Flood-Inundation Map of South Fork Peachtree Creek in DeKalb County, Georgia, Flood Corresponding to a Stage of 8.5 Feet and an Elevation of 940.7 Feet (NAVD 88) at the U.S. Geological Survey Streamgage Number 02336152 near Clarkston, Georgia.

 UNCERTAINTIES AND LIMITATIONS FOR USE OF FLOOD-INUNDATION MAPS

- Inundated areas shown should not be used for navigation, regulatory, permitting, or other legal purposes.
- The hydraulic model reflects the land-cover characteristics and any bridge, dam, levee, or other hydraulic structures existing in June 2015. Unique Casa Drive, near Clarkston, Ga. (Station ID 02336152), steady-state hydraulic modeling (assuming unobstructed flow), and a digital elevation model.
- The flood boundaries shown were estimated based on water stages/streamflows at the USGS streamflow-gaging station, South Fork Peachtree at 02336152, SFPG1.
- The flood-inundation area was estimated using the USGS National洪水 Inundation Modeling System (NAM) model, in cooperation with the National Weather Service (NWS) and DeKalb County, Ga.
- The NAM model uses real-time radar data and National Weather Service (NWS) streamflow data to estimate flooding due to precipitation or runoff over the forecasted period.
- The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- Additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- If this series of flood-inundation maps will be used in conjunction with National Weather Service (NWS) river forecasts, the user should be aware of additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- The hydraulic model reflects the land-cover characteristics and any bridge, dam, levee, or other hydraulic structures existing in June 2015. Unique Casa Drive, near Clarkston, Ga. (Station ID 02336152), steady-state hydraulic modeling (assuming unobstructed flow), and a digital elevation model.
- The flood boundaries shown were estimated based on water stages/streamflows at the USGS streamflow-gaging station, South Fork Peachtree at 02336152, SFPG1.
- The flood-inundation area was estimated using the USGS National洪水 Inundation Modeling System (NAM) model, in cooperation with the National Weather Service (NWS) and DeKalb County, Ga.
- The NAM model uses real-time radar data and National Weather Service (NWS) streamflow data to estimate flooding due to precipitation or runoff over the forecasted period.
- The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- Additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- If this series of flood-inundation maps will be used in conjunction with National Weather Service (NWS) river forecasts, the user should be aware of additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- The hydraulic model reflects the land-cover characteristics and any bridge, dam, levee, or other hydraulic structures existing in June 2015. Unique Casa Drive, near Clarkston, Ga. (Station ID 02336152), steady-state hydraulic modeling (assuming unobstructed flow), and a digital elevation model.
- The flood boundaries shown were estimated based on water stages/streamflows at the USGS streamflow-gaging station, South Fork Peachtree at 02336152, SFPG1.
- The flood-inundation area was estimated using the USGS National洪水 Inundation Modeling System (NAM) model, in cooperation with the National Weather Service (NWS) and DeKalb County, Ga.
- The NAM model uses real-time radar data and National Weather Service (NWS) streamflow data to estimate flooding due to precipitation or runoff over the forecasted period.
- The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- Additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- If this series of flood-inundation maps will be used in conjunction with National Weather Service (NWS) river forecasts, the user should be aware of additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- The hydraulic model reflects the land-cover characteristics and any bridge, dam, levee, or other hydraulic structures existing in June 2015. Unique Casa Drive, near Clarkston, Ga. (Station ID 02336152), steady-state hydraulic modeling (assuming unobstructed flow), and a digital elevation model.
- The flood boundaries shown were estimated based on water stages/streamflows at the USGS streamflow-gaging station, South Fork Peachtree at 02336152, SFPG1.
- The flood-inundation area was estimated using the USGS National洪水 Inundation Modeling System (NAM) model, in cooperation with the National Weather Service (NWS) and DeKalb County, Ga.
- The NAM model uses real-time radar data and National Weather Service (NWS) streamflow data to estimate flooding due to precipitation or runoff over the forecasted period.
- The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- Additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- If this series of flood-inundation maps will be used in conjunction with National Weather Service (NWS) river forecasts, the user should be aware of additional uncertainties that may be inherent or factored into NWS forecast procedures. The NWS uses river forecast models to estimate the quantity and timing of water flowing through selected river reaches in the United States. These forecast models (1) estimate the amount of runoff generated by a precipitation event and (2) project the resulting water levels and flood stage.
- The hydraulic model reflects the land-cover characteristics and any bridge, dam, levee, or other hydraulic structures existing in June 2015. Unique Casa Drive, near Clarkston, Ga. (Station ID 02336152), steady-state hydraulic modeling (assuming unobstructed flow), and a digital elevation model.
- The flood boundaries shown were estimated based on water stages/streamflows at the USGS streamflow-gaging station, South Fork Peachtree at 02336152, SFPG1.