Flood-Inundation Map for Logansport, Indiana, Corresponding to a Stage of 15.00 Feet and an Elevation of 587.89 ft at U.S. Geological Survey Streamgage 03329000 on the Wabash River and a Stage of 12.69 ft and an Elevation of 633.80 Feet (NAVD 88) at U.S. Geological Survey Streamgage Number 03328500 on the Eel River

By
Kathleen K. Fowler
2014

Projection: Transverse Mercator
Horizontal coordinate information is referenced to the North American Datum of 1983
Orthophotography from Indiana Spatial Data Portal, National Agriculture Imagery Program (2010), available at http://gis.iu.edu/

EXPLANATION
USGS streamgage and number
USGS streamgage and number
Logansport
Wabash River
Logansport bypass
N 6TH STREET
CICOTT ST
WABASH RIVER
EEL RIVER
Horney Creek
Horney Creek
150 NORTH COUNTY RD 450 EAST
DAVIS ROAD
N 3RD STREET
MARKET STREET
RAIL ROAD
RAIL ROAD
RAIL ROAD
BURLINGTON AVE
18TH STREET
ROCK ISLAND RAIL ROAD

UNCERTAINTIES AND LIMITATIONS FOR USE OF FLOOD-INUNDATION MAPS
Although the flood-inundation maps meet the boundary line of inundated areas with a distinct line, some uncertainty is associated with these maps. The flood-bounds were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The Flood Analysis and Mapping System (FAMS) meteorological model was used to produce meteorologic conditions that were transient over the period of record as well as for a steady-state condition over the period of record. The meteorologic conditions were then applied to the HoosierNet data to produce steady-state conditions.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.

Flood-inundation maps were produced using steady-state hydraulic modeling of USGS streamgages, and HoosierNet data for the Wabash River, Indiana, for the period of record, and 10-year flood stage, and 20-year flood stage. The flood boundaries were estimated based on water stages (water surface elevation) and discharges at selected USGS streamgages. Water surface elevations along the stream reach were estimated by steady-state hydraulic modeling, assuming uniform flow, and using streamflows and hydraulic conditions anticipated.