Shaded-Relief Bathymetry, Offshore of Coal Oil Point Map Area, California

By
Peter Dartnell, Eleyne L. Phillips, David P. Finlayson, James E. Conrad, and Rikk G. Kvitek

2014

This shaded-relief bathymetry map of the Offshore of Coal Oil Point map area in southern California was produced by the U.S. Geological Survey and the U.S. Army Corps of Engineers. It is intended for non-navigational use.

The map was produced using data collected by various mapping missions, including those by CSUMB, USACE, and Fugro Pelagos. The data were processed using hydrographic and topographic-lidar systems to create the final bathymetric-surface-model grid.

The map was printed on an electronic plotter directly from digital files. Dimensional calibration may vary between electronic plotters.

EXPLANATION

A menu of illumination
Monochrome (gray tone only)

DISCUSSION

The onshore-area image was generated by applying the same illumination (azimuth of 300° and from 45° above the horizon) as for the offshores.

The map shows the outer shelf and slope to be mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson bathymetric-lidar and the Leica ALS60 topographic-lidar systems. These mapping missions combined to produce a 2-m-resolution bathymetric-surface-model grid.

The 2-m-resolution bathymetric-surface-model grid was merged into one overall 2-m-resolution bathymetric-data set. The 5-m-resolution bathymetric-surface-model was created by applying the same illumination (azimuth of 300° and from 45° above the horizon) and clipping to the boundary of the map area.

The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson bathymetric-lidar and the Leica ALS60 topographic-lidar systems. These mapping missions combined to produce a 2-m-resolution bathymetric-surface-model grid.

The onshore-area image was generated by applying the same illumination (azimuth of 300° and from 45° above the horizon) as for the offshores.

The map was printed on an electronic plotter directly from digital files. Dimensional calibration may vary between electronic plotters.

EXPLANATION

A menu of illumination
Monochrome (gray tone only)

DISCUSSION

The onshore-area image was generated by applying the same illumination (azimuth of 300° and from 45° above the horizon) as for the offshores.

The map shows the outer shelf and slope to be mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson bathymetric-lidar and the Leica ALS60 topographic-lidar systems. These mapping missions combined to produce a 2-m-resolution bathymetric-surface-model grid.

The 2-m-resolution bathymetric-surface-model grid was merged into one overall 2-m-resolution bathymetric-data set. The 5-m-resolution bathymetric-surface-model was created by applying the same illumination (azimuth of 300° and from 45° above the horizon) and clipping to the boundary of the map area.

The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson bathymetric-lidar and the Leica ALS60 topographic-lidar systems. These mapping missions combined to produce a 2-m-resolution bathymetric-surface-model grid.

The onshore-area image was generated by applying the same illumination (azimuth of 300° and from 45° above the horizon) as for the offshores.