The increasing use and importance of lakes for water supply to communities located 1.1 mi upstream from Lake William C. Bowen and Municipal Reservoir #1 lies within the Piedmont Physiographic Province. The South Pacolet River watershed, which encompasses these lakes, drains to Lake William C. Bowen and Municipal Reservoir #1. The drainage basin is typical of parts of the Piedmont Province, where surface flow occurs through stream channels at the surface and as subsurface flow within karst features and sandstone aquifers. This study was conducted in collaboration with the Spartanburg Water System (SWS) to determine the bathymetric distribution of Lake William C. Bowen and Municipal Reservoir #1. The bathymetric survey was conducted with the purpose of providing accurate and precise data on which to base management decisions for the future.

The field data were differentially corrected and then transferred to groundwater elevation data, which were used to determine the lake bathymetry. The bathymetric data were collected using a dual-frequency sonar system. The data were processed to determine the lake bathymetry and volume estimates. The bathymetric data were used to create contour maps of the lake. The contour maps were used to determine the volume of water in the lake. The volume estimates were used to evaluate the lake's water supply capacity.

The bathymetric survey was conducted on Lake William C. Bowen and Municipal Reservoir #1 in Spartanburg County, South Carolina, February 2008. The survey was conducted to provide accurate and precise data on which to base management decisions for the future.

Summary
The bathymetric survey was conducted on Lake William C. Bowen and Municipal Reservoir #1 in Spartanburg County, South Carolina, February 2008. The survey was conducted to provide accurate and precise data on which to base management decisions for the future.

Data Analysis
The bathymetric survey was conducted using a dual-frequency sonar system. The data were processed to determine the lake bathymetry and volume estimates. The bathymetric data were used to create contour maps of the lake. The contour maps were used to determine the volume of water in the lake. The volume estimates were used to evaluate the lake's water supply capacity.

Data Collection Methodology
The bathymetric survey was conducted using a dual-frequency sonar system. The data were processed to determine the lake bathymetry and volume estimates. The bathymetric data were used to create contour maps of the lake. The contour maps were used to determine the volume of water in the lake. The volume estimates were used to evaluate the lake's water supply capacity.