Arlen W. Harbaugh
2005
This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code.
The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility.
The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.
application/pdf
10.3133/tm6A16
en
MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process
reports