Abstract

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Introduction

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Uranium Concentrations in Groundwater

Table 1: Uranium concentrations in groundwater, northeastern Washington

<table>
<thead>
<tr>
<th>Location</th>
<th>Well Depth</th>
<th>Uranium Concentration (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spokane</td>
<td>49.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Spokane</td>
<td>36.4</td>
<td>5.2</td>
</tr>
<tr>
<td>Spokane</td>
<td>70.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Spokane</td>
<td>85.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Spokane</td>
<td>117°118°119°</td>
<td>6.7</td>
</tr>
<tr>
<td>Spokane</td>
<td>117°118°119°</td>
<td>4.9</td>
</tr>
<tr>
<td>Spokane</td>
<td>117°118°119°</td>
<td>3.4</td>
</tr>
<tr>
<td>Spokane</td>
<td>117°118°119°</td>
<td>2.1</td>
</tr>
<tr>
<td>Spokane</td>
<td>117°118°119°</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Uranium Concentration in Groundwater

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Uranium Concentrations in Groundwater

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Uranium Concentrations in Groundwater

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Uranium Concentrations in Groundwater

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.

Uranium Concentrations in Groundwater

Uranium concentrations in groundwater in northeastern Washington are primarily controlled by geologic material that supplies groundwater to the well. The lithologic description of the material that the wells were tested in is important to understanding the occurrence and distribution of uranium in groundwater. Uranium concentration was most influenced by the basaltic rocks, because percent rock type determines overall mineralogic composition and content. Uranium concentration can be higher in granitic rocks due to the variety of minerals present. Uranium concentration can be lower in sandstone and gravel due to the lack of mineral types that can sorb uranium.