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Figure 3. Structural domain map of the Springfield 7.5- x 15-minute quadrangle with summary stereonet and rose diagrams showing the 
structural orientation results of measured outcrop-scale brittle features across the map area. Structural domain boundaries are divided by the 
Ammonoosuc fault zone (divides the west and central domains) and the Grantham fault (divides the central and east domains). At top of map, 
three pairs of stereonets and rose diagrams show the orientation results for joints from the west, central, and east domains. At right of map, 
stereonets show the orientation results for S3 cleavage and kink bands (S4 cleavage) for all domains. At left of map, stereonets and rose diagrams 
show the orientation results for brittle faults, quartz veins (KDq), and Cretaceous mafic dikes (Kd) for all domains. Note that the brittle faults are 
not plotted on the maps (sheets 1 and 2). The strike and dip symbols for joints are not shown on the geologic map (sheet 1). Also, the limited 
number of joint measurements in the west domain reflects limited fracture data collection in the previous study by Walsh and others (1996a, b) 
and does not indicate that the rocks are less jointed in the west domain. Pairs of diagrams include a stereonet (left) and a rose diagram (right). For 
all stereonets, contoured poles to the associated brittle features are shown. For all rose diagrams, a normalized subset of the data is shown in the 
corresponding stereonet for dips >59°, and principal peaks are shown with 1 standard deviation error (for example, 278°±13° for the joints in the 
west domain). The number of structural measurements in each dataset is indicated by “n” at the bottom of each diagram. Stereonets and rose 
diagrams were plotted using the Structural Data Integrated System Analyser (DAISY 3, version 5.08-9) software by Salvini and others (1999) and 
Salvini (2016). Consult the geographic information systems (GIS) database for the complete dataset.
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Figure 4. Diagram showing the D1 sheath-fold model and stereonet and rose diagram results for the structural orientation of stretched-pebble lineations in the Springfield 7.5- x 15-minute 
quadrangle. A, Stereonet shows contoured poles to stretched-pebble lineations in the Springfield 7.5- x 15-minute quadrangle with the principal-peak trend measured at 307° and the plunge 
measured at 54°; most of the data comes from the area around Skitchewaug Mountain. The girdle in the contoured lineations is due to subsequent D2 through D4 deformation. B, Rose diagram 
showing the same principal peak as in A with the trend measured at 306°±11°; the number of structural measurements (n=51) in the dataset is indicated at the bottom of each diagram. C, 
Schematic block diagram illustrating the D1 sheath-fold model (modified from Alsop and Holdsworth, 1999; p. 1,345; https://doi.org/10.1016/S0191-8141(99)00099-1. The block diagram 
shows culminating F1 anticlines and F1 synclines in a sheath-fold geometry. A hypothetical detachment surface (Monroe thrust fault, blue plane) illustrates an interpretation shown on cross 
section B–B'. The observations are consistent with a sheath-fold model for D1 structures in the upper plate of the Monroe thrust fault in the map area. In combination with the unconformity at 
the base of the Littleton Formation (Elbert and others, 1988), the model is one explanation for the apparent lack of stratigraphic symmetry between culminating F1 anticlines at Skitchewaug 
Mountain and Barber Mountain due to the extreme attenuation between opposing folds. An alternative hypothesis that is difficult to test due to the lack of exposure, involves significant 
displacement along the Skitchewaug Mountain fault, which may project into the line of cross-section B–B'. Evidence for high-strain during D1 deformation comes from mylonitic fabric along 
the Monroe thrust fault, isoclinal and locally rootless F1 folds, rare observations of sheath-fold geometry (especially in limestone or marble), and region-wide elongation of stretched quartz 
pebbles and cobbles (especially in the Clough Quartzite) (Billings, 1937; Thompson and others, 1968; Rumble 1969; Kohn and others, 1992). The trend of stretched-pebble lineations is 
regionally northwest-southeast, which is considered the D1 (or nappe-stage) transport direction (Rumble, 1969), and the trend is locally modified by D2 deformation (Kohn and others, 1992). 
The stereonet (A ) and rose diagram (B) were plotted using the Structural Data Integrated System Analyser (DAISY 3, version 5.08-9) software by Salvini and others (1999) and Salvini (2016). 
Arrows on the detachment surface (Monroe thrust fault) indicate direction of movement. Permission to use the block diagram (C ) was obtained from Elsevier at https://www.sciencedirect.com/ 
science/journal/01918141. Abbreviations: A, away from observer; T, toward observer.
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Figure 2. Tectonic map showing the major structural features of the Springfield 7.5- x 15-minute quadrangle. The map is characterized by fault-block domains that truncate and deform stratigraphy, Acadian F1 folds, and metamorphic isograds. Retrograde lower-greenschist high-strain 
zones occur in the Connecticut River Valley along the Sumner Falls shear zone, the Woodbury Road fault, the Skitchewaug Mountain fault, and the Northey Hill shear zone. The Sumners Falls shear zone is a splay of the Westminster West fault zone (Armstrong, 1997; McWilliams and 
others, 2013). These zones show evidence for both ductile and locally brittle deformation during the protracted Acadian and Alleghanian orogenic events. Major Mesozoic brittle faults include the Ammonoosuc and Grantham faults. Note that the Sumner Falls shear zone is informally 
called the “chicken yard line” or “western New Hampshire boundary thrust” by Spear and others (2008). KDq, Cretaceous to Devonian quartz veins.
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Its maximum thickness that is projected above the surface line is shown for illustrative purposes only.
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Table 1. Summary of reported U-Pb zircon ages from rocks in the Springfield 7.5- x 15-minute quadrangle.
[Abbreviations: LA-ICP-MS, laser ablation inductively coupled plasma mass spectrometry; Ma, mega-annum (million years before present); MDA, 
maximum depositional age for detrital zircons; SHRIMP, sensitive high-resolution ion microprobe; TIMS, thermal ionization mass spectrometry; U-Pb, 
uranium-lead]

Sample number Map unit and rock type Age (Ma) Method References

CS–3025
VT/Sp1–85
SP–2485
CS–3009
SP450

399±3
423±4
MDA 452
446±6
483±3

SHRIMP
TIMS
LA-ICP-MS
SHRIMP
SHRIMP

Merschat and others (2015)
Aleinikoff and Karabinos (1990); Hueber and others (1990)
Walsh and others (2017)
Valley and others (2020)
Aleinikoff and others (2011)

Bethlehem Granodiorite (Dgb)
Waits River Formation, felsic volcanic member (DSwvf)
Partridge Formation, gray granofels member (Opg)
Unity pluton (Ogdu)
Cram Hill Formation, felsic volcanic rock (Ochv)

Figure 1. Simplified tectonic map and index to 7.5-minute quadrangles (gray text). Modified from Lyons and others 
(1997), Ratcliffe and others (2011), and Walsh (2016). The area of this report is outlined in red. The Albee 
Formation is not exposed in the map area. Abbreviations: AFZ, Ammonoosuc fault zone; BMSZ, Bald Mountain 
shear zone (McAleer and others, 2017); SMF, Skitchewaug Mountain fault. 
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DISCUSSION
The bedrock geology of the 7.5- by 15-minute Springfield quadrangle consists 

of highly deformed and metamorphosed Mesoproterozoic through Devonian 
metasedimentary and meta-igneous rocks that are intruded by dikes of the 
Mesozoic White Mountain Igneous Suite. In the west, Mesoproterozoic gneisses of 
the Mount Holly Complex are the oldest rocks and form the eastern side of the 
Chester dome (Ratcliffe and others, 2011). The Moretown slice structurally overlies 
the Chester dome along the Keyes Mountain thrust fault (Ratcliffe, 2000a, b; 
Ratcliffe and others, 2011); the fault represents the ancient Ordovician suture (Red 
Indian line) between crustal blocks with Laurentian versus Ganderian affinity 
(Macdonald and others, 2014; Valley and others, 2015; Valley and others, 2020). 
The allochthonous Cambrian through Ordovician Moretown slice includes the 
Moretown and Cram Hill Formations and the North River Igneous Suite. Silurian 
and Devonian metasedimentary and metavolcanic rocks of the Connecticut Valley 
trough (CVT) unconformably overlie the Moretown slice. The easternmost extent 
of the CVT in New Hampshire is exposed in a belt of rocks south of the Claremont 
Airport, which is contiguous with the Meriden antiform in the North Hartland 
quadrangle to the north (Walsh, 2016) (fig. 1). Ordovician to Silurian and Devonian 
metasedimentary and metaigneous rocks of the New Hampshire sequence (NHS) 
(Billings, 1937, 1956; White and Jahns, 1950; Ratcliffe and others, 2011; Rankin 
and others, 2013) structurally overlie the CVT along the Monroe thrust fault. The 
oldest part of the New Hampshire sequence was built on Ganderian crust (Rankin 
and others, 2013) and consists of Ordovician metamorphosed volcanic, plutonic, 
and sedimentary rocks of the Bronson Hill arc including the Ammonoosuc 
Volcanics, the Partridge Formation, and the Oliverian Plutonic Suite. The 
Ammonoosuc Volcanics are the base of the exposed section in the map area. The 
Bronson Hill arc rocks may be partly correlative with rocks of the Shelburne Falls 
arc found in the Moretown slice (Valley and others, 2015). The Bronson Hill arc 
rocks are exposed in fault-bounded structural belts, including the Monroe thrust 
sheet, the Claremont belt, the Sugar River and Unity domes, and the footwall of the 
Brennan Hill thrust fault. Collectively, these belts form the regional Orfordville 
anticlinorium and the western part of the broader Bronson Hill anticlinorium in 
western New Hampshire (fig. 1). Silurian to Devonian metasedimentary rocks of 
the Clough Quartzite, and Fitch and Littleton Formations unconformably overlie 
the Bronson Hill arc rocks. These rocks are crosscut by Devonian granitic and 
pegmatitic dikes and sills of the New Hampshire Plutonic Suite including the 
399±3 Ma (mega-annum) Bethlehem Granodiorite (Merschat and others, 2015). At 
least six post-tectonic Cretaceous mafic dikes occur in the map area. The dikes are 
more numerous in the adjacent Mount Ascutney quadrangle where they show a 
similar preferred northeast trend (fig. 3 of this report; Walsh and others, 2020). 
Table 1 summarizes the results of uranium-lead (U-Pb) zircon geochronology from 
samples collected in the map area.

STRUCTURAL GEOLOGY
The oldest structure in the Springfield quadrangle is a relict gneissosity in the 

Mesoproterozoic Mount Holly Complex in the Chester dome. At or near the contact 
with the cover rocks, the Mesoproterozoic gneissosity is parallel to a penetrative 
foliation that is a second-generation foliation in the pre-Silurian cover rocks. This 
second generation foliation is axial planar to abundant isoclinal and reclined folds 
of both the gneissosity in the Mount Holly Complex and the schistosity in the 
younger pre-Silurian rocks. This fabric is interpreted to be a relict Taconic foliation; 
perhaps related to movement along the Keyes Mountain thrust fault. A younger, and 
almost certainly, Acadian foliation is also found sub-parallel to this older Taconic 
foliation in the pre-Silurian rocks.

In contrast to the rocks in the Moretown slice, there is no clear evidence in the 
remainder of the map area for an Ordovician deformational fabric in the exposed 
pre-Silurian rocks in the Bronson Hill arc. Documented Ordovician deformation is 
scarce in the Ammonoosuc Volcanics in New Hampshire (Rankin and others, 
2013). This observation, coupled with regional evidence for widespread Ordovician 
deformation in the Albee Formation beneath the Ammonoosuc Volcanics (Rankin 
and others, 2013), implies that the Ammonoosuc Volcanics may post-date regional 
deformation that is related to the Penobscottian or Taconic orogenic episodes 
(Boone and others, 1989; Rankin and others, 2013).

The oldest foliation in the Silurian and Devonian rocks of the CVT and NHS 
is a layer-parallel Acadian schistosity (S1) that contains rarely observed Acadian 
isoclinal folds (F1). These folds are the nappe-stage folds of Thompson and others 
(1968). The overturned, and subsequently truncated, fold-nappe on Skitchewaug 
Mountain is the type locality (Thompson, 1954; Thompson and others, 2012) for 
the fold-nappe theory of Thompson and others (1968). This theory was later 
modified to include thrust faults (Robinson and others, 1991), and the major 
structures which floor the early Acadian folds are shown on this map as the Monroe 
fault (Ratcliffe and others, 2011; Walsh, 2016) and the Brennan Hill thrust 
(Robinson and others, 1991). Transport along these early faults was generally 
southeast to northwest (fig. 4) as indicated by the orientation of abundant lineations 
that include highly stretched pebbles and sub-parallel fold axes. The sub-parallel 
mineral lineations and fold axes indicate very high strain, and this combined with 
map patterns suggests the Acadian F1 “nappe-stage” folds likely developed as 
sheath folds at this time (fig. 4). Significant tectonic mélange is present along the 
base of the Monroe fault in the area around Chestnut Hill. Only in the hinge regions 
of these early F1 folds, or in areas where bedding is massive (such as on the 
exposed upright limb at Skitchewaug Mountain) is it possible to see bedding that is 
not parallel to a foliation. Both the CVT and NHS rocks contain this 
first-generation (Acadian S1) schistosity. The S1 foliation developed prior to peak 
metamorphism that reached as high as staurolite and sillimanite grade (this study; 
Spear and others, 2008; McAleer and others, 2017).

The second-generation planar fabric (S2 foliation) in all the Silurian and 
Devonian rocks varies from a non-penetrative cleavage to a penetrative schistosity. 
F2 folds associated with the second generation planar fabric S2 foliation vary from 
open to isoclinal with generally consistent gentle plunges to both the north and 
south, but locally the plunges are quite steep, especially in shear zones. Acadian S1 
and S2 are the most dominant, or visibly conspicuous, planar fabrics east of the 
Moretown slice. Locally, these two planar fabrics are parallel and it is difficult to 
discern one from the other. In such places where only a single penetrative 
schistosity is observed, and no crosscutting relative age relationships can be 
discerned, a dominant foliation symbol is used on the map (Sn).

The Acadian S1 schistosity and younger S2 foliation are deformed by a 
minimum of two younger cleavages (S3 and S4). The next youngest generation of 
planar features include broad to open folds (F3) with both gentle and steep fold 
hinges and associated millimeter- to centimeter (cm)-spaced crenulation cleavage 
(S3). The F3 and S3 structures have many different orientations, although they most 
commonly strike northeast and dip either vertically or steeply northwest, and 
locally exhibit sinistral sense of rotation (fig. 3). They are, in part, related to the last 
stages of doming, and the older S1 schistosity and S2 foliation are deformed by 
them. It is not certain whether these younger "dome-related" F3 and S3 structures 
are entirely coeval across the map; the S1 schistosity is interpreted as Acadian, the 
S2 foliation is interpreted as Acadian to Alleghanian, and the S3 cleavage is 
interpreted as Neo-Acadian, Alleghanian, or younger. Late-stage F3 folds locally 
show a left-lateral sense of rotation and are probably related to late dome-stage 
Alleghanian deformation or motion along lower-greenschist-facies regional faults 
at around 300 Ma (McWilliams and others, 2013) or between 310 and 280 Ma 
(McAleer and others, 2017). The S3 cleavage and associated F3 axial surfaces show 
a preferred northeast strike and moderate northwest dip (fig. 3). The S3 cleavage 
locally exhibits fracture-parting and is thus included in the brittle fabric analysis 
(fig. 3).

The youngest cleavage (S4) in the area is a 1-cm- to 30-cm-spaced crenulation 
cleavage that locally occurs as parallel sets of kink bands or low-amplitude, 
long-wavelength folds with variable fold hinge orientations. Secondary minerals, 

mainly quartz, calcite, and dolomite, occur as vein-filling material in the cleavage 
planes. This youngest generation of cleavage shows variable orientations, but 
includes two dominant trends that strike north-northeast and west-northwest and 
dip sub-vertically, which is sub-parallel to the regional joint trends and brittle faults 
(fig. 3). The kinks bands and cleavage locally exhibit fracture-parting and are thus 
included in the brittle fabric analysis (fig. 3). The S4 cleavage and the outcrop-scale 
and map-scale brittle faults in the area, the latter of which generally strike 
north-south and dip sub-vertically (fig. 3), are related to Mesozoic extension 
(Hatch, 1988). In the Hartland and North Hartland quadrangles to the north, the 
kink bands are spatially associated with the Ammonoosuc fault (Walsh, 2016), but 
sufficient data were not observed in this map area to demonstrate spatial correlation 
between kink bands and brittle faults. The youngest deformation is characterized by 
Mesozoic brittle faulting, kink bands, motion along the Ammonoosuc and 
Grantham faults and smaller unnamed faults, and subsequent jointing. Locally, fault 
surfaces with slickensides suggest brittle reactivation of the dominant foliation 
surfaces as well as reactivation of many ductile faults including the Keyes 
Mountain and Skitchewaug Mountain faults, and faults of the Sumner Falls shear 
zone and Northey Hill shear zone.

METAMORPHISM AND TECTONIC HISTORY
Rocks of the Mount Holly Complex in the core of the Chester dome may have 

reached hornblende-granulite-facies metamorphic conditions during the 
Mesoproterozoic Grenville Orogen (Rivers, 2012), but direct evidence of Grenville 
granulite-facies metamorphism is lacking (Ratcliffe, 2000a, b). The basement rocks 
subsequently experienced staurolite-kyanite-zone (lower-amphibolite-facies) 
metamorphism during the Ordovician Taconic and Devonian Acadian metamorphic 
events. Paleozoic metamorphism reached amphibolite-facies conditions in the 
Mount Holly Complex, the Moretown slice, the eastern part of the NHS, and the 
western part of the CVT, but never exceeded greenschist-facies conditions in parts 
of the central CVT and NHS during the Acadian orogeny. No relict-Taconic 
metamorphic mineral assemblages are recognized in the pre-Silurian rocks, perhaps 
due to the thoroughness of recrystallization associated with the Acadian 
metamorphic overprint.

The Monroe thrust fault carried the NHS rocks over the CVT during an 
early-Acadian F1 nappe-stage event that pre-dated lower-amphibolite-facies peak 
metamorphism. The onset of doming occurred during F2 folding and deformed the 
Monroe thrust sheet, folded earlier isograds, and created the Meriden antiform and 
related dome structures (fig. 1). Doming continued, suggested by the deformation 
of D2 structures by D3 structures. Lower-greenschist-facies (Alleghanian) faults and 
shear zones such as the Northey Hill, Westminster West (fig. 1), Sumner Falls, and 
Skitchewaug Mountain fault, truncated F1 folds and faults as well as peak- 
metamorphic isograds, and are defined by zones of pervasive retrogression. These 
faults experienced a protracted history and played a major role in creating the 
metamorphic discontinuity that is documented across the Connecticut River Valley, 
indicated by amphibole and muscovite 40Ar/39Ar ages of ~380 and ~330 Ma in 
Vermont, and ~330 and ~270 Ma in New Hampshire (Harrison and others, 1989; 
McWilliams and others, 2013; McAleer and others, 2014, 2015, 2017; Walsh and 
others, 2017). Additionally, in the vicinity of the Bald Mountain shear zone in the 
adjacent Mt. Ascutney quadrangle (McAleer and others 2017; Walsh and others, 
2020), 40Ar/39Ar data from muscovite record a mixture of cooling ages of ~300 Ma 
and crystallization ages of ~245 Ma. The younger ages are recorded by muscovite 
that defines the shear-zone fabric and pseudomorphically replaces staurolite. These 
younger ages (~300 and ~245 Ma) extend the period of ductile deformation and 
down-to-the-east normal extension that occurred in the area and lasted into the 
Triassic (McAleer and others, 2014, 2015, 2017). Taken together, the relative- and 
absolute-age constraints suggest that peak metamorphic conditions developed 
during the Acadian orogeny and that retrograde greenschist-facies metamorphism 
occurred during the Alleghanian orogeny. Spear and others (2008) document 
monazite ages that range from ~430 to 290 Ma. This wide range of ages suggests 
monazite growth or recrystallization occurred during both the Acadian and 
Alleghanian orogenies. The recognition that peak metamorphic assemblages are 
truncated along major faults associated with lower-greenschist-facies fabrics led 
Spear and others (2008) to propose a major Alleghanian fault along their “western 
New Hampshire boundary thrust” or the informally named “chicken yard line” 
(Trzcienski and others, 1992); the fault is now mapped as the Westminster West 
fault zone (fig. 1) (Armstrong, 1997; Armstrong and others, 1997; Ratcliffe and 
others, 2011; McWilliams and others, 2013). This fault zone is now recognized as 
continuous with the Sumner Falls shear zone (this study; Walsh, 2016; Walsh and 
others, 2020). Other mapped faults including the Woodbury Road and Skitchewaug 
Mountain faults, as well as those located in the Bald Mountain shear zone (fig. 1) 
and Northey Hill shear zone, share a similar history (this study; McAleer and 
others, 2017). Apatite fission track data indicate that the brittle Ammonoosuc fault 
was active prior to about 100 Ma and experienced little to no reactivation in the 
Cretaceous, but other regionally significant older, ductile shear zones (such as the 
Northey Hill shear zone) experienced Late Cretaceous (~80 Ma) brittle reactivation 
(Roden-Tice and others, 2009). Additional apatite fission-track data suggest some 
Cretaceous activity on regional brittle faults (for example, the Grantham fault) may 
have extended into the Paleocene (Schnalzer and others, 2015). The sense of 
displacement along faults shown on sheets 1 and 2 is provided where known, but 
given the protracted history described above, the faults may be reactivated with 
varying senses of motion. Recent 1:24,000-scale geologic mapping and supporting 
research in the Connecticut Valley from Lebanon, New Hampshire, to Bellows 
Falls, Vermont, provides new evidence for the tectonic evolution of the valley and 
demonstrates that it is the locus of complex faulting throughout its Phanerozoic 
history (Walsh and others, 2017).

This research builds upon a preliminary map covering the Vermont part of the 
area by Walsh and others (1996a, b). Previous mapping in the area included several 
sketch maps, simplified regional maps, and field-trip guidebook maps (Richardson, 
1931; Ratté, 1952; Thompson, 1954; Rosenfeld, 1968; Thompson and others, 1968; 
Boxwell and Laird, 1987; Thompson and others, 1990; Trzcienski and others, 1992; 
Thompson and others, 1993; Armstrong and others, 1997; Thompson and others, 
2012). Prior to this study, no detailed published maps existed for the New 
Hampshire part of the area; the geology was mapped only at statewide scale 
(Billings, 1956; Lyons and others, 1997).
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