Skip Links

USGS - science for a changing world

Scientific Investigations Map 3084

Terrestrial Ecosystems—Isobioclimates of the Conterminous United States

By Jill J. Cress, Roger Sayre, Patrick Comer,1 and Harumi Warner2

1Ecology Department, NatureServe, Boulder, Colo.
2Parallel Inc., Lakewood, Colo.

Abstract

Thumbnail of map and link to pdf

As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated isobioclimate classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America (Sayre and others, 2008) and now being implemented globally, was used to model the ecosystem distributions. Bioclimate regimes strongly influence the differentiation and distribution of terrestrial ecosystems, and are therefore one of the key input layers in this biophysical stratification.

The Rivas-Martínez methodology is based on the concept of establishing a quantifiable classification system which would closely relate the distribution of vegetation to climatic parameters and indices. This method first establishes bioclimatic indices calculated from various ranges of temperature and precipitation data, compares these indices to defined thresholds, and finally applies sets of decision rules to identify the climate classes. The climate classification is hierarchical with four levels: macrobioclimates, bioclimates, thermotypes, and ombrotypes. Thermotypes, which represent thermoclimatic belts, are identified using the positive annual temperature (Tp) thresholds or the compensated thermicity index (Itc) thresholds. Ombrotypes, which represent ombroclimatic belts, are based on the ombrothermic index (Io) which is calculated as a function of both the total positive precipitation and temperature . For this national implementation the source data used for establishing the bioclimatic indices was Daymet. Daymet temperature and precipitation data were developed from 18 years (1980–1997) of climatological records and is available at a spatial resolution of 1 kilometer . This implementation of the Rivas-Martínez methodology resulted in the generation of four climate layers for the conterminous United States: macroclimates, bioclimates, thermotypes, and ombrotypes.

However, the biophysical stratification approach used for the ecosystems modeling effort required a single climate layer that accurately reflected regional variation in wet/dry gradients and hot/cold gradients, with a manageable number of classes. Therefore, the data layers for thermotypes and ombrotypes were combined, yielding 127 unique thermotype-ombrotype combinations.The isobioclimates image shows ombrotypic regions (dry/wet gradients) for each thermotypic (warm/cold) region. Additional information about this map and any of the data developed for the ecosystems modeling of the conterminous United States is available online at http://rmgsc.cr.usgs.gov/ecosystems/.

Revised September 14, 2009

First posted August 4, 2009

For additional information contact:

Rocky Mountain Geographic Science Center
Box 25046, Mail Stop 516
Denver, CO 80225
Phone: 303-202-4300

http://rmgsc.cr.usgs.gov/rmgsc/

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Cress, J.J., Sayre, Roger, Comer, Patrick, and Warner, Harumi, 2009, Terrestrial Ecosystems—Isobioclimates of the conterminous United States: U.S. Geological Survey Scientific Investigations Map 3084, scale 1:5,000,000, 1 sheet.


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/sim/3084/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 01-Dec-2016 17:15:26 EST