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Many areas of the planet with high seismic hazard are also heavily populated. The map to the right illustrates the relationship between population and 
earthquake hazard in Asia and the western Pacific by extruding exaggerated population density (grayscale three-dimensional tetrahedra) and overlaying 
the Global Earthquake Model (GEM) Global Mosaic of Hazard Models (Pagani and others, 2018). The view point is from elevation above the central 
Pacific Ocean, looking west. The higher the three-dimensional (3D) extrusion, the larger the local population density. Hazard is depicted as the level of 
peak ground acceleration (PGA) with a 10 percent probability of being exceeded in 50 years, equivalent to a return period of 475 years. Warm colors 
represent high seismic hazard, shades of green represent moderate hazard, while blue-to-transparent colors represent low hazard. In the background 
where no color is visible, there is a very low level of hazard. Here, black and white represents population only; white for less dense, and black for 
greater density.

For example, in the foreground along coastal Japan, the large orange spike represents densely populated Tokyo, where earthquake shaking also 
occurs regularly and seismic hazard is high. West of Japan, the high population density of China is visible as a spikey landscape. Much of central 
and eastern China has low-to-moderate levels of seismic hazard (blue colors), while some densely populated cities in northern and western China 
are located in regions of moderate-to-high hazard (green-to-yellow colors). The large yellow spike in the center-left of the figure represents 
Manila, where seismic hazard is also moderate-to- high. In the background, the high hazard Himalaya region can be seen (orange-to-red swath), 
as can the moderate-to-high hazards in the Mediterranean region of Europe and Africa.

Seismologists refer to the direction of slip in an earthquake and the orientation of the fault on which it occurs as the focal mechanism. 
They use information from seismograms to calculate the focal mechanism and typically display it on maps as a “beach ball” symbol, as 
shown in part A. This symbol is the projection on a horizontal plane of the lower half of an imaginary, spherical shell (focal sphere) 
surrounding the earthquake source. A line is scribed where the fault plane intersects the shell. The stress field orientation at the time of 
rupture governs the direction of slip on the fault plane; the beach ball depicts this stress orientation through shading. The black quadrants 
contain the tension axis (T), which reflects the minimum stress direction, and the white quadrants contain the pressure axis (P), which 
reflects the maximum stress direction.

For mechanisms calculated from the first-motion direction of seismograms, there is an ambiguity in identifying the fault plane on 
which slip occurred from the orthogonal, mathematically equivalent, auxiliary plane. In part B, we illustrate this ambiguity with four 
examples. The block diagrams adjacent to each focal mechanism illustrate the two possible types of fault motion that the focal mechanism 
could represent. Note that the view angle is 30° to the left of and above each diagram. The ambiguity may be resolved by comparing the 
two fault plane orientations to the alignment of small earthquakes and aftershocks shown in map and cross-section views. The first three 
examples describe fault motion that is purely horizontal (strike-slip) or vertical (normal or reverse). The oblique- reverse mechanism 
illustrates that slip may also have components of horizontal and vertical motion.

This map scales earthquakes according to their seismic moment (Mw), the basis for the moment magnitude scale used in modern seismology. The larger the circle, the greater the moment magnitude. 
The seismic moment of an earthquake is equal to the product of the area of a fault that ruptured during the earthquake, the amount the fault slipped, and the rigidity of the rock. The largest earthquakes (M 9+) 

rupture areas of faults hundreds of kilometers (km) long, more than 100 km wide, and slip for tens of meters (m) over a period of minutes. The 2004 M 9.1 Sumatra earthquake ruptured a fault about 1,300 km 
long, with about 30 m of peak slip, and lasted almost 10 minutes. The 2011 M 9.1 Japan earthquake ruptured a fault about 400 km long, with upwards of 75 m of slip, over 2–3 minutes. On the other hand, a typical 

M 5.5 earthquake ruptures a fault about 5×5 km in size, with an average slip of tens of centimeters (cm), lasting only a second or two.
Thus, earthquake size is measured over an extremely broad range of scales that can be difficult to articulate, and equally difficult to envision. Measured by its seismic moment, an M 9 earthquake is 1,000 times bigger 

than a M 7 earthquake, and 1,000,000 times bigger (1,000×1,000) than an M 5 event. We attempt to illustrate these differences here by sizing the earthquake symbols of the largest earthquakes according to their seismic 
moment (and thus moment magnitude). Earthquakes of magnitudes less than or equal to (less than or equal to [≤]) 8.1 appear as points; only the largest events have resolvable size in this display. This is consistent with the fact 

that the largest M 9+ earthquakes—so called “mega-quakes”—account for the vast majority of seismic moment released on the planet. The 1960 M 9.5 Great Chilean earthquake accounts for close to 25 percent of all earthquake 
moment released over the 20th and early 21st centuries.

  Earthquakes are overlain on plate boundaries and plate names from the MORVEL plate motion model (DeMets and others, 2010), and subduction zone depth contours from the Slab2 database (Hayes and others, 2018).

INTRODUCTION
This map illustrates 119 years of global seismicity in the context of global plate tectonics and the Earth’s physiography. 

Primarily designed for use by earth scientists, engineers and educators, this map provides a comprehensive overview of strong 
(moment magnitude [M] 5.5 and larger) earthquakes since 1900. The map clearly identifies the locations of the “great” 
earthquakes (M 8.0 and larger) and the aftershock or rupture area (in green fill), if known, of the M 8.3 or larger earthquakes. 
The circular earthquake symbols are scaled to be proportional to the moment magnitude and therefore to the area of faulting, 
thus providing a better understanding of the relative sizes and distribution of earthquakes in the magnitude range 5.5 to 9.5. 
Plotting the known rupture or aftershock areas (which are closely related) of the largest earthquakes also provides a better 
appreciation of the faulting extent of some of the most famous and damaging instrumentally recorded earthquakes in modern 
history.

GLOBAL SEISMICITY AND
EARTHQUAKE LOCATION PROCEDURES

The seismicity shown in this map comes from the U.S. Geological Survey’s (USGS) Advanced National Seismic System 
(ANSS) Combined Catalog (ComCat), which in turn is derived from numerous sources that contain information on 
earthquake locations, magnitudes, felt areas, and damage reports. These reports and investigations span the development of 
modern seismological practices and the advent of plate tectonics; as a result, there was no uniform standard for the reporting 
of magnitudes, locations, and other seismological observations. The primary data source for pre-1973 earthquake locations 
and magnitudes is the ISC-GEM Global Instrumental Earthquake Catalogue (Dziewonski and others, 1981; Ekström and 
others, 2012; Storchak and others, 2013, Storchak and others, 2015; and Di Giacomo and others, 2018), which predominantly 
covers seismicity from 1904 to 2015, and also contains large (M 7.0 or greater) earthquakes from 1900 to 1904. The 
ISC-GEM catalog represents a specialized effort to create a uniform, standardized catalog of earthquakes that substantially 
improves upon other existing bulletins, specifically for the purposes of hazard modeling and seismotectonic mapping and 
analyses such as that presented here. Earthquake locations and seismic phase data from 1973 to present are derived from the 
bulletin of the USGS National Earthquake Information Center (NEIC). Here, we have combined the seismic observations 
from these sources to produce a global seismicity map that is complete for M ~6.5 or larger for much of the period from 1900 
to 1963 and M ~5.5 or larger from 1964 to the present. Search mechanisms for seismological data contained in ComCAT can 
be found at https://earthquake.usgs.gov/earthquakes/search/.

RUPTURE/AFTERSHOCK ZONES
Rupture or aftershock zones and focal mechanisms are shown for 31 earthquakes with moments of 3.0×1,028 dyne-cm 

or larger (M 8.3 or larger). Table 1 identifies these earthquakes by the location, magnitude, and reference for each of the 
rupture/aftershock zones shown on the map. Rupture zones are specifically derived from finite fault modeling approaches 
(for example, Hayes, 2017). In the cases of earthquakes for which we do not have models of the rupture zones derived from 
finite-fault modeling of seismographic data, we plot the geographic regions spanned by dense distributions of earthquake 
aftershocks, since aftershocks tend to occur within or on the margins of rupture zones. Most of the tabulated pre-1964 
earthquakes are associated with aftershock zones rather than rupture zones. These aftershock zones provide a less precise 
representation of fault rupture than is typical for the rupture zones inferred from finite-fault modeling of later earthquakes, 
both because there may not be a one-to-one correlation between aftershock locations and the interiors or margins of the 
main-shock fault ruptures and because of the poorer quality and sparser distribution of instrumentation over the pre-1964 
time period. Rupture zones for all earthquakes after 1990 are determined from modeling the slip distribution of each 
earthquake following the approach of Ji and others (2002), and as described in Hayes (2017). Between 1964 and 1990, most 
M8.3 or greater events have rupture zones derived from finite fault modeling in independent studies (see table 1).

NEOTECTONIC PLATES,
INTRAPLATE FAULTS, AND VOLCANOES

The plate boundaries shown on the map were modified from the plate boundary model (PB2002) developed by Bird (2003). 
We excluded a number of boundaries that Bird (2003) identified as diffuse or poorly defined. We also do not show boundaries of 
many small “microplates.” Finally, we used different geometries for a few boundaries when revisions to Bird’s (2003) model 
seemed justified by more recent studies. There are several examples on the map where “great” earthquakes (M 8.0 or larger) do 
not occur near or at the plotted plate boundary. For these cases, we also show the fault along which the earthquake occurred; 
examples of these are the Bolnay and Tseterleg faults in central Mongolia. Some other major continental faults that have produced 
large earthquakes are also labeled, such as the Anatolian fault in Turkey and the Denali fault in Alaska.
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Table 1. Great Earthquakes (Mw ≥8.3) 1900–2018

1 1905/07/23 Bolnay, Mongolia 3.97 8.3 Schlupp and Cisternas (2007) 90/87/4 Schlupp and Cisternas (2007) Schlupp and Cisternas (2007)

2 1906/01/31 Colombia-Ecuador 20.4 8.8 Kanamori (1977) 30/20/120 Swenson and Beck (1999), Kanamori and Given (1981) Kanamori and McNally (1982)

3 1906/08/17 Rat Islands, Alaska, United States 3.80 8.3 Okal (2005) 196/80/-56 Okal (2005) Area of the circle determined from moment magnitude

4 1918/08/15 Mindanao, Philippines 3.00 8.3 Okal and others (2011) 327/22/69 Okal and others (2011) Okal and others (2011)

5 1920/12/16 Central China 3.00 8.3 Chen and Molnar (1977) 70/45/45 Chen and Molnar (1977) Chen and Molnar (1977)

6 1922/11/11 Atacama, Chile 6.90 8.5 Kanamori (1977) 0/20/90 Beck and others (1998) Kelleher (1972)

7 1923/02/03 Kamchatka, Russia 5.50 8.4 Okal (1992) 214/30/110 Kanamori (1976) Johnson and Satake (1999)

8 1933/03/02 Sanriku-oki, Japan 4.30 8.4 Okal (1992) 180/45/-90 Kanamori (1971) Kawakatsu and Seno (1983)

9 1938/02/01 Banda Sea, Indonesia 8.37 8.6 Okal and Reymond (2003) 276/63/70 Okal and Reymond (2003) Area of the circle determined from moment magnitude

10 1946/04/01 Unimak Island, Alaska, United States 8.50 8.6 López and Okal (2006) 250/6/90 López and Okal (2006) Area is determined from aftershock distribution

11 1946/12/20 Coastal Honshu, Japan 4.00 8.3 Kato and Ando (1997) 245/17/119 Kato and Ando (1997) Kato and Ando (1997)

12 1950/08/15 Assam, India 10.0 8.6 Kanamori (1977) 260/12/90 Chen and Molnar (1977) Kumar and others (2006)

13 1952/11/04 Kamchatka, Russia 35.0 9.0 Kanamori (1977) 214/30/110 Kanamori (1976) Johnson and Satake (1999)

14 1957/03/09 Central Aleutians, Alaska, United States 8.80 8.6 Johnson and others (1994) 257/11/116 Johnson and Satake (1993) Wyss and Wiemer (1999)

15 1958/11/06 Kuril Islands, Russia 4.00 8.3 Kanamori (1977) 225/30/90 Fukao and Furumoto (1979) Area is determined from aftershock distribution

16 1960/05/22 Great Chilean earthquake 200.0 9.5 Kanamori (1977) 10/10/80 Kanamori and Cipar (1974) Moreno and others (2009)

17 1963/10/13 Kuril Islands, Russia 6.70 8.5 Kanamori (1977) 223/22/90 Kanamori (1970a) Beck and Ruff (1987)

18 1964/03/28 Prince William Sound, Alaska, United States 82.0 9.2 Kanamori (1977) 246/20/90 Kanamori (1970b) Suito and Freymueller (2009)

19 1965/02/04 Rat Islands, Alaska, United States 12.5 8.7 Kanamori (1977) 290/10/139 Wu and Kanamori (1973) Beck and Christensen (1991)

20 1977/08/19 Sumbawa, Indonesia 3.59 8.3 Global CMT1 260/24/-73 Global CMT1 Spence (1986)

21 1994/10/04 Shikotan, Kuril Islands, Russia 3.43 8.3 PDE, Duputel and others (2012) 158/34/21 PDE, Duputel and others (2012) Hayes (2017)

22 2001/06/23 Arequipa, Peru 4.95 8.4 PDE, Duputel and others (2012) 315/16/70 PDE, Duputel and others (2012) Hayes (2017)

23 2004/12/26 Sumatra-Andaman Islands 66.8 9.2 Park and others (2005) 329/8/110 PDE, Duputel and others (2012) Ammon and others (2005)

24 2005/03/28 Nias Island, Indonesia 8.88 8.6 PDE/NEIC Mww 329/11/107 PDE/NEIC Mww Hayes (2017)

25 2006/11/15 Kuril Islands, Russia 3.37 8.3 PDE, Duputel and others (2012) 208/16/83 PDE, Duputel and others (2012) Hayes (2017)

26 2007/09/12 Sumatra, Indonesia 5.30 8.4 PDE, Duputel and others (2012) 323/11/103 PDE, Duputel and others (2012) Hayes (2017)

27 2010/02/27 Maule, Chile 22.6 8.8 PDE, Duputel and others (2012) 17/14/108 PDE, Duputel and others (2012) Hayes (2017)

28 2011/03/11 Great Tohoku earthquake, Japan 55.9 9.1 PDE, Duputel and others (2012) 193/9/78 PDE, Duputel and others (2012) Hayes (2017)

29 2012/04/11 Coastal Northern Sumatra 8.92 8.6 PDE/NEIC Mww 199/80/5 PDE/NEIC Mww Meng and others (2012)

30 2013/05/24 Sea of Okhotsk, Russia 3.84 8.3 PDE/NEIC Mww 184/10/-98 PDE/NEIC Mww Ye and others (2013)

31 2015/09/16 Illapel, Chile 3.19 8.3 PDE/NEIC Mww 353/19/83 PDE/NEIC Mww Hayes (2017)

Event Date Name Moment
1×1021 (N m) Mw Moment reference Mechanism

(S/D/R) Mechanism reference Rupture area reference

[Date given in year/month/day format; Moment (Newton-meters [N m]); Mw, moment magnitude; Mechanism S/D/R, strike/dip/rake of one plane of the focal mechanism solution; Global CMT, The global centroid-moment-tensor project, (https://www.globalcmt.org/); PDE, Preliminary determination of epicenters;  
NEIC, U.S. Geological Survey National Earthquake Information Center (https://www.usgs.gov/centers/geohazards/about/national-earthquake-information-center-neic); Mww, moment W-phase magnitude]

1Dziewonski and others, 1981; Ekström and others, 2012; Storchak and others, 2013, Storchak and others, 2015; and Di Giacomo and others, 2018.
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20141103 accessed August 2015 at https://www.gebco.net/. More information about this data can be found at
https://www.gebco.net/data_and_products/gridded_bathymetry_data/documents/gebco_2014.pdf
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EXPLANATION
Seismic Hazard

Peak ground acceleration (PGA) (g)

10 percent in 50 year
Probability of exceedance

0.02
0.03
0.05
0.08
0.13
0.2
0.35
0.55
0.9
1.51

Generalized Population

More

Less
(extruded)
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