Skip Links

USGS - science for a changing world

Scientific Investigations Map 3242

Prepared in cooperation with the City of Hopkinsville, Kentucky, Community Development Services

Flood-Inundation Maps for an 8.9-Mile Reach of the South Fork Little River at Hopkinsville, Kentucky

By Jeremiah G. Lant

Thumbnail of report PDF (806 KB )

Abstract

Digital flood-inundation maps for an 8.9-mile reach of South Fork Little River at Hopkinsville, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hopkinsville Community Development Services. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky (station no. 03437495). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03437495). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.

In this study, flood profiles were computed for the South Fork Little River reach by using HEC-RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2012) stage-discharge relation at the South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky, streamgage and measurements collected during recent flood events. The calibrated model was then used to calculate 13 water-surface profiles for a sequence of flood stages, most at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bank full to the estimated elevation of the 1.0-percent annual exceedance probability flood at the streamgage. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a Digital Elevation Model (DEM) of the study area by using Geographic Information System (GIS) software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 3.28-foot horizontal resolution.

These flood-inundation maps, along with online information regarding current stages from USGS streamgage and forecasted stages from the NWS, provide emergency management and local residents with critical information for flood response activities such as evacuations, road closures, and post-flood recovery efforts.

First posted February 12, 2013

For additional information contact:
Director, Kentucky Water Science Center
9818 Bluegrass Parkway
Louisville, KY 40299
Telephone: (502) 493–1900
Fax: (502) 493–1909
http://ky.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Lant, J.G., 2013, Flood-inundation maps for an 8.9-mile reach of the South Fork Little River at Hopkinsville, Kentucky: U.S. Geological Survey Scientific Investigations Map 3242, 13 map sheets, 8-p. pamphlet, available at https://pubs.usgs.gov/sim/3242.



Contents

Acknowledgments

Abstract

Introduction

Constructing Water-Surface Profiles

Inundation Mapping

Summary

References Cited


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/sim/3242/
Page Contact Information: Contact USGS
Page Last Modified: Thursday, December 01, 2016, 05:28:52 PM