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Seismicity of the Earth 1900-2018
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Seismic Hazard Near Populated Areas

Many areas of the planet with high seismic hazard are also heavily populated. The map to the right illustrates the relationship between population and
earthquake hazard in Asia and the western Pacific by extruding exaggerated population density (grayscale three-dimensional tetrahedra) and overlaying
the Global Earthquake Model (GEM) Global Mosaic of Hazard Models (Pagani and others, 2018). The view point is from elevation above the central

Pacific Ocean, looking west. The higher the three-dimensional (3D) extrusion, the larger the local population density. Hazard is depicted as the level of
peak ground acceleration (PGA) with a 10 percent probability of being exceeded in 50 years, equivalent to a return period of 475 years. Warm colors
represent high seismic hazard, shades of green represent moderate hazard, while blue-to-transparent colors represent low hazard. In the background
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4',0 e Te@  Hawai where no color is visible, there is a very low level of hazard. Here, black and white represents population only; white for less dense, and black for
Mauritania ~P40,F QO%United States) greater denSIty
Northern ‘e © For example, in the foreground along coastal Japan, the large orange spike represents densely populated Tokyo, where earthquake shaking also
Philippine Mariana OUNTAINS URE occurs regularly and seismic hazard is high. West of Japan, the high population density of China is visible as a spikey landscape. Much of central
Sea Islands (U.S.) FRAcT % 0

and eastern China has low-to-moderate levels of seismic hazard (blue colors), while some densely populated cities in northern and western China
are located in regions of moderate-to-high hazard (green-to-yellow colors). The large yellow spike in the center-left of the figure represents
Manila, where seismic hazard is also moderate-to- high. In the background, the high hazard Himalaya region can be seen (orange-to-red swath),
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as can the moderate-to-high hazards in the Mediterranean region of Europe and Africa.
Burkina Fasp
Guinea { Benin )
5 Nigeria
Sierra A 0gq . .
“Leone core Ghants South America North America
< ote d'lvoire =y
“Liberiad .} i I Central African Republic / > X ) ) A )
“ N -y N\ s O - / . < ) \ 8 2. 3 ’ © o ° Federated States TO“
Slerra \\ ) o < - / 3 ' @) \ : o o o ’ . : pER .
Leone W g \Laneofy ~ Cameroon - "1-G / ' alaySia| > © orlieronesia Marshall cuP Africa
o & : / ‘ Y f 0 ) Islands
fasin A { Lo _ / b T Europe
: NTarkana , < A “SUMATRA ‘
~ ) / . ,‘ y ) 4 S
Guineea Sao Tome and @ Equaforia (’}g ‘g%y B ’,' /// S ‘ UﬁAyAI;\\ ), ) a 2, Kiribati |
Basin Principe .ri-. > ' o & Uganda ! Kenya S/ \PCTY o o
0 X Republic O C@ / 2 - \ 0 0
© w) . of the - ’i’ ’%ake f‘x‘ N 9 \ Borneo ‘ Galapagos Islands §>§o
\\t; congo - PN Victons ndonesia} o ”) (Indonesia) o ; (Equador) ~ ) ]
% € o 3 - ﬁﬁ WAL . (o] Gilbert
X Vs o & A ST i f} Somall \ g Islands
\ Democratic Republic T o LG | Basin v
of the Congo i «% ¢ Kg ©
ol A Lake O'ﬁ. ‘ ) ’m ¢
\®!| Tanganyika ‘o J h |
Marquesas Islands Brazil ' .
. (French boynesiay o Philippines
v
AMERICA
Ly Comoros p
« 9 P - B ;
90 &J \ . @ rok Samoa Q 3/
A \ ® L American . 1
o i o ONGA . 5 Aloren B } Japan
? /gf‘ \\ ‘ 6‘2(<:|u.s.)
r‘_\\\/
o Yﬁ;«% \‘
°© " { (! | Tahit
SO (Frepch Polynesia) ) MARIANAS TREN
T \ N ) . EXPLANATION
\ ) o p Maritius T © O Coral Sea o B '© Seismic Hazard
' J 1 Reunion J o oo AN B . RN Peak ground acceleration (PGA) (g)
A T JL A T I C Namibia Botswana % s F © ( (France) A o \{ New C?\[I:rge\ma Y g g
o \ A/ S 10 percent in 50 year
Paraguay @ Probability of exceedance
<0.02
- o GE ; = <0.03
AN © e ¢ © RID <0.
. ‘ ! Madagascar © ) 0 g o o SALAY GOMEZ <005
» Basin \ Isla Pascua  © B <0.08 [
(Ea;ter Island) Basemap Source: ESRI, Garmin, GEBCO, NOAA NGDC, and others. <0.13
(Chile) ) <02
= Lago dos/*2 30°S g
o Patos ,/:// o Rlo @Grande _0.55
Kermadec § : / Rise <0.
SOUTH PACIYFIC Y = <08
o <15

o/

Generalized Population

fe@y

5
Fees:
S SCweacgy

6 o) o 8 9:, C Less
@o ) 6’“‘ o5 "q‘:},” — // o - (extruded)
(743 \‘\ - | > / ) More
Veqq ~3 R / z, CHILE jp [ SOUTH ATLANTIC
r J Tasman Sea © &R0
o o 8 % . Vo ‘j> X I
» moe | _ O CE AN
N asmani
O\ My o o %ﬁl.g %
S - /¢ <

4 Chatham Is.
(N.Z))

c ©

Plates, Plate Boundaries, and Moment Release

This map scales earthquakes according to their seismic moment (M,,), the basis for the moment magnitude scale used in modern seismology. The larger the circle, the greater the moment magnitude.
The seismic moment of an earthquake is equal to the product of the area of a fault that ruptured during the earthquake, the amount the fault slipped, and the rigidity of the rock. The largest earthquakes (M 9+)
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rupture areas of faults hundreds of kilometers (km) long, more than 100 km wide, and slip for tens of meters (m) over a period of minutes. The 2004 M 9.1 Sumatra earthquake ruptured a fault about 1,300 km
EXPLANATION . Antipode Is. long, with about 30 m of peak slip, and lasted almost 10 minutes. The 2011 M 9.1 Japan earthquake ruptured a fault about 400 km long, with upwards of 75 m of slip, over 2-3 minutes. On the other hand, a typical
S /f dand | (N.Z) UK Ao M 5.5 earthquake ruptures a fault about 5x5 km in size, with an average slip of tens of centimeters (cm), lasting only a second or two.
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Earthquake depth Re'*’“_“ P'?“_’ motion Heard 1<land o o . 4 il 1A RIDGE © SOUTH Thus, earthquake size is measured over an extremely broad range of scales that can be difficult to articulate, and equally difficult to envision. Measured by its seismic moment, an M 9 earthquake is 1,000 times bigger
velocity, millimeters per year s card e o Q ¢ SOUTH GEOEG/_ T, o than a M 7 earthquake, and 1,000,000 times bigger (1,000%1,000) than an M 5 event. We attempt to illustrate these differences here by sizing the earthquake symbols of the largest earthquakes according to their seismic
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. (mm/yr) @ C’ E A N t‘\,'“‘ . ﬁ@ 0 Q . X =, i @/ TRENCH moment (and thus moment magnitude). Earthquakes of magnitudes less than or equal to (less than or equal to [<]) 8.1 appear as points; only the largest events have resolvable size in this display. This is consistent with the fact
O© =w 1 <190 S, “"“'6?“.} 2 o ¥ J O. "~ e /O that the largest M 9+ earthquakes—so called “mega-quakes”—account for the vast majority of seismic moment released on the planet. The 1960 M 9.5 Great Chilean earthquake accounts for close to 25 percent of all earthquake
© =0 ' @, TR - moment released over the 20th and early 21st centuries.
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Earthquake magnitude i 19.1-39.0 (4 "*igz'_‘, © Earthquakes are overlain on plate boundaries and plate names from the MORVEL plate motion model (DeMets and others, 2010), and subduction zone depth contours from the Slab2 database (Hayes and others, 2018).
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INTRODUCTION
This map illustrates 119 years of global seismicity in the context of global plate tectonics and the Earth’s physiography. ANV VPP TP P v
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