Aeromagnetic Map with Geology of the Los Angeles 30 x 60 Minute Quadrangle, Southern California

Y.E. Langenheim, T.G. Hilburn, R.B. Johnson, R.J. Campbell, and P.T. Tonnes

The aeromagnetic map is based on data from three surveys of varying resolution (Table 1). Both of the earlier surveys were limited to the more diversified grid of flight lines in the northeastern corner of the quadrangle. This aeromagnetic map is based on data from three surveys of varying resolution (Table 1). The gradients flanking this high suggest that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley. The gradients flanking this high suggest that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley. Many magnetic lines are superposed on a broader magnetic high (Fig. 5). The northwest edge of this anomaly appears to project beneath the Los Angeles Basin sediments. The gradient flanking this high suggests that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley.

REFERENCES CITED


Monterey (lat 34˚1' N., long 118˚7' W.) field. The closely spaced, deeply penetrating well casings present produce a pair of subtle (20 nT), east-northeast-trending anomalies (on map and Fig. 2) west of the fault's mapped western terminus. The southern edge of the magnetic basement structure merges into the Santa Monica Valley.

To produce a pair of subtle (20 nT), east-northeast-trending anomalies (on map and Fig. 2) west of the fault's mapped western terminus. The southern edge of the magnetic basement structure merges into the Santa Monica Valley. Many magnetic lines are superposed on a broader magnetic high (Fig. 5). The northwest edge of this anomaly appears to project beneath the Los Angeles Basin sediments. The gradient flanking this high suggests that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley.

Table 1. Surveys used to create aeromagnetic map.

<table>
<thead>
<tr>
<th>Age</th>
<th>Lower Bound (Ma)</th>
<th>Upper Bound (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary sedimentary rocks</td>
<td>0.03±0.05</td>
<td>0.00-0.20</td>
</tr>
<tr>
<td>San Gabriel Mountains (North of SGF)</td>
<td>1.08±2.07</td>
<td>0.00-7.37</td>
</tr>
</tbody>
</table>

This aeromagnetic map is based on data from three surveys of varying resolution (Table 1). The gradients flanking this high suggest that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley. Many magnetic lines are superposed on a broader magnetic high (Fig. 5).

To produce a pair of subtle (20 nT), east-northeast-trending anomalies (on map and Fig. 2) west of the fault's mapped western terminus. The southern edge of the magnetic basement structure merges into the Santa Monica Valley.

Figures 4 and 5. Models indicate that southern boundary of the La Cienega block dips north about 70 degrees and may extend to depths of 15 km (Fig. 5). The northwest edge of this anomaly appears to project beneath the Los Angeles Basin sediments. The gradient flanking this high suggests that its geometry is nearly symmetric, and the southern edge of the magnetic basement structure merges into the Santa Monica Valley.