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EXPLANATION FOR MAPS A, B, AND C
Location of radiometric anomaly discussed in text

Outline of carbonatite body and associated alkaline instusive suite

Carbonatite or alkaline intrusive dike

Faults—Solid where location is accurate; dashed where location is inferred; 
dotted where location is concealed

Fault, unspecified or unknown sense of slip

Thrust fault—Sawteeth on upper plate

Normal fault—Hachures on upper plate

Boundary of Mojave National Preserve (MNP)

INTRODUCTION
Geophysical investigations of Mountain Pass, California, were conducted as part of 

an effort to study regional crustal structures as an aid to understanding the geologic 
framework and mineral resources of the eastern Mojave Desert. The study area encom-
passes Mountain Pass, which is host to one of the world’s largest rare earth element 
(REE) carbonatite deposits. The deposit is found along a north-northwest-trending, 
fault-bounded Paleoproterozoic block that extends along the eastern parts of the Clark 
Mountain Range, Mescal Range, and Ivanpah Mountains (fig. 1). This Paleoproterozoic 
block is composed of a 1.7-Ga metamorphic complex of gneiss and schist that underwent 
widespread metamorphism and associated plutonism during the Ivanpah orogeny, at 
about 1.7 Ga (Wooden and Miller, 1990). The Paleoproterozoic rocks were intruded by a 
Mesoproterozoic (1.4 Ga) carbonatite body and associated ultrapotassic alkaline intrusive 
suite (Olsen and others, 1954; DeWitt and others, 1987; Premo and others, 2016). The 
intrusive rocks include, from oldest to youngest, shonkinite, mesosyenite, syenite, quartz 
syenite, potassic granite, carbonatite, carbonatite dikes, and late shonkinite dikes (Olson 
and others, 1954).

METHODS
A high-resolution radiometric survey of Mountain Pass was flown by CGG Canada 

Services Ltd. (CGG). This helicopter survey, which was flown at flightline spacings of 
100 and 200 m, a flightline azimuthal direction of 70°, a nominal flightline elevation 
above ground of 70 m, and an average sampling distance of about 30 m, consists of about 
1,814 line-kilometers (fig. 2). Tie lines, which were spaced at 1-km intervals, were flown 
in a flightline azimuthal direction of 160°. Closely spaced lines flown at low elevation are 
needed to resolve small-scale features and improve signal-to-noise ratio.

Data were collected using a Radiation Solutions RS-500 spectrometer and processed 
by CGG, using standard radiometric-surveying techniques (see, for example, Interna-
tional Atomic Energy Agency, 2003) that include corrections for both aircraft and cosmic 
background radiation, radon background, Compton scattering effects, and variations in 
altitude. Aeroradiometric surveys measure the intensity and energy spectrum of 
gamma-ray radiation from the three most common naturally occurring radioelements: 
potassium (40K), thorium (232Th), and uranium (238U). For 232Th and 238U, the source of the 
gamma-rays comes from their thallium (208Tl) and bismuth (214Bi) decay products, 
respectively, and, thus, concentrations for Th and U are referred to as “equivalent 
concentration,” assuming radioactive equilibrium. The concentrations of these radioele-
ments can be used together to estimate changes in geochemistry and lithology. 

Data, which were gridded at a 20-m interval, are expressed as percent K (Map A), 
parts per million (ppm) equivalent Th (eTh) (Map B), and ppm equivalent U (eU) (Map 
C). Although gamma rays are of high energy and frequency, they attenuate rapidly in 
rocks and soil, partly owing to Compton scattering, and they can only be detected from 
about the upper 50 centimeters (cm) of the Earth’s surface and mostly from the upper 30 
cm (International Atomic Energy Agency, 2003, p. 114).

DISCUSSION
Carbonatite deposits typically have distinctive geophysical signatures because they 

are relatively dense, magnetic, and radiogenic. Specifically, the carbonatite and alkaline 
intrusive suite at Mountain Pass is ultrapotassic and contains relatively significant 
amounts of K, Th, and U, which can be delineated using airborne radiometric surveys. 
Values for K concentration range from −0.12 to 3.59 percent, with a mean of 1.22 

percent; for eTh, from −0.74 to 180.20 ppm, with a mean of 8.16 ppm; and for eU, from 
−0.22 to 17.03 ppm, with a mean of 2.03 ppm. Negative concentrations were obtained 
over water or some alluvial deposits. Verplanck and others (2014) provided a deposit 
model for carbonatite- and alkaline-intrusion-related REE mineralization, and they 
described some of the geophysical tools used to assess these deposits. These radiogenic 
features are briefly discussed below (from northwest to southeast), and their locations are 
labeled on the maps and figure 1 (for example, locs. 1a, 3b):

• Very low concentrations of K, eTh, and eU correlate with Paleozoic dolomite, 
limestone, and other sedimentary rocks that are thrust against Proterozoic basement 
terrane along the western margin of the study area (locs. 1a, 1b, 1c) 

• Moderate concentrations of K and low concentrations of eTh and eU delineate 
Mesozoic volcanic rocks in the Mescal Range (loc. 2)

• Moderate concentrations of K, eTh, and eU correlate with a small felsic body in the 
Clark Mountain Range (loc. 3a) and a Jurassic granite in the Ivanpah Mountains 
(loc. 3b)

• High concentrations of K, eTh, and eU correlate with the Birthday shonkinite (loc. 
4a), the Sulphide Queen carbonatite body (loc. 4b), and the remainder of the 
alkaline intrusive suite composed of shonkinite, syenite, and granite (locs. 4c 
through 4h). High concentrations of K in the alkaline intrusive suite are due 
primarily to biotite mica, phlogopite, and potassium feldspars. High concentrations 
of eTh and eU are present because Th and U have the same valance and similar 
atomic radii as REEs and can substitute in various REE-related minerals 

• Concentrations of K are variable across the Paleoproterozoic gneissic terrane along 
the central and eastern parts of the study area. Numerous linear, northwest-trending, 
moderate concentrations of K, eTh, and eU throughout the gneissic terrane (locs. 5a 
through 5i) reflect various changes in basement lithology or geochemistry, structure, 
or faults

• Prominent and mostly northeast-trending, moderate concentrations of K, eTh, and 
eU along the western margin of Ivanpah Valley (locs. 6a through 6f) reflect alluvial 
and eolian deposits derived from the Proterozoic basement terrane

• Moderate concentrations of K, eTh, and eU along Piute Valley (loc. 6g) are probably 
derived from alluvial and eolian deposits from a combination of Paleozoic 
metavolcanic and Proterozoic basement rocks

• Some high concentrations of K, eTh, and eU are associated with anthropogenic features 
such as tailings, dumps, and disturbed areas west of the carbonatite (locs. 7a, 7b, 7c) 
and an isolated eTh and eU anomaly southeast of the carbonatite body (loc. 7d).
The diverse physical properties of rocks that underlie the study area are well suited 

to geophysical investigations. Contrasts in radiogenic signatures between 
Paleoproterozoic crystalline basement, rocks of the Mesoproterozoic carbonatite body 
and the associated alkaline intrusive suite, Paleozoic carbonate rocks, Mesozoic 
granitoids, Tertiary volcanic rocks, and unconsolidated alluvium, for example, produce a 
distinctive pattern of radiometric anomalies that can aid in understanding the geologic 
framework and mineral resource potential of the eastern Mojave Desert.
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Figure 1. Map showing simplified geology of study area (modified from Olson and others, 1954; Miller and 
others, 2007). Black outline, area of radiometric survey; green line, boundary of Mojave National Preserve 
(MNP). Base map from U.S. Geological Survey 1:100,000-scale quadrangles: Ivanpah, 1985; Mesquite Lake, 
1985; contour interval, 50 m; thin, red horizontal and vertical lines are township and range boundaries.

Figure 2. Index map showing location of flightlines (blue lines) within area of radiometric survey (thick black 
outline). Green line, boundary of Mojave National Preserve (MNP). Base map from U.S. Geological Survey 
1:100,000-scale quadrangles: Ivanpah, 1985; Mesquite Lake, 1985; contour interval, 50 m; thin, red horizontal 
and vertical lines are township and range boundaries. 
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Any use of trade, product, or firm names in this publication is for descriptive 
purposes only and does not imply endorsement by the U.S. Government

This map or plate is offered as an on-line only, digital publication. Users should 
be aware that, because of differences in rendering processes and pixel 
resolution, some slight distortion of scale may occur when viewing it on a 
computer screen or when printing it on an electronic plotter, even when it is 
viewed or printed at its intended publication scale.
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