in a small but complicated test case when exact observations are used. To demonstrate how the ADV2 Package can be used in practice, a field application is presented. In this application, the ADV2 Package is used first in the Sensitivity-Analysis mode of MODFLOW-2000 to calculate measures of the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Cape Cod, Massachusetts. The ADV2 Package is then used in the Parameter-Estimation mode of MODFLOW-2000 to determine best-fit parameter values. It is concluded that, for this problem, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and the use of formal parameter-estimation methods and related techniques produced significant insight into the physical system.
application/pdf
10.3133/ofr0154
en
MODFLOW-2000 : the U.S. Geological Survey modular ground-water model--documentation of the Advective-Transport Observation (ADV2) Package
reports