
U.S. Department of the Interio U.S. Geological Survey

CORRELATION OF MAP UNITS [Correlation based upon crater size-frequency distribution statistics (see table 1; Tanaka, 1986; Werner and Tanaka, 2011) and geologic relation (superposition, embayment, cross-cutting; see table 2)] [The N(1), N(2), N(5) and N(16) crater density

SURFICIAL	/ALLIS	PLAINS	HIGHLAND		CRATER	Werner and approximate	Tanaka (2011 ely defined du	n epochs are adapted from); the boundaries are e to geologic uncertainties]	
	TERIALS	MATERIALS	MATERIALS		MATERIALS			er 1,000,000 km²	Age (Ga)
						>1 km diameter	>2 km diameter	>5 km >16 km diameter diameter	(Werner and Tanaka, 2011)
				_		160	33	71	0.235 ·
Ada									
AHRVfy				AHcf	AHc ₃	600	122	24 3	0.880 ·
						2100 —	—— 427 ——	8611	3.00
	HRVfo					3 067	624	125 16	3 40
		_			HDc HNc ₂		024	120	0.40
	HNWVf	HNpsu		<u></u>		4.907 —	998	200 25	3.57 —
	HNprl	HNpsl Npm Npe	9		HNGe HNGC HNFAE HNFC HNAC	4,507	330	200 23	0.57
			Nh ₁ Nm		HNc ₁			787·100·	
						38,630	7,859 ·	1,575 200	3.96

Earl			
	DESC	RIPTION OF MAP UNITS	
Unit abel	Unit name and description	Location and type areas	Interpretation
		SURFICIAL DEPOSITS	
Ada	Debris apron material —Massif-associated features have uniform or mottled albedo and lobate frontal morphologies and appear composed of multiple coalescing lobes. Crater-associated features are relatively small and display mottled albedo, featureless surfaces, and arcuate to lobate fronts. In high-resolution images, deposits show pits and lineations; lineations consist of ridge-and-furrow features and elongated pits	Borders highland massifs, crater rims, and vallis walls. <i>Type areas:</i> lat 39.9° S., long 110.3° E. (massif); lat 38.8° S., long 110.7° E. (crater)	Deposits of unconsolidated material resulting from mass wasting of rugged highland massifs, crater rims, and vallis walls; mobility due to incorporation of water or ice or massive internal ice; pits may be from collapse of volatile-rich debris; elongated pits and lineations may indicate sorting of material within the flow or shearing of debris as it flowed
		VALLIS MATERIALS	
HRVfy	Younger Reull Vallis floor material—Displays lineations and chains of elongated pits parallel to canyon walls	Forms floor of lower part of upper segment of Reull Vallis (formerly	Sedimentary material, eroded from surrounding plains materials and highland terrains, also consists of materials emplaced on canyon

Older Reull Vallis floor material—Smooth deposits incised with narrow Forms floors of canyons incised within Sedimentary material eroded from surrounding ejecta, highlands,

HNprl Ridged plains material, lower member—Displays smooth, mottled (in Forms boundary along much of canyon Sedimentary and (or) volcanic material, likely ridged plains material,

HNpsl Smooth plains material, lower member—Generally smooth and Forms lower wall/lower terraces Consists of sediments deposited (1) within a transient body of water,

HIGHLAND MATERIALS

32.5° S., long 113.4° E. (chaos) materials

canyon downcutting into main canyon of Reull Vallis

for presence of low-relief scarps and small sinuous channels.

High-resolution images show inter-ridge areas contain dune features,

accumulations of smooth materials in low areas, and small knobs adjacent

to some ridges. Parts of deposit, especially near Waikato Vallis, contain

mesas, and long (hundreds of kilometers) arcuate scarps. Contains a high

density of wrinkle ridges that form rings and linear features that display

two dominant trends—northwest-southeast and northeast-southwest.

removed in other places to expose underlying higher albedo materials

Knobby texture found in plains east of crater Greg. Degraded wrinkle

highland massifs appear mountainous and rugged. In high-resolution

images, surfaces appear rounded. Highland valleys generally found

Greg dissected by sinuous channels; deposits along Reull Vallis dissected long 112.9° E.

rugged. In high-resolution images, surfaces appear rounded

of deposit extending from contact with mottled plains material

ridges in northern part of deposit. Braided channels found in southern part

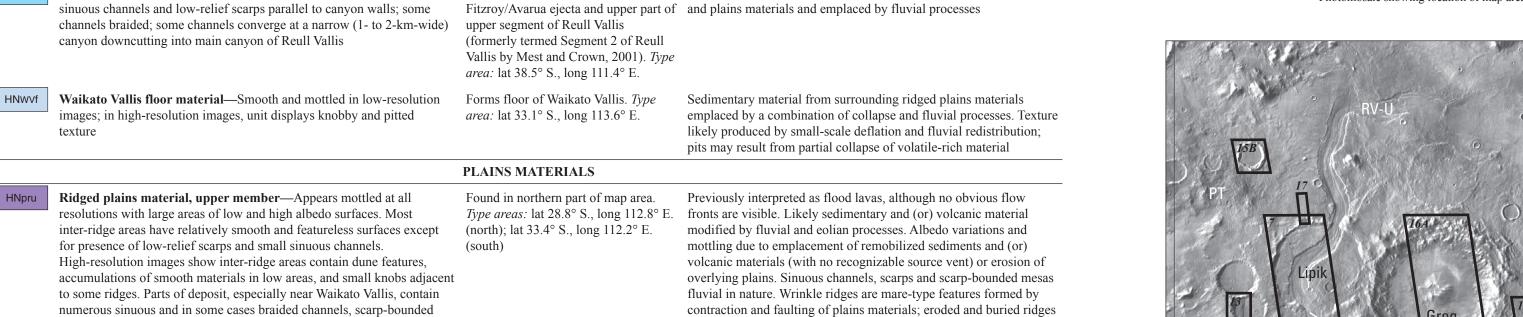
Ridges display pristine and degraded morphologies

Some exposures contain fluvial channels

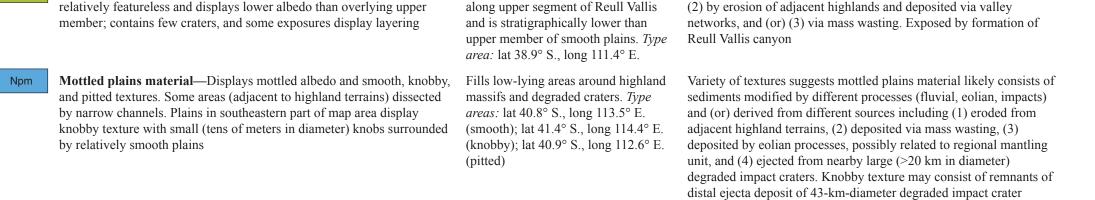
by relatively smooth plains

exhibit terraces

🖔 Secondary craters

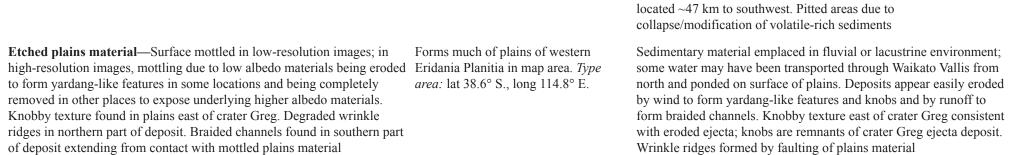

Knobby terrain

numerous sinuous and in some cases braided channels, scarp-bounded


termed Segment 2 of Reull Vallis by floor by mass wasting and (or) ice-rich flow. Lineations produced by

Mest and Crown, 2001). Type area: lat differential shear of volatile- or ice-rich sediments as mass moved

39.6° S., long 110.4° E. cross- and down-canyon



some places) surfaces that occur topographically lower than adjacent of Waikato Vallis and occurs as inliers modified by collapse and fluvial erosion. Mottling caused by ridged plains material (upper member). Forms clusters of irregularly within Waikato Vallis. *Type areas:* lat mantling of eolian and (or) fluvial sediments and (or) erosion of shaped, flat-topped polygons and knobs along and within Waikato Vallis. 32.0° S., long 113.3° E. (smooth); lat plains materials. Chaotic areas formed by collapse of plains **Smooth plains material, upper member**—Displays smooth surfaces in Forms exposures primarily adjacent to Consists of sediments deposited (1) within transient body of water, Figure 6. THEMIS daytime IR mosaic covering south-central part of map area low-resolution images; in high-resolution images, unit displays low-relief upper segment of Reull Vallis; some (2) by erosion of adjacent highlands and deposited via valley showing portions of local highlands of Promethei Terra (PT) and the plains of Eridania scarps, low-relief ridges, small channels, and shallow pits. Smooth plains exposures occur among highland networks, and (or) (3) via mass wasting. Low-relief scarps and Planitia (EP), crater Greg, upper segment of Reull Vallis (RV-U) where it heads within material (upper member) fills low-lying areas and embays highland materials. *Type area:* lat 36.5° S., long channels likely fluvial in nature. Pits suggest sublimation and the plains, and transition to lower part of upper segment (RV-L). Locations of figures 7,

exposed on floor and along margin of Waikato Vallis

collapse of volatile-rich material

Basin-rim unit—Forms continuous exposures of rugged terrain with Found in southern part of map area. Exposures consist of ancient crustal material uplifted during xpanses of smooth and knobby surfaces. In low-resolution images, Type area: lat 39.8° S., long 111.8° E. formation of impact basins (for example, Hellas) and craters subsequently modified by fluvial processes. Rounded nature due to mantling, possibly by eroded sediments and (or) regional mantling **Mountainous material**—Consists of rugged, isolated knobs and massifs. Found throughout map area. *Type*Contains materials previously mapped as basin rim unit or

In low-resolution images, these massifs appear mountainous and very area: lat 40.1° S., long 112.0° E. mountainous material (Greeley and Guest, 1987; Mest and Crown, 2001). Exposures consist of large blocks of ancient crustal material uplifted during formation of impact basins and craters. Rounded nature due to mantling, possibly by eroded sediments and (or) regional mantling deposit; peaks of some of steepest massifs show downslope removal of mantle via mass wasting

CRATER MATERIALS							
er floor material—Displays pits, arcuate ridges, grooves entric to crater walls), and lobate margins along interior crater walls	Found on floors of most craters in map area regardless of preservation state. <i>Type areas:</i> lat 38.5° S., long 110.7° E. (pitted); lat 37.4° S., long 110.9° W. (lineated)	Deposits consisting of fluvial, eolian, and (or) mass wasted maderived from crater rim and wall materials and (or) regional materials. Pits due to partially collapsed volatile-rich materials. Concentric rings likely due to coalescing materials mobilized downslope from crater rims or reflects erosional pattern. Previous mapped as smooth floor material (Greeley and Guest, 1987)					
a material, Dowa/Pál—Continuous deposit characterized by the areas that transition into pitted and etched surfaces with ng-like features, which distinguish the deposit from underlying is	Surrounds impact craters Dowa (diameter, 41.5 km; lat 31.7° S., long 110.3° E.) and Pál (diameter, 78.7 km; lat 31.3° S., long 108.7° E.). Pál impact structure located entirely outside of map area. <i>Type area:</i> lat 32.7° S., long 110.7° E.	Consists of ejecta emplaced by impact events of craters Dowa Pál. Pitted and etched surface likely due to eolian modification deposit					
er material, Dowa—Unit exhibits significant relief above	Forms rim of crater Dowa (diameter,	Materials emplaced during crater Dowa impact event; terraces					

surrounding materials, but some areas exhibit minor relief; interior walls 41.5 km; lat 31.7° S., long 110.3° E.). formed by slumping of crater walls *Type area:* lat 35.4° S., long 112.2° E. HNGe Ejecta material, Greg—Exposures characterized by smooth to Forms deposits located in south-central Consists of ejecta emplaced by impact event of crater Greg. hummocky surfaces throughout; some areas etched or contain lineations. part of map area that surround crater Yardangs indicate eolian erosion; lineations radial to Greg may be In high-resolution images, (1) etched appearance west of Reull Vallis Greg (diameter, 69.6 km; lat 38.6° S., due to internal shear of deposit during emplacement process formed by yardangs with northwest-southeast orientation (radial to Greg) long 113.0° E.). Deposits separated by and (2) lineations in northern deposit oriented radial to Greg. Parts of ridges of mountainous material and northern deposit display lobate edges to north. Deposits north and south of Reull Vallis. *Type area*: lat 37.5° S.,

by sinuous channels and box-like canyons that intersect Reull Vallis Crater material, Greg—Unit exhibits significant relief above Forms rim and central peak of crater Materials emplaced during crater Greg impact event. Materials urrounding materials; central peak on floor of Greg exhibits relief above Greg (diameter, 69.6 km; lat 38.6° S., mantling crater walls believed to be part of volatile-rich regional floor materials. Interior walls and rim highly dissected by gullies; walls long 113.0° E.). Type area: lat 39.2° mantle deposit, portions of which have subsequently moved superposed by viscous flow features. Northern crater wall mantled with S., long 112.7° E. downslope to form viscous flow features and flows with herringbone deposits that exhibit lobate fronts and southern wall contains alcoves filled with materials exhibiting herringbone texture HNFAe Ejecta material, Fitzroy/Avarua—Continuous deposit characterized by Surrounds impact craters Fitzroy Consists of ejecta emplaced by the impact events of craters Fitzroy smooth to irregular surface and lobate edges; dissected by sinuous, (diameter, 38.3 km; lat 35.7° S., long and Avarua

112.0° E.) and Avarua (diameter, 47.4 km; lat 35.9° S., long 109.7° E.). *Type area*: lat 35.7° S., long 111.2° E. Crater material, Fitzroy—Unit exhibits significant relief above Forms rim of crater Fitzroy (diameter, Materials emplaced during crater Fitzroy impact event. Materials urrounding materials; some areas exhibit minor relief. Interior walls and 38.3 km; lat 35.7° S., long 112.0° E.). mantling crater walls believed to be part of volatile-rich regional rim highly dissected by gullies; walls superposed by viscous flow Type area: lat 35.4° S., long 112.2° E. mantle deposit, portions of which have subsequently moved features. Northern crater wall mantled with deposits that exhibit lobate downslope to form viscous flow features and flows with herringbone fronts, and southern wall contains alcoves filled with materials exhibiting

herringbone texture Crater material, Avarua—Unit exhibits significant relief above Forms rim of crater Avarua (diameter, Materials emplaced during crater Avarua impact event. Materials urrounding materials; some areas of the rim exhibit minor relief. Interior 47.4 km; lat 35.9° S., long 109.7° E.). mantling crater walls believed to be part of volatile-rich regional walls and rim highly dissected by gullies; walls superposed by viscous Type area: lat 35.7° S., long 110.1° E. mantle deposit, portions of which have subsequently moved flow features. Northern crater wall mantled with deposits that exhibit downslope to form viscous flow features and flows with herringbone lobate fronts, and southern wall contains alcoves filled with materials exhibiting herringbone texture Crater material, well-preserved—Characterized by pronounced, Found throughout map area. *Type* Forms crater deposits—including ejecta, rim, and some floor continuous crater rim elevated relative to surrounding materials and by area: lat 35.6° S., long 114.8° E. materials—that exhibit little degradation; some crater floors contain well-defined, continuous ejecta blanket. Ejecta deposits within plains deposits emplaced by mass wasting, eolian activity, and (or) fluvial adjacent to Waikato and Reull Vallis. In southern part of map area, displays single or double rampart morphologies

HNC₂ Crater material, moderately degraded—Characterized by crater rim Found throughout map area. Type Forms crater deposits—including ejecta, rim, and some floor that may exhibit only minor relief above surrounding materials and by area: lat 36.6° S., long 110.4° E. materials—that exhibit moderate degree of degradation; most crater floors contain deposits emplaced by mass wasting, eolian activity, discontinuous, poorly exposed ejecta and (or) fluvial processes Crater material, highly degraded—Characterized by degraded crater Found throughout map area. Type Forms crater deposits—including ejecta, rim, and some floor im that may be discontinuous and exhibits little relief relative to area: lat 42.4° S., long 112.6° E. materials—that exhibit significant degradation. Ejecta and rim surrounding materials; displays little to no discernible ejecta materials materials eroded or mantled by younger materials. Most crater floors and smooth, relatively flat crater floors contain deposits emplaced by mass wasting, eolian activity, and (or) fluvial processes EXPLANATION OF MAP SYMBOLS

——— Contact—Long-dashed where approximately

Valley with channel morphology

— Valley with gully morphology

similar units from different features

located; short-dashed where inferred. Internal

contact defines stratigraphic relations between

——

→ Ridge with degraded morphology **→** Ridge with pristine morphology Topographic rim of impact crater Topographic scarp—Barbs point downslope

Prepared for the National Aeronautics and Space Administration

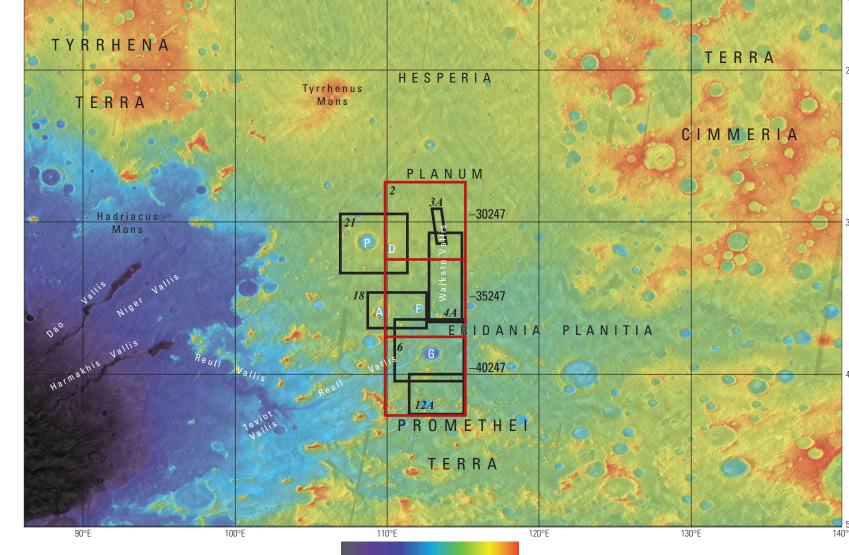
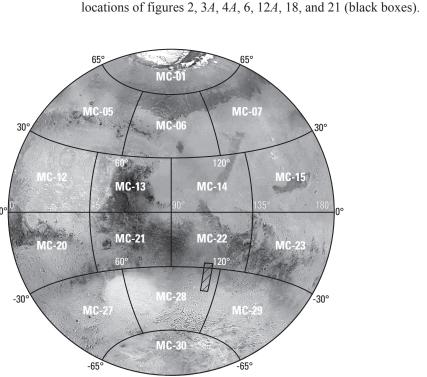



Figure 1. Regional MOLA colorized shaded-relief DEM (resolution, 128 m/pixel) showing physiographic provinces, vallis and mons features, and relevant craters Pál (P), Dowa (D), Avarua (A), Fitzroy (F), and Greg (G), as well as areas of MTM –30247, –35247, and –40247 quadrangles (red boxes) and

QUADRANGLE LOCATION Photomosaic showing location of map area (hachured).

8, 9, 11*A*, 11*B*, 13, 15*B*, 16*A*, and 17 are shown. See figure 1 for location. Image

local highland terrain surrounded by deposits of mottled plains material (Npm).

resolution is 100 m/pixel; centered at lat 41.2° S., long 113.2° E. B, THEMIS VIS

image V26431011 showing a close-up of the mottled plains (Npm) that displays a

mottled surface throughout the deposit but displays a number of textures, including

smooth (s), pitted and knobby (p/k), and rugged (r) textures observed in the northern

part of this image. Smooth materials appear to embay pitted/knobby textured materials.

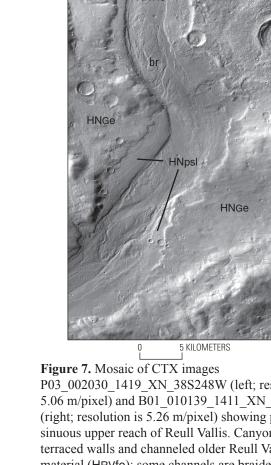
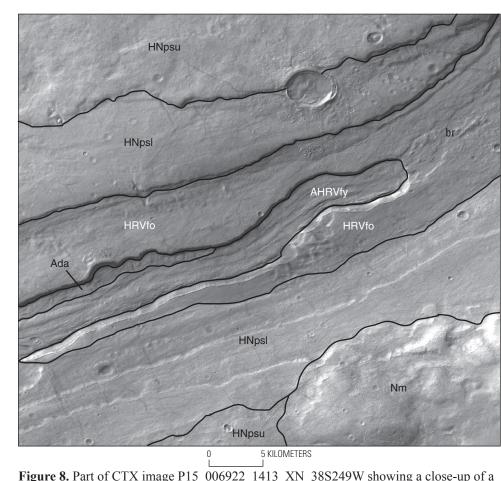

image P17 007858 1372 XN 42S245W showing knobby terrain (k) that superposes

Image resolution is 5.08 m/pixel; centered at lat 41.5° S., long 114.2° E.


Image resolution is 17.2 m/pixel; centered at lat 41.2° S., long 113.0° E. C, Part of CTX

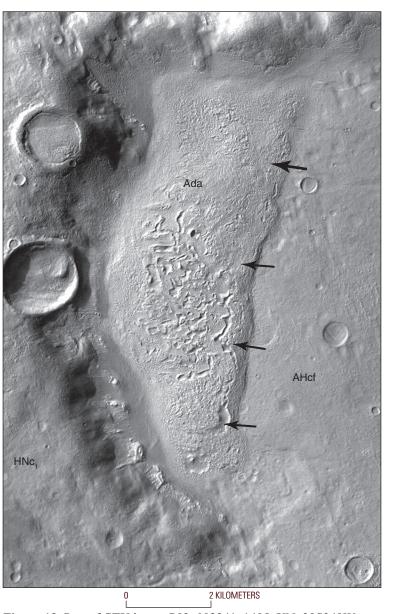
Locations of figures 12B and 12C are shown. See figure 1 for location. Image

resolution is 100 m/pixel; centered at lat 38.3° S., long 112.6° E.

P03 002030 1419 XN 38S248W (left; resolution is 5.06 m/pixel) and B01 010139 1411 XN 38S248W (right; resolution is 5.26 m/pixel) showing part of sinuous upper reach of Reull Vallis. Canyon displays terraced walls and channeled older Reull Vallis floor material (HRVfo); some channels are braided. Reull Vallis dissects Greg ejecta material (HNGe) and underlying smooth plains material, lower member (HNpsl). Several short theater-headed canyons (c) dissect HNGe and intersect Reull Vallis. These tributary canyons are found incised only within Greg ejecta and primarily along the northern and western wall of Reull Vallis, suggesting they may represent dewatering of volatile-rich Greg ejecta following its emplacement and (or) result from erosion of unconsolidated ejecta deposits. Location of figure 14 is shown. See figure 6 for location. Image centered at lat 38.6° S., long 111.5° E.

Figure 2. *A*, THEMIS daytime IR mosaic (resolution, 100 m/pixel) and (*B*) MOLA

colorized shaded-relief DEM (resolution, 128 m/pixel) of MTM –30247, –35247,


orthogonal sets of wrinkle ridges (northwest-southeast and northeast-southwest),

and –40247 quadrangles, showing locations of several named features. Note

especially prominent in northern part of map area. See figure 1 for regional

Figure 8. Part of CTX image P15_006922_1413_XN_38S249W showing a close-up of a narrow (~1.5-km-wide) theater-headed canyon incised within the main canyon of Reull Vallis that marks the transition between morphologically distinct reaches of the upper segment of Reull Vallis. In this location, vallis floor materials also transition from mostly smooth older Reull Vallis floor materials (HRVfo), which contains braided channels (br) that intersect at the head of the incised interior canyon, to the lineated younger Reull Vallis floor materials (AHRVfy) that begin within the interior canyon. This image also shows the main canyon of Reull Vallis incised within adjacent upper and lower smooth plains materials (HNpsu and HNpsl, respectively), which form erosional terraces parallel to the canyon, deposits of debris apron material (Ada) along the canyon wall, and a nearby massif of mountainous material (Nm). See figure 6 for location. Image centered at

lat 39.3° S., long 111.2° E.

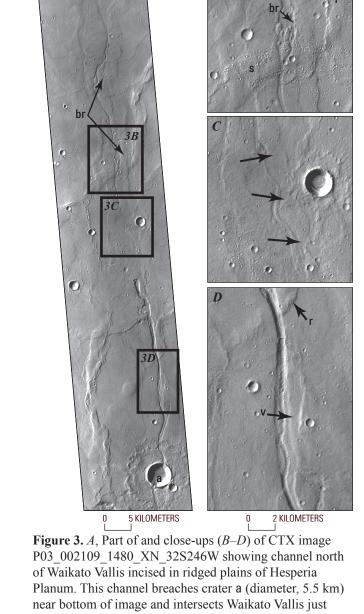
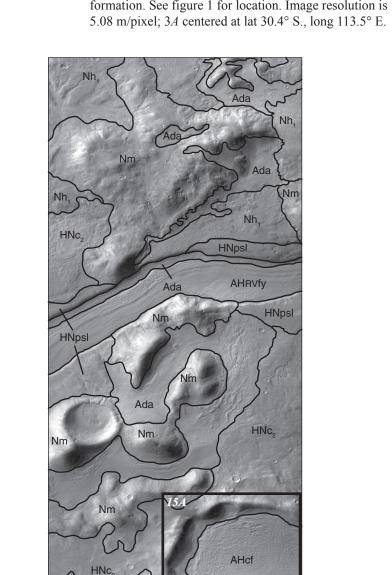
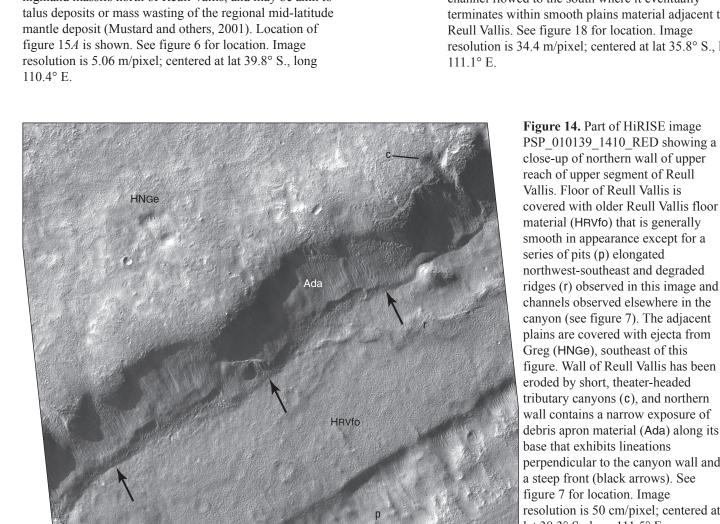
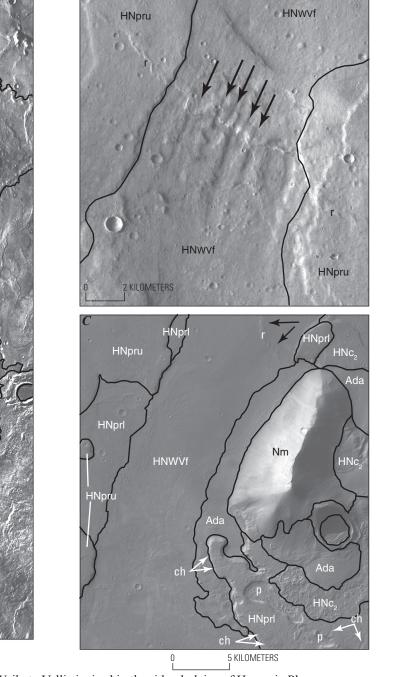


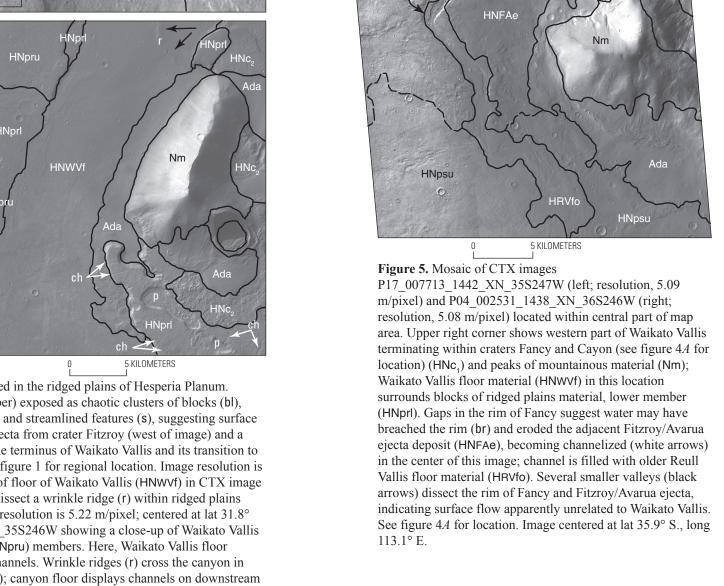
Figure 13. Part of CTX image P03 002241 1405 XN 39S249W showing interior of a highly degraded highland crater (HNc₁) containing smooth crater floor material (AHcf) on its floor and a large deposit of debris apron material (Ada) along its western wall. Toe of debris apron (black arrows) is less lobate than some observed in this region, and portions appear steep. Surface of deposit contains pits elongated roughly perpendicular to inferred direction of flow. See figure 6 for location. Image resolution is 5.06 m/pixel; centered at lat 38.8° S., long 110.7° E.


meter, 50 km) and

Much of the surrounding


zrov (diameter, 38.2 km)


south of this crater. Northern part of the channel is narrow and sections are braided (br). Southern part is wider, starts at a theater-headed alcove, and contains an interior valley (v). Northern and southern channels are separated by plains materials, but northern channel appears to terminate as a positive relief feature (arrows) in the plains in 3C. Wrinkle ridges (r in B, D) are dissected, suggesting that channel formation post-dates ridge formation. Secondary crater fields (s in 3*B*), likely emplaced by Dowa and (or) Pál impact events to the west, superpose channel and ridges, indicating one or both impacts post-date channel and ridge formation. See figure 1 for location. Image resolution is


Figure 9. Part of CTX image P02 001885 1400 XN 40S249W showing part of upper reach of Reull Vallis and adjacent highlands of Promethei Terra. Canyon displays nearly constant width and straight walls and contains lineated younger Reull Vallis floor material (AHRVfy). Highland terrains consist of peaks of mountainous material (Nm), basin-rim unit (Nh₁), and rims of degraded craters. Low-lying areas are covered with ejecta (for example, HNc₂), smooth plains material, lower member (HNpsl), crater fill material (AHcf), and debris aprons (Ada). Some deposits are extensive and display lobate terminations, such as the massif-associated deposit in the center of the figure that surrounds several massifs of Nm, whereas others are limited in extent and show less evidence for flow, such as along south-facing wall of Reull Vallis and among highland massifs north of Reull Vallis, and may be akin to

Vallis. Floor of Reull Vallis is covered with older Reull Vallis floor material (HRVfo) that is generally smooth in appearance except for a series of pits (p) elongated northwest-southeast and degraded ridges (r) observed in this image and channels observed elsewhere in the canyon (see figure 7). The adjacent plains are covered with ejecta from Greg (HNGe), southeast of this figure. Wall of Reull Vallis has been ributary canyons (c), and northern wall contains a narrow exposure of debris apron material (Ada) along its base that exhibits lineations perpendicular to the canyon wall and a steep front (black arrows). See figure 7 for location. Image resolution is 50 cm/pixel; centered at lat 38.3° S., long 111.5° E.

Figure 4. *A*, THEMIS daytime IR mosaic of Waikato Vallis incised in the ridged plains of Hesperia Planum. Canyon contains remnants of ridged plains material (lower member) exposed as chaotic clusters of blocks (bl), suggesting collapse of plains materials as volatiles were released, and streamlined features (s), suggesting surface flow down canyon to its terminus in craters Fancy and Cayon. Ejecta from crater Fitzroy (west of image) and a 34-km-diameter crater (east of image), labeled ejecta, obscures the terminus of Waikato Vallis and its transition to Eridania Planitia to the south. Location of figure 5 is shown. See figure 1 for regional location. Image resolution is 100 m/pixel; centered at lat 33.8° S., long 113.8° E. B, Close-up of floor of Waikato Vallis (HNWVf) in CTX image P06_003454_1467_XI_33S246W showing scours (arrows) that dissect a wrinkle ridge (r) within ridged plains material, upper member (HNpru), that crosses the canyon. Image resolution is 5.22 m/pixel; centered at lat 31.8° S., long 113.2° E. C, Part of CTX image B03_010640_1449_XN_35S246W showing a close-up of Waikato Vallis incised within ridged plains material, lower (HNprl) and upper (HNpru) members. Here, Waikato Vallis floor materials (HNWVf) contain numerous small craters, scarps, and channels. Wrinkle ridges (r) cross the canyon in some places and are incised with notches or scours (black arrows); canyon floor displays channels on downstream side of these ridges. Elongated pits (p) in adjacent plains and ejecta materials (HNc_a) suggest that collapse of here and elsewhere along Waikato Vallis indicate water also contributed to the canyon via surface flow. Lobate debris aprons (Ada) suggest mass wasting of volatile-rich material from highland massifs, such as mountainous material (Nm), or along the bank of Waikato Vallis. Image resolution is 5.05 m/pixel; centered at lat 34.2° S., long

Scientific Investigations Map 324

Atlas of Mars: MTM -30247, -35247, and -40247 Quadrangles

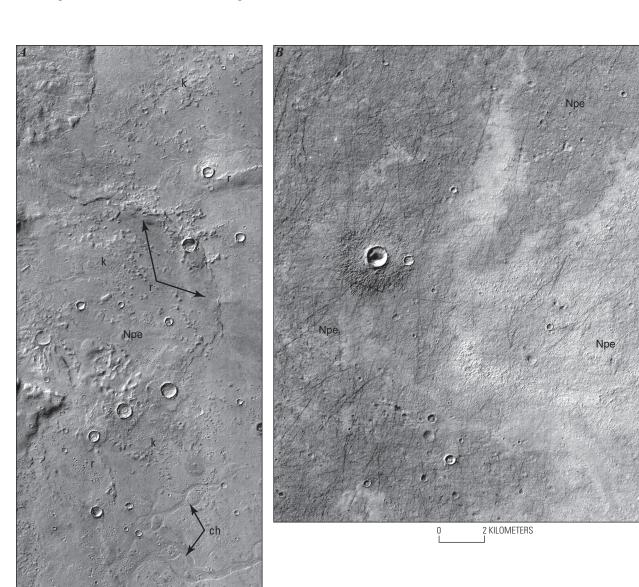


Figure 10. THEMIS VIS image V17009007 showing Figure 11. A, Part of CTX image P13 006144 1400 XN 40S245W showing etched plains material (Npe) adjacent to east rim Fitroy/Avarua ejecta material (HNFAe) and smooth of crater Greg. Plains and several degraded ridges (r) are superposed by knobs (k) that form clusters in some places and appear plains material, upper member (HNpsu) dissected by a to be forming by degradation of a more continuous unit, possibly ejecta from Greg. A series of braided channels (ch) in the narrow flat-floored channel filled with older Reull Vallis southern part of the image is incised within Npe and does not show knobs on the channel floor; rather, the channels erode floor material (HRVfo). Local slopes and orientations of around knobs. See figure 6 for location. Image resolution is 5.09 m/pixel; centered at lat 39.2° S., long 114.2° E. B, Part of islands of remnant ejecta and plains (bottom of image) CTX image P13_006289_1434_XN_36S245W showing eroded layers within the etched plains material (Npe) that gives and intersecting channels imply that water within the portions of this deposit its mottled appearance. Low albedo material is being removed to expose high albedo material. Both channel flowed to the south where it eventually materials have been sculpted to form an etched texture; presence of dust devil tracks (dark streaks) throughout unit indicate terminates within smooth plains material adjacent to that this unit has been extensively modified by eolian processes. See figure 6 for location. Image resolution is 5.09 m/pixel; Reull Vallis. See figure 18 for location. Image centered at lat 37.7° S., long 115.0° E. resolution is 34.4 m/pixel; centered at lat 35.8° S., long

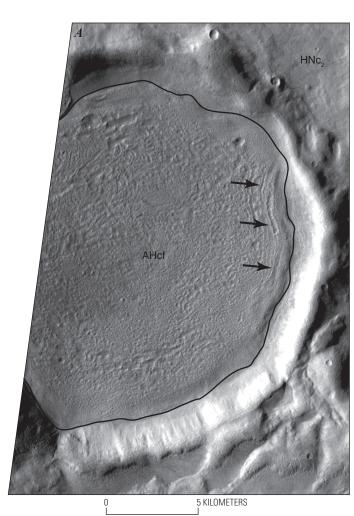
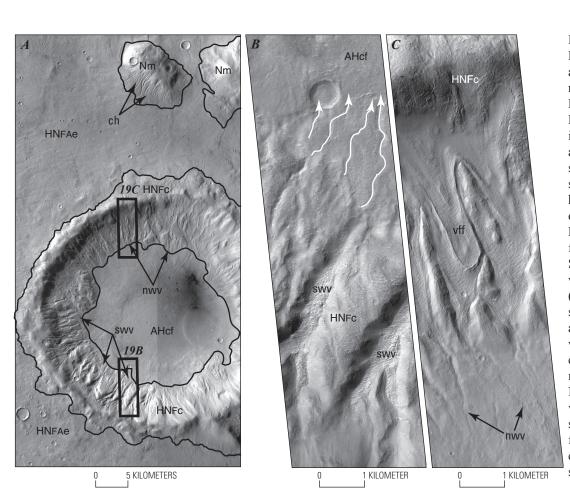



Figure 15. Parts of (A) THEMIS VIS image V26481009 (resolution, 17.2 n/pixel; centered at lat 40.2° S., long 110.6° E.; NASA/JPL/ASU; see gure 9 for location) and (B) CTX image P15 006777 1399 XI 40S248W

resolution, 5.07 m/pixel; centered at lat 37.4° S., long 110.9° E.; see figure 6 for location) showing close-ups of crater fill material (AHcf) found in well-preserved impact craters (AHc₃). The surface of the deposit in A is composed primarily of pits and knobs, however the eastern part of the deposit (black arrows) and much of the deposit in B (white dashed lines) display arcuate lineations oriented parallel to crater walls. These lineations suggest flow of unconsolidated volatile-rich material downslope toward the centers of these craters and (or) enhanced erosion at the contact between crater floor and rim materials.

Figure 19. *A*, Mosaic of CTX images P03 002386 1444 XN 35S248W (left; resolution, 5.07 m/pixel) and P05 003164 1446 XI 35S248W (right; resolution, 5.14 m/pixel) showing crater Fitzroy (HNFc) and the surrounding Fitzroy/Avarua ejecta (HNFAe). Crater floor materials (AHcf) in Fitzroy appear mottled and smooth at this resolution. Valleys incised in interior wall of Fitzroy—north-wall valleys (nwv; see figure 19*B*) and south-wall valleys (swv; see figure 19C)—are morphologically similar to those observed in Greg. Channels (ch) incised along south-facing flank of a massif of mountainous material (Nm) could have formed by dewatering of a volatile-rich mantle—Fitzroy ejecta or mid-latitude mantling material (Mustard and others, 2001; Milliken and others, 2003; Berman and others, 2009). See figure 18 for location. Image centered at lat 35.5° S., long 112.0° E. B, Southern part of MOC image M04-02881 showing the south-wall valleys (swv) incised in north-facing wall of Fitzroy crater material (HNFc); valleys are filled with sediments with platy to herringbone surface textures suggesting down-valley flow. Wider swv terminate at a smooth deposit along base of wall, which is incised by narrower valleys (white arrows) that extend from swv termini and terminate at contact with this deposit and crater floor material (AHcf). Image resolution is 2.78 m/pixel; centered at lat 35.9° S., long 112.0° E. C, Northern part of MOC image M04-02881 showing north-wall valleys (nwv) incised in mantling material along lower half of south-facing wall of Fitzroy crater material (HNFc). Viscous flow features formed along upper half of Fitzroy's walls and are omposed of disaggregated mantle materials that flowed down 1 KILOMETER slope. Image centered at lat 35.5° S., long 111.9° E.

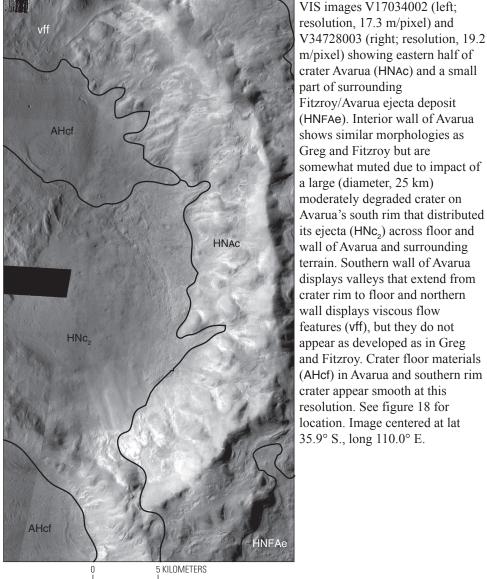
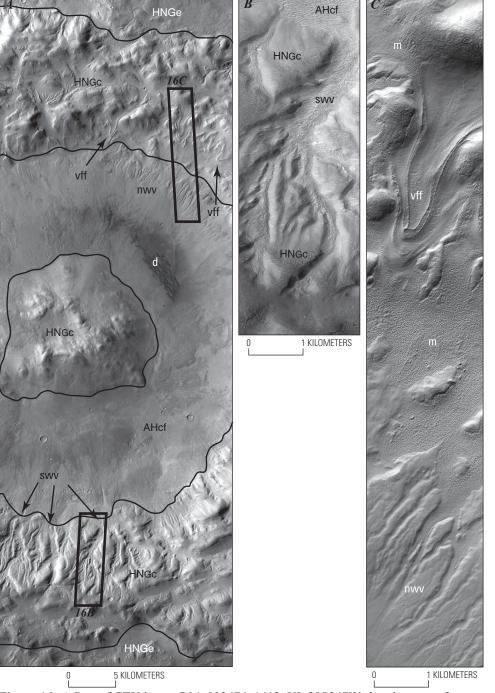
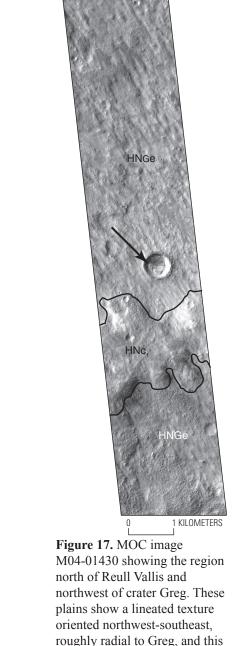




Figure 23. Southern part of THEMIS VIS image V27392008 showing part of the Dowa/Pál ejecta deposit (HDPe) south of crater Dowa and southeast of crater Pál. Deposit shows knobby (k) textures in upper part of image and smooth textures in southern part of image. Much of deposit displays linear chains of pits (p) or smooth mesas (m) that both show a northwest-southeast orientation, which is roughly radial to

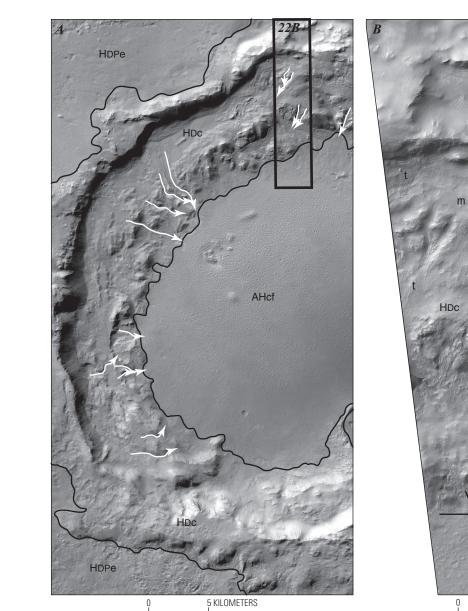
32.6° S., long 109.9° E.

Figure 16. A, Part of CTX image P04_002676_1413_XI_38S247W showing part of crater Greg, including its rim and central peak (HNGc), ejecta (HNGe) and its floor materials (AHcf). See figure 6 for location. Image resolution is 5.64 m/pixel; centered at lat 38.6° S., long 113.1° E. B, In MOC image M08-07937, the north-facing wall of Greg is incised with valleys (south-wall valleys, swv) that originate near the rim and terminate at the crater floor; these valleys are filled with materials with herringbone surface textures suggesting flow down valley. Image resolution is 2.78 m/pixel; centered at lat 39.1° S., long 113.1° E. C, In MOC image M18-00897, the south-facing wall of Greg is morphologically different, showing a thin mantle along the lower half of the wall that is dissected by narrow parallel valleys (north-wall valleys, nwv), and the upper half of the wall is superposed by a disaggregated mantle that forms viscous flow features (Mustard and others, 2001; Milliken and others 2003: Berman and others, 2009). Image resolution is 4.17 m/pixel; centered at lat 38.2° S., long 113.2° E.

smooth (s) mottled plains material (Npm) and wrinkle ridges (r) in the southeastern part of the map area. Edges of clusters of knobby terrain appear lobate in form (dashed lines) and may be

composed of eroded remnants of ejecta from a ~40-km-diameter crater located ~50 km to the west, similar to knobby terrain located east of crater Greg. Surfaces in the southern part of this

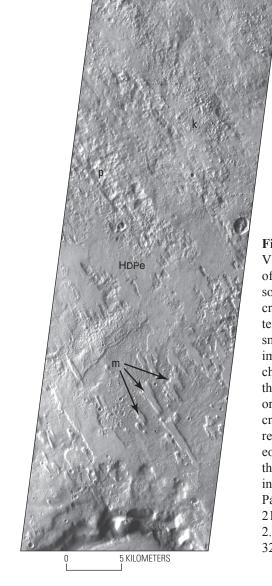
image are mantled (m) by mid-latitude mantling deposit of Mustard and others (2001), and knobby terrain may be remnants of this mantle or consist of mantle over eroded ejecta deposits.


roughly radial to Greg, and this material has been interpreted as Greg ejecta material (HNGe) that has been eroded by the wind to form yardang-like features. The ~600-m-diameter crater near the center of the image (arrow) has a freshlooking rim, but its ejecta deposit has also been modified and (or) removed. Part of the rim of crater Lipik forms the deposit of highly degraded crater material (HNc₁) in the bottom half of the image. See figure 6 for location. Image resolution is 5.56 m/pixel; centered at lat 37.9° S., long

111.4° E.

Figure 21. Part of THEMIS daytime IR mosaic (resolution, 100 m/pixel) showing craters Pál (diameter, 71.2 km) and Dowa (diameter, 40.8 km). Much of terrain surrounding these craters is covered by ejecta materials from both craters (HDPe), which appear heavily pock-marked with pits, lineations, and smooth-topped yardang-like mesas that all tend to be oriented radial to Pál or Dowa. Locations of figures 22A and 23 are shown. See figure 1 for location. Image centered at lat 31.4° S., long 109.4° E.

¹Planetary Science Institute ²NASA Goddard Space Flight Center


he surrounding Dowa/Pál ejecta deposit (HDPe), and relatively smooth crater floor material (AHcf) hat covers the floor of Dowa. Vestern wall of Dowa displays a wide terrace that contains outcrops of blocky wall material superposed by smooth deposits and is dissected by valleys (white arrows). See figure 21 for location. Image resolution is 34.6 m/pixel; centered at lat 31.7° S., long 110.1° E. B, Part of MOC image R17-00891 showing a close-up of Dowa crater material (HDc). Outcrops of blocky wall material are superposed by a nantle (m) of smooth material that ends to form talus deposits (t) long bases of most slopes. Crater floor material (AHcf) along bottom of image displays pits (smalldiameter craters and (or) eolian nodified depressions) in this part of Dowa. Image resolution is 2.95

F**igure 22.** A, Part of THEMIS VIS

mage V27392008 showing the

ncluding its rim material (HDc),

western part of crater Dowa

crater Pál. These textures and the resulting trend of features suggest eolian modification of ejecta deposit that is reflected predominantly in internal structure of ejecta from crater Pál during its emplacement. See figure 21 for location. Image resolution is 2.95 m/pixel; image centered at lat