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STRATIGRAPHY
 The study area preserves an approximately 1,600-ft-thick record of early and late 

Paleozoic deposition on what is now the southern margin of the North American continent. 
Provincial series for Pennsylvanian and Mississippian units are from McFarland (1988).

The Middle Ordovician Everton Formation (Oe) is a heterogeneous sandstone and carbonate 
unit that Suhm (1974) interpreted to have been deposited in barrier island and tidal flat depositional 
environments. The Everton Formation is unconformably overlain by the Upper Ordovician 
Fernvale Limestone (Of) that was deposited as a shallow-water carbonate shelf sand (Craig, 1975). 

The Mississippian Boone Formation (Mb) is widespread within the northern part of the 
quadrangle. The phosphate-nodule-bearing sandstone at the base of the St. Joe Limestone Member 
(Mbs) of the Boone Formation is persistent throughout much of northern Arkansas (McKnight, 
1935) and was probably deposited in the Early Mississippian as a transgressive lag during sea-level 
rise (Horner and Craig, 1984). The contact of the main body of the Boone Formation with the St. 
Joe Limestone Member is gradational and is based on the change to the thin bedding and the 
generally chert-free lithology of the St. Joe Limestone Member. Near the top of the Boone 
Formation an oolite interval as thick as 3 ft is present. 

Locally, the Hindsville Limestone Member of the Batesville Sandstone contains angular chert 
fragments that were probably derived from the underlying Boone Formation and demonstrates a 
depositional hiatus between the Boone Formation and Batesville Sandstone (Mbv). Continued 
Chesterian transgression allowed accumulation of the black, organic-rich Fayetteville Shale (Mf) in 
a deep shelf setting followed by regression and deposition of the upward coarsening Pitkin 
Limestone (Mp) (Handford, 1986).

The onset of Morrowan deposition reflects a sea-level rise following a terminal Mississippian 
sea-level drop (Sutherland, 1988; Manger and Sutherland, 1992). Consequently, the base of the 
Morrowan Cane Hill Member (�hc) of the Hale Formation represents a significant unconformity 
within the map area. The thinning and local absence of the Pitkin Limestone beneath this unconfor-
mity in the northern part of the quadrangle is likely due to Late Mississippian-Early Pennsylvanian 
erosion. This conclusion is supported by the common presence of probable limestone clasts 
(probably of the Pitkin Limestone) within basal conglomerate lenses of the Cane Hill Member of 
the Hale Formation. A 20-ft-thick mixed interval of limey sandstone, crinoidal limestone, and black 
shale at top of the Pitkin Limestone is well exposed along Stepp Creek (35.878°N., 93.312°W.) in 
the southern part of quadrangle and is preserved below a basal Cane Hill Member conglomerate 
bed with large limestone clasts (fig. 3A). This sandy limestone interval may be correlative with 
latest Mississippian lower Imo Formation (Gordon, 1964), which has been mapped to the south and 
east of the map area (Smith and Hutto, 2007; Angela Chandler and Richard Hutto, Arkansas 
Geological Survey, personal commun., 2014). The basal sandstone channels of the Cane Hill 
Member grade laterally and upward into thin bedded, rippled, fine- to very fine grained sandstones 
and siltstones that were probably deposited in tidal flat environments (Manger and Sutherland, 
1992). The study area is within the distribution of thick sand-rich facies of the Prairie Grove 
Member (�hg) of the Hale Formation (Sutherland, 1988). 

Limestone of the Brentwood Limestone Member of the Bloyd Formation is not mapped 
separately and is included in the lower part (�bl) of the Bloyd. It is conformable with the underly-
ing Prairie Grove Member (�hg) such that the contact is commonly gradational. The presence of 
limestone conglomerates with clasts of sandstone and siltstone as well as fossil fragments indicates 
a high-energy marine environment during deposition of part of the lower part of the Bloyd 
Formation. Pennsylvanian sandstone and shale of the upper part of the Bloyd Formation (�bu) 
were originally called Winslow Formation by Purdue and Miser (1916), with the basal Greenland 
Sandstone Member of the Atoka Formation (Henbest, 1953) representing the prominent cliff-form-
ing cross-bedded sandstone. Zachry (1977), however, concluded that the cliff-forming sandstone 
was a time-equivalent unit with the Woolsey Member of the Bloyd Formation farther west and 
designated it with the informal term “middle Bloyd sandstone” that was deposited in a braided river 
environment. The middle Bloyd sandstone interval comprises the basal interval of the upper part of 
the Bloyd Formation map unit as used here. Upsection from the middle Bloyd sandstone interval, 
siltstone and shale intervals are mixed with fine to coarse sandstones with some containing quartz 
pebbles similar to the middle Bloyd interval and some extensively bioturbated indicating a marine 
transgression above the river deposits. The interval of calcite cemented sandstone or bioclastic 
limestone in the upper part of the section indicates a brief incursion of a shallow marine environ-
ment. 

The Atoka Formation (�a) is a sequence of alternating marine sandstone and shale that has 
generally been interpreted to represent fluvio-deltaic depositional environments in the southern 
Ozarks region (Zachry and Sutherland, 1984). The basal contact is well defined 38 miles (mi) to the 
west in Washington County where the Kessler Limestone Member at the top of the Bloyd Forma-
tion is unconformably overlain by shale of the Trace Creek Member of the Atoka Formation 
(Zachry and Sutherland, 1984). There, sandstone intervals of the Atoka Formation are principally 
fine- to very fine-grained and laterally extensive. The contact between the Bloyd and Atoka 
Formations in the Buffalo River area has been more difficult to define due to the absence of a 
distinctive underlying limestone. Within the Ponca 7.5-minute quadrangle, Hudson and Murray 
(2003) placed this contact above the level of a thin coal bed approximately 250 ft above the base of 
the middle Bloyd sandstone. In the Boxley 7.5-minute quadrangle, the Bloyd-Atoka contact was 
placed at a similar level above the middle Bloyd sandstone within a shale interval beneath an 
approximately 100-ft-thick interval of laterally extensive ripple laminated fine- to very fine-grained, 
thin to medium bedded sandstone that underlies a prominent topographic ledge (Hudson and 
Turner, 2007). We have continued with this convention in the Murray quadrangle, but also note the 
presence of a sandy limestone interval observed at two locations (35.888°N., 93.300°W. and 
35.911°N., 93.290°W.) in the southern part of the quadrangle that are 140–180 ft above the middle 
Bloyd sandstone. The Kessler Limestone Member in Washington County is an oolitic limestone 
bearing algal nodules (Henbest, 1953) whose lithology is different from the sandy bioclastic 
limestone interval that we observed in this quadrangle; thus we do not think they are correlative. 

STRUCTURAL GEOLOGY
Structure contours on the top of the Mississippian Boone Formation and the bottom of the 

prominent middle Bloyd sandstone of the upper part of the Pennsylvanian Bloyd Formation 
illustrate how faults and folds in two main structural zones deformed rocks within the map area. 
Structure contours conform to elevations at 99 and 138 control sites on the Boone Formation and 
Bloyd Formation reference contacts, respectively; other limiting information was used for their 
minimum elevations above hilltops or their maximum elevations below valley bottoms. Structure 
contours for the Boone Formation are not extended into the southeastern parts of the quadrangle 
where no control sites were available.

The dominant structural feature of the quadrangle is a N.32°E.-trending fault and fold zone 
that transects the quadrangle and drops strata to the southeast (fig. 4). The northeastern part of this 
structural zone is formed by the N.40°E.-trending Henson Creek fault and adjacent dipping strata. 
Along cross section B–B', throw of the Boone Formation-Batesville Sandstone contact across 
Henson Creek fault is about 100 ft with lowering of an additional 150 ft by folding that mostly 
affects the downthrown southeastern block of the fault. The Henson Creek fault is interpreted to 
continue northward to merge with the southern end of the N.55°E.-trending Carlton fault (Hudson 
and Turner, 2014a), although poor bedrock exposure in the Panther Creek drainage within the 
Jasper 7.5-minute quadrangle obscures this connection. To the south, the Henson Creek fault 
terminates into the Keys Gap monocline that continues southwestward, aligning with parts of the 
Little Buffalo River valley in the center of the quadrangle and continuing along Thomas Creek in 
the south. It is likely that faults like the Henson Creek fault lie at depth beneath the Keys Gap 
monocline (cross section A–A'). Structure contours demonstrate that both the top of the Boone 
Formation and the base of the middle Bloyd sandstone drop to the southeast across the Henson 
Creek fault and Keys Gap monocline but that the middle Bloyd sandstone drops less. Northwest-
ward thinning of the intervening Late Mississippian Fayetteville Shale and Pitkin Limestone as 
well as erosional truncation of the Pitkin Limestone beneath the basal Pennsylvanian unconformity 
(cross Sections A–A' and B–B') takes up most of the difference between flexure of the Mississippian 
and Pennsylvanian reference horizons. This change of unit thickness suggests that the Keys Gap 
monocline-Henson Creek fault structural zone was active as early as the Late Mississippian. In the 
Ponca quadrangle to the north, thickness variations of Upper Mississippian strata as well as overlap 
of the Kyles Landing fault by the Early Pennsylvanian Cane Hill Member of the Hale Formation 
were also recognized (Hudson and Murray, 2003) and were attributed to a latest Mississippian 
phase of tectonic activity (Hudson and Turner, 2014b).

A second N.40°E. trending structural zone that lies about 2 mi to the southeast of the Keys 
Gap monocline is composed of the en echelon Hoghead Creek and Taylor Mountain faults (fig. 4). 
Both Hoghead Creek and Taylor Mountain faults have maximum down-to-the-southeast throw near 
the center of their map lengths, with displacement dying out rapidly at the tips. Narrow 
northeast-trending synclines lie immediately southeast of both faults in their downthrown 
southeastern sides. 

Two additional gentle folds are recognized within the quadrangle. A shallow east-north-
east-trending syncline extends from Beckham Creek on the east to Arrington Creek on the western 
edge of the quadrangle and is expressed in structure contours on both Mississippian and Pennsylva-
nian reference horizons. A small north-northwest-trending domal anticline at the head of Dry Creek 
at the northwestern corner of the quadrangle is defined by a local rise of the top of the Boone 
Formation.

Structural data gathered from ninety faults observed within the quadrangle, most too small to 
portray on the map, show the extent of fault deformation as well as give insight into the causative 
stresses. Sites where faults were observed are coincident with the two northeast-trending structural 
zones, but extend beyond areas where map-scale faults are recognized (fig. 4). The greatest 
frequency of observed small faults cut the middle Bloyd sandstone (fig. 3B) along the structural 
zone containing the Hoghead Creek and Taylor Mountain faults, although the zone of small-scale 
faulting continues to the southwest of the Taylor Mountain fault onto the northern hillsides of Bean 
Mountain. A similar zone of small faults cuts the middle Bloyd sandstone at the southwestern end 
of the Keys Gap monocline; other faults observed along the Keys Gap monocline-Henson Creek 
fault zone mostly cut Boone Formation. 

Faults have a variety of attitudes and slip senses that mostly vary from normal to strike slip 
(figs. 4 and 5A). The most common faults are east-northeast-striking normal faults that dip 
moderately north or south. Northeast-striking faults with dextral sense and west-northwest-striking 
faults with sinistral sense are also present. Two reverse faults too small to map were observed 
southeast of the Hoghead Creek fault (fig. 4) and may accommodate localized shortening during 
formation of its adjacent syncline. Paleostress inversions for thirty-eight faults with known slip 
direction and sense, using the method of Angelier (1990), suggest that most faults formed in 
transtension with a least principal stress axis oriented south-southeast and shallowly inclined but 
with intermediate and maximum principal stress axes flipping between near-vertical and east-north-
east and shallow (fig. 5B). This north-south extension that affected strata at least as young as 
Morrowan (fig. 3B) is similar to widespread deformation documented elsewhere in the southern 
Ozark dome that has been attributed to flexure of the southern continental margin during progres-
sive loading of the Ouachita orogenic belt (Hudson, 2000). The recurrent activity of the structural 
zones in this quadrangle is evidenced by their influence on Late Mississippian stratal thicknesses 
and their subsequent focusing of post Morrowan north-south extension as well as the northeast 
trend of these zones.  This is common for basement structural weaknesses throughout the mid-con-
tinent area (Marshak and Paulsen, 1996), and suggests that these structural zones may overlie 
preexisting Precambrian basement structural weaknesses.

Joints are common in bedrock units throughout the quadrangle. Measured joints (1,221 total) 
are near vertical and distributed in several sets (fig. 5C). The dominant sets strike northeast and 
north. A less prominent joint set strikes northwest. Joint planes within carbonate formations, such 
as the Boone Formation, are commonly enlarged due to dissolution.

ECONOMIC GEOLOGY
Within the quadrangle, lead and zinc were mined from ores of galena and zinc carbonate 

intermittently in the early 1900s as the southern part of the Little Buffalo River district (McKnight, 
1935). Each of three mines (now abandoned) within the quadrangle lies along the Keys Gap 
monocline (fig. 4) and all extracted ore was from the upper part of the Boone Formation in zones of 
fracturing and small faults (McKnight, 1935), indicating that there was a structure control on 
mineralizing fluids. 

The organic-rich Fayetteville Shale (Mf) is a target for shale-oil hydraulic fracturing (fracking) 
farther south in Arkansas with over 6,000 oil and gas well drilled as of 2016 (Arkansas Geological 
Survey, 2016).

INTRODUCTION
This map summarizes the geology of the Murray 7.5-minute quadrangle (fig. 1) in the Ozark 

Plateaus region of northern Arkansas. The Ozark Plateaus region, also referred to as “the Ozarks,” 
is an uplifted region extending south of the Missouri River and extending into northern Arkansas 
and into eastern Oklahoma. Geologically, the map area is on the southern flank of the Ozark dome, 
an uplift that has the oldest rocks exposed at its center, in Missouri. Physiographically, the Murray 
quadrangle is within the Boston Mountains, a high plateau region underlain by Pennsylvanian 
sandstones and shales (Purdue and Miser, 1916). Valleys of the Buffalo River and Little Buffalo 
River and their tributaries expose an approximately 1,600-ft-thick (488-m-thick) sequence of 
Ordovician, Mississippian, and Pennsylvanian carbonate and clastic sedimentary rocks (fig. 2) that 
have been mildly deformed by a series of faults and folds. The Buffalo National River, a park 
which encompasses the Buffalo River and adjacent land that is administered by the National Park 
Service, is present at the northwestern edge of the quadrangle.

Mapping for this study was carried out by field inspection of numerous sites and was compiled 
as a 1:24,000-scale geographic information system (GIS) database. Locations and elevation of sites 
were determined with the aid of a global positioning satellite receiver and a hand-held barometric 
altimeter that was frequently recalibrated at points of known elevation. Hill-shade relief and slope 
maps derived from a U.S. Geological Survey (USGS) 10-meter (m) digital elevation model as well 
as orthophotographs (U.S. Geological Survey, 2003) were used to help trace ledge-forming units 
between field traverses within the Upper Mississippian and Pennsylvanian part of the stratigraphic 
sequence. Strike and dip of beds were typically measured along stream drainages or at well-exposed 
ledges. Structure contours, constructed on the top of the Mississippian Boone Formation (Mb) and 
the base of a prominent sandstone unit within the Bloyd Formation (�bu), were drawn based on the 
elevations of field sites on these contacts as well as other limiting information for their minimum 
elevations above hilltops or their maximum elevations below valley bottoms.

DESCRIPTION OF MAP UNITS
[Provincial series for Pennsylvanian and Mississippian units are from McFarland (1988). Due to the 
addition of a shaded relief base, colors on the List of Map Units and the Correlation of Map Units 
may not exactly match unit colors on the map.]

Younger terrace and active-channel alluvial deposits (Quaternary)— 
Unconsolidated sand and gravel of Buffalo River, Little Buffalo River, and 
tributaries. Terrace deposits are principally composed of light-brown fine sand; 
smooth upper surfaces are about 20 feet (ft) above the river. Gravel deposits of 
the active channel are composed of subangular to rounded Paleozoic rock clasts 
of mixed lithology along drainages and are interspersed with bedrock exposures 
too small to show at map scale. Low-lying parts of deposit are subject to periodic 
flooding. As thick as 20 ft

Older terrace and alluvial deposits (Quaternary)—Unconsolidated gravel and sand 
deposits adjacent to Little Buffalo River. Deposits are brown, weathered, 
subrounded to rounded Paleozoic sandstone and subangular chert cobbles in 
brown; silty to sandy matrix about 60 to 100 ft above river. Thickness about 10 ft 

Alluvial deposits (Quaternary)—Unconsolidated alluvial deposits of Henson Creek 
(northeast map area). Light-brown fine sand underlies smooth land surfaces that 
are 10 to 15 ft above level of creek. Deposits as thick as 15 ft 

Colluvial deposits (Quaternary)—Unconsolidated deposits of subrounded to angular 
blocks as large as 20 ft in diameter, commonly in an orange-brown silty clay 
matrix. Blocks are mostly derived from the basal sandstone of the upper part of 
the Bloyd Formation (�bu) and the Cane Hill Member (�hc) of the Hale 
Formation. Deposits have fan-like morphology and were mapped where 
sufficiently thick to mask typical ledge-flat topography of underlying bedrock. 
Smaller, thinner colluvial deposits elsewhere were not mapped. Thickness 
uncertain but probably more than 10 ft 

Landslide (Quaternary)—Slide blocks of limestone, sandstone, and shale derived 
from the Pennsylvanian Bloyd Formation (�bu and �bl) through the Prairie 
Grove and Cane Hill Members of the Hale Formation (�hf and �hc, 
respectively). Upper parts of slides are semi-coherent stratigraphic sequences 
back tilted into hillsides and down-dropped relative to bedrock. 

Atoka Formation (Middle Pennsylvanian, Atokan)—Alternating shale, siltstone, 
and sandstone intervals underlying upper hills of map area. Where exposed, shale 
throughout unit is fissile and dark gray to black. Siltstone is thin bedded with 
ripple cross lamination. Upper sandstone intervals as thick as 10 ft underlie 
highest hills and vary from tan, very fine to fine grained, ripple to planar bedded 
to white, medium to coarse grained, medium planar bedded to thick cross-bedded 
with sparse white quartz pebbles. Lower sandstone interval is about 100 ft thick 
and is homogeneous, tan, thin to medium bedded, fine to very fine grained, and 
forms prominent topographic ledges. Beds are typically ripple cross-laminated, 
and locally bioturbated. Base of unit placed in poorly exposed shale interval that 
forms topographic flat. Thickness is as much as 400 ft

Bloyd Formation (Lower Pennsylvanian, Morrowan)—Interbedded sequence of 
sandstone, siltstone, shale, and limestone beds separated into upper and lower 
parts. Thickness as much as 380 ft 

Upper part—Dominantly sandstone with interbedded siltstone and shale. Upper 
part of sequence contains dark-gray to black shale and siltstone beds that form 
topographic flats interbedded with sandstone beds that form ledges. Upper 
sandstone beds are commonly extensively bioturbated. Upper sandstone intervals 
are 5 to 20 ft thick and vary from orange-brown, fine to coarse grained with local 
quartz pebbles, and medium to thick planar bedded to cross-bedded, fine to very 
fine grained, ripple cross-laminated to planar bedded that is tan to olive and 
locally contain carbonaceous films. A calcite cemented sandstone or bioclastic 
crinoid-bearing limestone is observed at several locations about 140 to 180 ft 
above the basal contact. Base of unit is cross-bedded sandstone as thick as 80 ft 
that commonly forms prominent cliffs although it varies over short distances and 
it grades into less prominent sandstone ledges. Prominent cliff-forming sandstone 
is white to light-brown, fine- to medium-grained quartz arenite that has a sharp 
erosional base and is commonly a composite of several tabular and trough 
cross-bed sets. Sandstone contains local concentrations of white quartz pebbles 
and casts of wood fragments. Where basal interval forms a less prominent cliff, it 
is composed of thin- to medium-bedded sandstone interbedded with siltstone and 
shale. Purdue and Miser (1916) originally assigned rocks of the upper part of the 
Bloyd Formation to the Winslow Formation. Zachry (1977) concluded that the 
basal sandstone was a time-equivalent unit with the Woolsey Member of the 
Bloyd Formation farther west and designated it informally as the “middle Bloyd 
sandstone.”  The middle Bloyd sandstone interval comprises the basal interval of 
the upper part of the Bloyd Formation map unit as used here. Thickness is 
200–300 ft 

Lower part—Dominantly shale and siltstone with interbedded limestone and thin 
beds of sandstone. Shale and siltstone are dark gray and fissile to thin; ripple 
bedded. Sandstone is tan, very fine to fine grained, thin bedded with ripple 
marks. Limestone includes medium to thick beds of red-brown conglomerate, 
with clasts of fossil fragments and subrounded sandstone and siltstone. The 
Brentwood Limestone Member at the base of the formation is not mapped 
separately, and is included as being in the lower part of the Bloyd and is a 5- to 
20-ft-thick limestone interval varying from massive gray micrite to reddish-gray, 
coarse bioclastic limestone. Basal contact is conformable and gradational with 
the underlying Hale Formation. Forms moderate to steep slopes and is poorly 
exposed. Thickness varies from 40–180 ft

Hale Formation (Lower Pennsylvanian, Morrowan)—Interbedded sequence of 
sandstone, siltstone, shale, and thin limestone. Thickness 100–200 ft

Prairie Grove Member—Brown to reddish-brown, fine- to medium-grained, 
thick-bedded, calcite-cemented sandstone. Locally contains quartz pebbles at 
base. Beds are planar or cross-bedded, and cross-beds may have bi-directional 
dips. Commonly contains interbeds of reddish-brown coarse bioclastic limestone. 
Weathered sandstone forms rounded surfaces with elliptical cavities as long as 1 ft. 
Basal contact with underlying Cane Hill Member is unconformable. Sandstone 
forms steep slopes but may be covered by a colluvial mantle derived from 
overlying units. Thickness 20–60 ft

Cane Hill Member—Interbedded sequence of shale, siltstone, and sandstone. 
Upper part mostly composed of fissile to rippled, thin-bedded, dark-gray shale 
and siltstone but locally contains rippled, thin-bedded, very fine grained 
sandstone interval as thick as 5 ft. Upper part of unit is poorly exposed and forms 
gentle to moderately steep slopes. Lower part is a 10- to 20-ft-thick sandstone 
interval that generally changes downward from olive-brown, very fine grained to 
fine-grained, thin-bedded sandstone with ripple cross-stratification or parallel 
lamination to reddish-brown, medium- to thick-bedded, very fine grained to 
medium-grained sandstone with trough cross-beds. Lower sandstone locally 
contains basal conglomerate lenses as thick as 3 ft containing quartz pebbles and 
subangular to subrounded clasts of sandstone, siltstone, shale, and limestone. 
Sandstone beds throughout unit locally affected by soft-sediment slumps and 
folds. Unit unconformably overlies Pitkin Limestone and Fayetteville Shale. 
Thickness is 80–160 ft 

Pitkin Limestone (Upper Mississippian, Chesterian)—Medium- to dark-gray fetid 
limestone. As unit thickens to the south, upper part of unit is oolitic coarse 
crystalline dark-gray to brown limestone overlain by sandy limestone to calcite 
cemented sandstone horizon. Upper sandy interval, as thick as 20 ft, is restricted 
to southeasternmost areas. Limestone beds may contain abundant crinoids, 
brachiopods, corals, and bryozoan Archimedes. At base, varies from micrite to 
fine grained crystalline limestone with black fissile shale interbeds up to 5 ft 
thick as it grades downward into the Fayetteville Shale. Pitkin generally outcrops 
as a prominent ledge or cliff. Thickness in the northern half of the quadrangle is 
generally between 40 to 60 ft but is absent in the northeastern corner; unit 
thickens to the southeast to as much as 200 ft

Fayetteville Shale (Upper Mississippian, Chesterian)—Composed of black fissile 
shale that is poorly exposed in low slopes. Upper contact includes alternating 
beds of black shale and thin limestone beds as it grades upward into the Pitkin 
Limestone. Lower part of the Fayetteville outcrops along stream gullies where it 
consists of black shale that may contain medium- to light-gray, fetid septarian 
concretions as large as 2 ft in diameter. Basal contact with underlying Batesville 
Sandstone is conformable. Fayetteville Shale is susceptible to landslides. 
Thickness varies from 120 to 220 ft

Batesville Sandstone (Upper Mississippian, Chesterian)—Fine-grained to very fine 
grained, light- to medium-brown, calcite-cemented sandstone with interbedded 
limestone. Upper part of unit is a 3- to 5-ft-thick bed of dark-gray fetid limestone 
with common crinoid fragments and often with oolites. Sandstone of main body 
of unit present in thin to medium planar to hummocky beds that are parallel 
laminated. Sandstone may contain disseminated pyrite framboids that oxidize to 
reddish spots. Basal Hindsville Limestone Member is locally preserved and 
consists of angular white chert clasts in gray limestone matrix, 2- to 4-ft thick, 
indicating an erosional contact with the underlying Boone Formation. The top of 
the Batesville is a common topographic flat that may host sinkholes formed by 
collapse into dissolution cavities in the underlying Boone Formation. Thickness 
is 5−25 ft

Boone Formation (Upper to Lower Mississippian)—Limestone and cherty 
limestone of main body that grade into the basal St. Joe Limestone Member. The 
Boone Formation is a common host of caves and sinkholes. Total thickness is 
380−405 ft 

Main body (Upper to Lower Mississippian, Meramecian to Osagean)— 
Medium- to thick-bedded, chert-bearing bioclastic limestone. Limestone is light 
to medium gray on fresh surfaces and generally coarsely crystalline with 
interspersed crinoid ossicles. A 1- to 3-ft-thick bed of oolitic limestone is locally 
present in upper 10 ft of the Boone Formation. Dense, fine-grained beds of 
limestone are present in upper one-third of unit. Beds are typically parallel planar 
to wavy. Chert content varies vertically and laterally within the Boone and is 
locally greater than 50 percent. Chert is light to medium gray and forms lenticular 
to anastomosing lenses. Chert-rich horizons are generally poorly exposed but 
produce abundant float of white, weathered chert on hillslopes. Chert in 
uppermost part of unit contains common brachiopod molds. Thickness 310−375 ft 

St. Joe Limestone Member (Lower Mississippian, Osagean to Kinderhookian)— 
Thin-bedded, bioclastic, medium to coarse crystalline or marly limestone with 
ubiquitous 0.1- to 0.25-in-wide crinoid fragments. Limestone is commonly pink 
to red on fresh surfaces due to hematite in matrix, but color and hematite 
concentrations vary with location. Thin beds are typically wavy in form. Chert 
nodules are uncommon but, where present in upper part, are tabular and reddish. 
Contact with the overlying main body of the Boone Formation is gradational. 
Middle to lower part of the St. Joe Limestone Member may contain shaley 
limestone interval. Base of unit is a 0.5- to 1-ft-thick bed of tan sandstone 
containing phosphate pebbles that marks a regional erosional unconformity. 
Thickness approximately 30−50 ft

Fernvale Limestone (Upper Ordovician)—Medium- to thick-bedded, coarse-crystalline 
bioclastic limestone. Limestone is light pinkish gray to medium gray on fresh 
surfaces and contains abundant 0.1- to 0.4-in-wide cylindrical to barrel-shaped 
crinoid ossicles. Unit only exposed in northwestern map area. Thickness 10−30 ft 

Everton Formation (Middle Ordovician)—Interbedded limestone, dolostone, and 
sandstone. Jasper Member (Glick and Frezon, 1953) forms uppermost part of 
formation and is light-gray finely crystalline to micritic limestone and sandy 
limestone. Below Jasper Member, upper part of the Everton Formation contains 
3- to 20-ft-thick, light- to dark-gray dolostone beds that are interbedded with 
sandstone. Carbonate beds of unit are typically finely crystalline and sparsely 
fossiliferous, and commonly display crinkly laminations. Sandstone is quartz 
arenite with well-sorted, well-rounded, and fine to medium quartz grains. 
Sandstone is present in medium to thick planar beds and is light tan to white and 
cemented by dolomite and (or) calcite. As much as 60 ft of upper Everton 
Formation is exposed in Dry Creek in northwest part of quadrangle, but unit is 
about 300 ft thick to the northeast in the Ponca 7.5-minute quadrangle (Hudson 
and Murray, 2003) 

Lower Ordovician rocks, undivided—Sedimentary rocks shown on cross sections 
only
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MAP EXPLANATION

Contact—Solid line. In cross sections only, short dash where location inferred

Normal, right-lateral, strike-slip fault—Ball and bar on downthrown block, arrows 
show relative motion. In cross sections only, short dash where location inferred

Anticline

Syncline

Monocline—Arrow shows direction of dip

Structure contour line of equal elevation—Top of the Mississippian Boone 
Formation (Mb). Hachures point to closed areas of lower values. Contour 
interval 50 ft

Structure contour line of equal elevation—Base of “middle Bloyd sandstone” of the 
upper part of the Pennsylvanian Bloyd Formation (�bu). Hachures point to 
closed areas of lower values. Contour interval 50 ft

Control point—Showing elevation (in feet) of the top of the Boone Formation (Mb)

Control point— Showing elevation (in feet) of the base of “middle Bloyd sandstone” 
of the upper part of the Pennsylvanian Bloyd Formation (�bu)

Buffalo National River boundary

Shoreline of Little Buffalo River

Strike and dip of bedding

Inclined bedding—Showing strike and dip

Horizontal bedding

Fault movement—In cross sections only. Fault movement away from viewer, minus; 
towards viewer, plus

Location of photographs for fig. 3A and B 
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