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Machine-Learning Predictions of Redox Conditions in 
Groundwater in the Mississippi River Valley Alluvial and 
Claiborne Aquifers, South-Central United States

By Katherine J. Knierim, James A. Kingsbury, and Connor J. Haugh

Abstract
Machine-learning models developed by the U.S. 

Geological Survey were used to predict iron concentrations 
and the probability of dissolved oxygen (DO) concentrations 
exceeding a threshold of 1 milligram per liter (mg/L) in 
groundwater in aquifers of the Mississippi embayment 
physiographic region. DO and iron concentrations are driven 
by and reflect the oxidation-reduction (redox) conditions in 
groundwater. Predictions from boosted regression trees, a type 
of machine-learning model, of iron concentration and DO 
threshold probability were used to categorize redox zones in 
the Mississippi River Valley alluvial aquifer (MRVA), middle 
Claiborne aquifer (MCAQ), and lower Claiborne aquifer 
(LCAQ). Model predictions indicated that DO concentrations 
greater than 1 mg/L are uncommon across the MRVA. DO 
events (where the predicted probability was greater than 0.5) 
tended to occur on the margins of the MRVA and in upland 
areas where MCAQ and LCAQ units crop out at the surface 
or are at shallow depth. Predicted iron concentrations were 
higher in the MRVA than in the MCAQ and LCAQ. Uncer-
tainty in predicted iron concentrations tended to be high in 
areas where measured concentrations were also high, result-
ing in small areas (encompassing less than 1.5 percent of the 
areal extent of the MRVA) of predicted iron concentrations 
that exceeded 100,000 micrograms per liter. Despite the large 
magnitude of overpredicted iron concentrations, the general 
proportion and spatial distribution of predicted iron concen-
trations reflected observed concentrations in groundwater 
wells. Where the probability of exceeding a DO concentration 
of 1 mg/L was 0.8 or more and the iron concentration was 
less than 1,000 micrograms per liter, aquifers were catego-
rized as oxic. Oxic conditions were mostly in the uplands 
where MCAQ and LCAQ units crop out at the margins of 
the modeled area. The MRVA was mostly anoxic, which was 
controlled by DO threshold probabilities less than 0.1. The 
predictions and redox zones support conceptual models of 
redox conditions in the Mississippi embayment. The MRVA 
is predominantly anoxic with high iron concentrations. In 
the Claiborne aquifers (including the MCAQ and LCAQ), 

groundwater flows along regional flow paths toward the axis 
of the Mississippi embayment (the approximate location of the 
Mississippi River), the residence time in the aquifer increases, 
DO is consumed, and iron concentrations generally increase. 
Elevated concentrations of trace elements, such as manganese 
and arsenic, are often associated with reducing conditions 
in anoxic and mixed anoxic zones, but other factors such as 
sediment mineralogy affect the occurrence and distribution of 
these constituents.

Introduction
Aquifers in the Mississippi embayment physiographic 

region of the south-central United States are vital sources of 
water used for a variety of purposes, primarily for drinking 
water and irrigation (Maupin and Barber, 2005). As use of 
these aquifers has increased over time, questions related to 
long-term availability of water have gained importance (Clark 
and others, 2011), and one aspect affecting the availability 
of water for designated use is water quality. Overall ground-
water quality in aquifers of the Mississippi embayment is 
good, with few contaminants above drinking water standards 
or health-based concentration benchmarks (Kingsbury and 
others, 2015). However, high concentrations of some trace 
elements (including iron and manganese) require treatment for 
use as drinking water and contribute to fouling of equipment 
used to pump and distribute groundwater for irrigation.

The concentration of trace elements in groundwater 
is largely driven by oxidation-reduction (redox) processes. 
Redox processes are a group of biotically driven reactions in 
which energy is derived from the exchange of electrons. In 
groundwater, this commonly occurs through decomposition 
of organic matter (carbon) by microbes, which consume dis-
solved oxygen (DO) (McMahon and Chapelle, 2008). Under 
low DO (anoxic) conditions, iron, manganese, and other 
associated trace elements such as arsenic can dissolve from 
coatings on aquifer sediments and be released into groundwa-
ter. Therefore, an ability to accurately predict redox conditions 
is important to better understand the potential distribution 
of trace elements in drinking-water aquifers. To address this 
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need, the U.S. Geological Survey developed machine-learning 
(ML) models to predict iron concentration and the probability 
of exceeding a DO threshold of 1 milligram per liter (mg/L) in 
groundwater of the Mississippi embayment. The ML predic-
tions were used to categorize groundwater into redox zones. 
This report documents the development of ML models to 
categorize redox conditions in groundwater in aquifers of 
the Mississippi embayment, including the Mississippi River 
Valley alluvial and Claiborne aquifers.

Hydrogeologic Setting
The Mississippi embayment includes two principal 

regional aquifer systems: the surficial Mississippi River Valley 
alluvial aquifer (MRVA) and the Mississippi embayment 
aquifer system, which includes deeper Tertiary-age sediments 
(fig. 1). Based on the distribution of groundwater used for 
drinking water, the modeling focused on the MRVA and two 
Claiborne aquifers, the middle Claiborne aquifer (MCAQ) 
and lower Claiborne aquifer (LCAQ). These hydrogeologic 
units are composed of unconsolidated clastic sediments of 
gravel, sand, silt, and clay deposited throughout the Ceno-
zoic (Tertiary and Quaternary) (Clark and Hart, 2009). The 
MRVA includes Pleistocene and Holocene gravel, sands, silts, 
and clays with a generally upward fining sequence (Hart and 
others, 2008) and textural zones that correspond to geomor-
phic provinces of fluvial deposits of the Mississippi River 
(Saucier, 1994). The thickness and extent of the MCAQ and 
LCAQ vary by location across the northern and southern 
regions of the Mississippi embayment.

In the south, the stratigraphy of the LCAQ predominantly 
consists of sand deposits with interbedded silt and clay, and 
is primarily composed of the Carrizo Sand in Arkansas and 
Louisiana, the Meridian Sand in Mississippi, and Merid-
ian Sand Member of the Tallahata Formation in Alabama 
(Hart and others, 2008). The LCAQ unit is separated from 
the MCAQ—which consists mostly of the Sparta Sand—by 
the lower Claiborne confining unit. North of approximately 
the 35th parallel (near the Tennessee-Mississippi State line), 
this confining unit undergoes a facies change such that the 
MCAQ and LCAQ become a single unit, referred to as the 
Memphis Sand; the LCAQ does not extend north of the 35th 
parallel (figs. 1 and 2; Hosman and Weiss, 1991). For this 
modeling effort, the base of the MCAQ in the northern part of 
the study area is referred to as “LCAQ-equivalent,” because 
MODFLOW groundwater-flow model layers (that is, model 
layers 9 and 10) extend across the entire study area. Table 1 
shows the relationship between hydrogeologic units from the 
MODFLOW model (Clark and Hart, 2009) and the layers used 
to map ML predictions from this modeling effort.

Differences in groundwater quality between the MRVA 
and Claiborne aquifers largely reflect differences in the 
sediments that compose the aquifers and the organic carbon 
content of those sediments. The MRVA has mostly low DO 

concentrations (fig 3A on sheet 1) and elevated concentrations 
of trace elements (Borrok and others, 2018). In contrast, DO 
concentration varies across the Claiborne aquifers (fig 3B on 
sheet 1) and iron concentrations are generally low (fig. 4B on 
sheet 2; Kingsbury and others, 2015; Kresse and others, 2014). 
The formations that contain the Claiborne aquifers consist pri-
marily of quartz sand and minor amounts of disseminated lig-
nite (Parks and Carmichael, 1990). In contrast, the sediments 
that compose the MRVA are heterogeneous (Sharif and others, 
2008) and contain considerably more organic material. As a 
result, groundwater in the MRVA generally has higher specific 
conductance (total dissolved solids), lower DO concentrations, 
and more reducing conditions than groundwater in the MCAQ 
and LCAQ (Kingsbury and others, 2015).

Methods
Various ML methods have been used to predict 

water-quality constituents and successfully map the predictions 
across groundwater aquifers (DeSimone and others, 2020; 
Knierim and others, 2020b; Nolan and others, 2015; Ransom 
and others, 2017; Rosecrans and others, 2017). ML methods 
are suitable for making predictions in hydrologic systems, 
because the machine algorithm identifies patterns in explana-
tory variable datasets to predict a response variable (Kuhn and 
Johnson, 2013). Redox zones were mapped in aquifers of the 
Mississippi embayment region using a categorization scheme 
based on predictions from two ML models. The ML models 
use an ensemble method, boosted regression trees (BRT), 
which minimizes a loss function (such as model accuracy or 
error) using boosting of model residuals (Friedman, 2001; 
Kuhn and Johnson, 2013). BRT models have the advantage 
of accepting missing values (Elith and others, 2008), which is 
important when predicting “wall-to-wall” across aquifer sys-
tems because missing values in explanatory variable datasets 
are common.

To categorize redox zones, the probability of DO 
concentration exceeding a threshold of 1 mg/L was predicted 
with a classification BRT model, and iron concentration was 
predicted with a regression BRT model. The smaller dataset 
size for DO concentration required a classification model, 
where a DO concentration less than or equal to 1 mg/L is 
classified as a nonevent and a DO concentration greater than 
1 mg/L is classified as an event. Although a DO concentration 
of 0.5 mg/L is used as a typical threshold for anoxic condi-
tions, for the Mississippi embayment, iron concentration 
showed greater separation between DO concentrations above 
and below 1 mg/L compared to 0.5 mg/L, such that 1 mg/L 
was used as the classification model threshold. The BRT clas-
sification model predicts the probability of an event, and pre-
dicted probabilities greater than 0.5 are considered predicted 
events. Accuracy (or the correct prediction of events and non-
events) is maximized in BRT classification models. Natural 
logs of iron concentrations were predicted with a regression 
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BRT model, which minimizes root mean square error (RMSE). 
For both ML models, percent proportion bias (ppb) was also 
used as a metric to evaluate model performance, where ppb 
was calculated as

ppb continuous regression
predicted observed

obser

� � � �

�

100

�
�

( )

vved 	
(1)

and

ppb classification
number of observed events

number

( )

( )

(

� �100

   

   

   

  

of samples
number of predicted events

number of sampl

)

( )

(

�

ees) 	

(2)

Output from BRT models was used to map the probability 
of exceeding a DO concentration of 1 mg/L, iron concentra-
tions, and qualitative redox zones in drinking-water aquifers of 
the Mississippi embayment.

Water-Quality Data Sources

DO and iron concentration data were compiled from 
several sources to maximize the number and spatial distri-
bution of samples: the National Water Information System 
(NWIS) database of the U.S. Geological Survey (U.S. Geo-
logical Survey, 2017), Groundwater Ambient Monitoring 
Networks maintained by State agencies, and the Safe Drinking 
Water Information System maintained by the U.S. Environ-
mental Protection Agency (U.S. Environmental Protection 
Agency, 2013). DO concentration data spanned 1978–2019, 
and iron concentration data spanned 1960–2019. Samples 
were collected from public supply, domestic, irrigation, 
industrial, and monitoring wells. For wells sampled more than 

once, data from the most recent samples were used. Because 
the most recent data were used and groundwater flow paths are 
long (>100 years) throughout much of the study area (Haugh 
and others, 2020c; Kingsbury and others, 2017), the possible 
effects of changes in water quality over time were considered 
small compared to the improvement in overall model accuracy 
obtained by using available historical data.

Explanatory Variables

Explanatory variables for the BRT models (Knierim and 
others, 2020a) included attributes associated with well geom-
etry, namely location and construction information, including 
aquifer, well depth, and screen altitude; surficial variables, 
such as soils and land use; and variables extracted from a 
MODFLOW-2005 groundwater-flow model for the Missis-
sippi embayment (Haugh and others, 2020a, b, c). Explana-
tory variables were acquired from a variety of data sources or 
derived from the hydrogeologic framework for the Mississippi 
embayment (Hart and others, 2008) using well metadata. Prior 
to their use in the BRT models, explanatory variable datasets 
were preprocessed to remove variables having a linear correla-
tion greater than 0.8, which reduced the number of explana-
tory variables from 225 to 130 for DO and 132 for iron (which 
included modeled specific conductance and DO predictions as 
explanatory variables). Rasters of explanatory variables were 
attributed to groundwater wells using Python software (Python 
Software Foundation, 2019). For a full description of explana-
tory variables, preprocessing, and attribution, see Knierim 
and others (2020b).

Modeling Workflow

For both DO and iron models, the modeling workflow 
followed that of Knierim and others (2020b). In brief, the 
response data—either DO event/nonevent categories or natural 
log of iron concentration—and corresponding explanatory 

Table 1.  Model layers used in this study for mapping machine-learning (ML) predictions across 
Mississippi River Valley Alluvial (MRVA), middle Claiborne (MCAQ), and lower Claiborne (LCAQ) 
aquifers compared to MODFLOW groundwater flow-model layers from Clark and Hart (2009).

[min, minimum; max, maximum]

Hydrogeologic 
unit

MODFLOW 
model layers1

ML model 
layers

Depth ranges (feet)

Min2 10th  
percentile

90th  
percentile

Max

MRVA 1–2 1 −10 85 164 256
MCAQ 5–10 5–8 −39 79 1,024 2,612
LCAQ 9–10 9–10 −33 213 1,808 3,360

1From Clark and Hart (2009).
20.1 percent of raster cells have negative depths (below zero) because a more recent digital elevation model 

(DEM; U.S. Geological Survey, 2016) was used in this study than the DEM used in Clark and Hart (2009) to  
determine the altitude of the top of the MODFLOW groundwater-flow model.
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variables were split into training (80 percent) and holdout 
(20 percent) datasets. The BRT model was tuned to find the 
combination of hyperparameters that produced a model hav-
ing either the highest accuracy (DO) or lowest RMSE (iron), 
referred to as the “best” model. Tuning was completed using 
tenfold cross-validation in the statistical programming soft-
ware R (R Core Team, 2019) with the caret and gbm packages 
(Kuhn and others, 2019; Ridgeway, 2019). After the model 
was tuned, a one-standard-error (1SE) routine developed by 
Nolan and others (2015) was used to find simpler models (in 
which complexity is defined by the hyperparameters) within 
1SE of the “best” model’s RMSE or accuracy. Once the hyper-
parameters for the 1SE model were selected that provided 
a balance between low ppb and either high accuracy or low 
RMSE, a variable-reduction routine developed by Ransom 
and others (2017) was used to remove explanatory variables 
that did not improve model performance, again based on high 
accuracy (DO) or low RMSE (iron) and low ppb.

Once the “final” BRT model was selected, predictions 
were made at groundwater wells, and prediction mapping 
was completed using raster grids of all explanatory variables 
remaining in the final model. The depth for each prediction 
layer was the midpoint altitude of the corresponding 
MODFLOW groundwater-flow model layer, such that seven 
prediction layers were produced—one for MRVA, four for 
MCAQ, and two for LCAQ—for DO threshold probabilities 
and iron concentrations (table 1). Iron was backtransformed 
from natural log space to real units of micrograms per 
liter using a bias correction factor (Duan, 1983; Nolan and 
others, 2015). Uncertainty was quantified via confidence 
intervals (CIs) for DO and prediction intervals (PIs) for iron 
following a bootstrapping routine developed by Ransom and 
others (2017) in which model hyperparameters were held con-
stant and tree structure, such as split variables, split levels at 
nodes, and prediction at terminal nodes, was allowed to vary. 
DO CIs are constrained between 0 and 1, as is the case for 
the probability predictions. Similarly, iron PIs are in the same 
concentration units as the predictions, namely micrograms 
per liter. Details about modeling workflow, including tuning, 
1SE model selection, variable reduction loop, and uncertainty 
bootstrapping, are provided in Knierim and others (2020b).

Mapping of Oxidation-Reduction (Redox) Zones

Redox zone rasters were created to describe general 
redox conditions in Mississippi embayment aquifers for four 
zones: anoxic, mixed anoxic, mixed oxic, and oxic, using the 
DO and iron predictions from BRT models. DO and iron were 
used in combination to categorize redox zones because the DO 
dataset size is relatively small (451) compared to iron (1,408). 
Additionally, although DO concentration is an appropriate first 
approximation for categorizing redox conditions, DO concen-
tration alone does not indicate where along the terminal electron 
acceptor sequence the groundwater may be; that is, how reduc-
ing it is. Iron can be used to further describe redox conditions, 
because it has a widespread sample distribution and is both 
influenced by and an important indicator of redox conditions.

Oxic conditions include areas where the probability of 
exceeding a DO concentration of 1 mg/L was greater than 
80 percent. Anoxic conditions include areas where the prob-
ability of exceeding a DO concentration of 1 mg/L was less 
than 10 percent. Mixed conditions include anywhere that 
the predicted DO threshold probability was greater than or 
equal to 10 percent and less than or equal to 80 percent, and 
iron concentrations were either less than 500 micrograms per 
liter (µg/L) (mixed oxic) or greater than or equal to 500 µg/L 
(mixed anoxic). Any areas that were characterized as oxic but 
had iron concentrations greater than 1,000 μg/L were recat-
egorized as mixed oxic. Elevated iron concentrations generally 
indicate reducing conditions (Chapelle and others, 1995), such 
that mixed redox conditions (and specifically mixed oxic) are 
more plausible than oxic conditions. Previous work catego-
rized principal aquifers nationally using a DO concentration 
threshold of 0.5 mg/L and an iron concentration threshold 
of 100 µg/L (McMahon and Chapelle, 2008). However, the 
classifications were meant to provide national consistency for 
aquifers with varying geology, and thresholds may differ with 
site-specific information (McMahon and Chapelle, 2008). The 
classifications provided here are specific to aquifers of the 
Mississippi embayment and are based on observations of DO 
versus iron concentration in groundwater wells and the output 
and performance of BRT DO threshold and iron concentration 
models. The final categories in relation to DO and iron thresh-
olds are shown in table 2. Additionally, DO probability and 
iron concentration rasters are available in an associated data 
release (Knierim and others, 2020a), such that redox zones can 
be recategorized if warranted.

Water-Quality Data Results
DO concentration was lower and iron concentration 

was higher in the MRVA compared to the MCAQ and LCAQ 
(fig. 3 on sheet 1, fig. 4 on sheet 2, fig. 5). DO concentra-
tion (n = 564) ranged from less than 0.1 to 17.1 mg/L and the 
median concentration in the MRVA (0.2 mg/L) was lower 
than in the MCAQ (1.2 mg/L) and LCAQ (4.6 mg/L) (fig. 5). 

Table 2.  Redox zone categories based on predicted probability 
of dissolved oxygen (DO) concentration exceeding a threshold of 
1 milligram per liter and based on iron concentration.

[µg/L, micrograms per liter; >, greater than; <, less than; ≤, less than or equal 
to; ≥, greater than or equal to; NA, not applicable]

Redox  
category

DO  
(probability)

Iron  
(µg/L)

Oxic >0.8 <1,000
Mixed oxic >0.8 >1,000

≤0.8 and ≥0.1 <500
Mixed anoxic ≤0.8 and ≥0.1 ≥500
Anoxic <0.1 NA
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Many lower DO concentrations (generally less than 0.1 mg/L) 
are censored values, and concentrations greater than approxi-
mately 10 mg/L are not reasonable based on saturation con-
centrations of DO at groundwater temperatures typical of the 
study area. However, because a classification BRT model was 
used and only the probability of exceeding a DO concentration 
threshold of 1 mg/L was predicted, spurious values at low or 
high DO concentrations were not a concern for modeling. The 
event rate (or proportion of samples greater than the 1-mg/L 
threshold) was 43 percent for training and testing data. Iron 
concentrations (n = 1,758) ranged from less than 4.0 µg/L 
(natural log of −3.78 for an imputed value of censored data) to 
44,210 µg/L (natural log of 10.70) and the median iron con-
centration was higher for the MRVA (3,294 µg/L) than for the 
MCAQ (164 µg/L) or LCAQ (122 µg/L) (fig. 5). Iron concen-
tration was greater than 100 µg/L in 69 percent of wells; from 
51 percent in the MCAQ (layer 5) to 86 percent in MRVA 
wells. The 100-μg/L threshold is used for national classifica-
tion of redox processes in principal aquifers, per McMahon 
and Chapelle (2008).

BRT Model Results
BRT model performance metrics are different for 

classification and regression models, so results obtained from 
the DO and iron models cannot be compared directly (table 3). 

DO models had an area under the receiver operating character-
istic curve (AUROC) of 1 for training data and an AUROC of 
0.84 for holdout data, where an AUROC of 1 corresponds to 
a perfectly fit model (Kuhn and Johnson, 2013). For holdout 
data, only 12 events out of 64 were incorrectly classified as 
nonevents and 17 nonevents out of 49 were incorrectly classi-
fied as events for the final DO model (table 4); thus, the incor-
rect predictions (that is, false positive or false negatives) are 
outliers within each DO category (fig. 6). The final iron model 
had a coefficient of determination (r2) of 0.88 for training data 
and an r2 of 0.49 for holdout data, with a relatively high hold-
out RMSE of 1.81 (table 3). The final iron model had lower 
ppb bias compared to the “best” tuned model (table 3). The 
bias correction factor was 1.82 for the final iron model, such 
that the goodness-of-fit for untransformed iron predictions was 
more scattered than the natural log predictions (fig. 7).

Predictions of Dissolved Oxygen 
Threshold Probabilities

The probability of predicting a DO concentration greater 
than 1 mg/L was low for the MRVA and lower in the cen-
tral portion of the MCAQ and LCAQ compared to areas not 
overlain by the MRVA (fig. 8D-F on sheet 1). DO events, 
indicated by predicted probabilities greater than 0.5, tended 
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Table 3.  Hyperparameters for dissolved oxygen (DO) and iron boosted regression tree models for the final, variable reduced (“final”), 
one standard error (“1SE”), and best training (“best”) models.

[Model performance parameters are provided for holdout data (unless otherwise specified. n, sample size; No. vars, number of explanatory variables; id, interac-
tion depth; mo, minimum observations per node; sh, shrinkage (or learning rate); nt, number of trees; ppb, percent proportion bias; RMSE, root mean square 
error; r2, coefficient of determination; NA, not applicable]

Response 
variable

n 
(training)

n 
(holdout)

Model
No. 
vars

id mo sh nt ppb
RMSE or 
accuracy

r2

Sensitivity Specificity
Training Holdout

DO 451 113
Final 33 2 10 0.014 4,500 0.00 0.77 NA NA 0.73 0.8
1SE 130 2 10 0.014 4,500 −0.89 0.76 NA NA 0.73 0.78
Best 130 4 10 0.004 3,000 6.20 0.80 NA NA 0.69 0.88

Iron 1,408 350
Final 37 6 8 0.012 2,000 −0.01 1.81 0.88 0.49 NA NA
1SE 132 6 8 0.012 2,000 0.19 1.81 0.90 0.47 NA NA
Best 132 18 10 0.002 2,500 0.67 1.78 0.85 0.50 NA NA

Table 4.  Observed and predicted dissolved oxygen (DO) events 
for holdout data.

[An event corresponds to a DO concentration greater than 1 milligram per liter 
at a predicted probability greater than 0.5]

Predicted
Observed

Event Nonevent Total

Event 52 17 69
Nonevent 12 32 44
Total 64 49 113

to occur on the margins of the MRVA and upland areas where 
MCAQ and LCAQ units crop out at the surface or are shal-
low (figs. 1 and 2). These predictions are supported by DO 
observations (fig. 3A-B on sheet 1) and reinforce conceptual 
models where the MRVA is predominantly anoxic and DO 
concentration decreases along regional groundwater flowpaths 
in the Claiborne aquifers (Kingsbury and others, 2015). One 
large area of high DO threshold probability in the MRVA was 
noted in northeastern Louisiana, and although wells in the area 
are limited in number, DO concentrations greater than 2 mg/L 
have been observed (figs. 3A and 8D on sheet 1).

Many of the most influential variables for predicting 
DO (fig. 9) are interpreted as surrogates for position along 
the groundwater flow path. For example, the probability 
of DO concentration exceeding 1 mg/L was greater where 
groundwater altitude in 1930 was higher, which corresponds 
to upland areas at the margins of the Mississippi embay-
ment that serve as recharge areas for the MCAQ and LCAQ. 
These results are similar to salinity predictions from BRT 
models where Knierim and others (2020b) found that explana-
tory variables that serve as surrogates for position along the 
groundwater flow path were important predictors of specific 
conductance and chloride concentrations. Therefore, results of 
ML modeling efforts in the Mississippi embayment indicate 

that as position along the groundwater flow path increases, 
dissolved solids increase (Knierim and others, 2020b) and DO 
concentration decreases.

Confidence intervals (CIs) provide a measure of 
uncertainty by bracketing the predictions of DO threshold 
probabilities with lower and upper bounds at 5th and 95th 
percentiles, respectively (fig. 8 on sheet 1). In the MRVA, the 
lower CI for DO was predominantly less than 0.1 (fig. 8G), 
so greater uncertainty corresponds with areas where the upper 
CI is higher (fig. 8A; that is, where upper minus lower CI is 
larger). Uncertainty was greatest in the MRVA in the southern 
part of the modeled area where the probability of a DO event 
was high and there were few DO samples (figs. 3A and 8A 
on sheet 1). Uncertainty was also great on the northwestern 
margins of the MRVA where the upper DO CI is high (fig. 8A 
on sheet 1). In these areas, observations of DO concentration 
greater than 1 mg/L are limited (fig. 3A on sheet 1). For the 
MCAQ and LCAQ, high DO concentrations were consistently 
predicted at the margins of the modeled area in the Tertiary 
uplands, as shown by DO threshold probabilities generally 
greater than 0.9 for lower and upper CIs (fig. 8B, C, H, I, on 
sheet 1). DO uncertainty was great in the MCAQ and LCAQ 
where the upper CI was high on the northwestern margin of 
the modeled area; in parts of this area, the lower CI is less 
than 0.1 (fig. 8H-I, on sheet 1) and the upper CI is greater 
than 0.9 (fig. 8B-C on sheet 1), such that the confidence of 
whether a DO event is predicted or not is low.

The proportion of observed DO events was 43 percent 
overall, and ranged from 19 percent for groundwater wells 
in the MRVA to 71 percent for wells in the MCAQ (layer 7) 
(Knierim and others, 2020a). The proportion of predicted DO 
threshold probabilities above 0.5 (which would classify as an 
event) in raster cells varied by model layer, from 11 percent in 
the MRVA to 34 percent in the MCAQ (layer 7). The differ-
ence in the proportion of observed DO events (wells) versus 
predicted DO events (rasters) was smallest for the MRVA 
(19 percent event rate in wells compared to 11 percent in 
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Figure 6.  A, Observed dissolved oxygen (DO) concentration in groundwater wells versus predicted DO 
probability in wells and at raster cells coincident with wells, and B, boxplot showing observed DO threshold 
category in groundwater wells versus predicted DO probability in wells and at raster cells coincident with wells.

Figure 7.  A, Observed versus predicted iron concentration back-transformed to units of micrograms per liter, 
and B, observed versus predicted natural log (ln) iron concentration.
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raster cells) compared to the MCAQ and LCAQ. Although the 
proportion of events in prediction rasters was not as high as in 
the well observations, sampling may be biased—especially in 
the MCAQ and LCAQ—toward areas of the aquifer that are 
shallow, which tend to be in the recharge zone where DO is 
correspondingly high (fig. 3B on sheet 1).

Predictions of Iron Concentration
Predicted iron concentrations were higher in the MRVA 

than in the MCAQ and LCAQ (fig. 10D-F on sheet 2). In 
the MRVA, iron concentrations greater than 25,000 µg/L 
were measured in 0.7 percent of wells, and very high con-
centrations greater than 100,000 µg/L were not observed 
(fig. 4A on sheet 2). Although the iron BRT model was not 
biased (table 3), raster cell predictions tended to be greater 
than predictions at groundwater wells coincident with the 
raster cells (figs. 7 and 11). Despite this, the total number 
of cells (or aquifer area) with extreme predictions was low 
(fig. 10D on sheet 2); in the MRVA, 1.4 percent of cells had 
predicted concentrations greater than 25,000 µg/L and none 
were greater than 100,000 µg/L. In the MCAQ, predicted 
iron concentrations were predominantly less than 5,000 µg/L, 
with higher concentrations located in western Tennessee 
(fig. 10E on sheet 2) and only 0.4 percent of raster cells having 

concentrations greater than 10,000 µg/L in MCAQ layer 5. 
Predicted iron concentrations were lower in deeper Tertiary 
units, such as LCAQ layer 10 (fig. 10F on sheet 2), where 
only 0.1 percent of raster cells had predicted concentrations 
greater than 10,000 µg/L. BRT model predictions (without 
bias correction) at wells tended to overpredict at low iron 
concentrations and underpredict at high iron concentrations 
(fig. 11). After predictions were adjusted by using the bias 
correction factor, predicted iron concentrations in groundwa-
ter wells generally were higher than observed concentrations. 
Lastly, when the BRT model was used to predict iron concen-
trations at raster cells, these concentrations were higher than 
the predicted concentrations for the coincident wells (fig. 11). 
Therefore, predicted iron concentrations are characterized as 
overpredicted once the final BRT model is used to map iron 
concentration, despite the BRT model itself not being biased.

Important explanatory variables for the iron BRT model 
included predicted groundwater quality, hydrogeology, and 
position within the regional groundwater flow system (fig. 12). 
For example, the most important predictor of iron concentra-
tion was BRT model output of predicted groundwater spe-
cific conductance from Knierim and others (2020b) and the 
third most important predictor was predicted DO probability. 
Explanatory variables for the specific conductance BRT model 
are similar to those used in the DO and iron models, and ML 
models integrate interactions among explanatory variables into 
the output prediction of a response variable. Hydrogeology 
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such as aquifer (MRVA, MCAQ, or LCAQ) and variables that 
serve as surrogates for which aquifer a well is screened in, 
including aquifer hydraulic conductivity, were also impor-
tant explanatory variables (fig. 12). Multi-order hydrologic 
position for ninth order streams (lateral position, ninth-order 
streams) was an important predictor of iron concentration 
and represents the location of a well relative to the Arkansas 
and Mississippi Rivers, which act as major groundwater flow 
boundaries. Predicted DO probability (fig. 9) and specific 
conductance (Knierim and others, 2020b) had similar impor-
tant explanatory variables that represented position along the 
groundwater flow path, and both were found to be important 
predictors of iron concentration. The results of this modeling 
effort highlight that as groundwater residence time increases, 
rock-water interaction also increases, thus increasing dissolved 
solids (measured as specific conductance) and consuming DO; 
and as DO decreases, predicted iron concentration increases.

Predictions of high iron concentrations tended to have 
high uncertainty, with upper PIs being orders of magnitude 
greater than predicted iron concentrations (fig. 10A-F on 
sheet 2). Most of the very high predictions of iron concen-
tration in the upper PIs were within the MRVA (fig. 10A on 
sheet 2), with a maximum PI concentration of approximately 
915,000 µg/L. Despite the large magnitude of predicted high 
iron concentrations, the proportion of very high concentration 
raster cells was still relatively small, with only 1.5 percent 
of the cells in the MRVA upper PI exceeding 100,000 µg/L. 
Uncertainty tended to be lower in the MCAQ and LCAQ 
(especially along the eastern margins of the study area), such 
that the range between upper and lower PIs was predominantly 
less than 5,000 µg/L. Although iron concentration may be 
overpredicted in some areas, the general proportion and spatial 
distribution of predicted iron concentration reflects ground-
water well observations (figs. 4A-B and 10D-F on sheet 2). 
Therefore, the BRT iron models can be used to categorize 
qualitative redox zones but may not be appropriate for accu-
rately predicting iron concentration at any given location.

Redox Zone Categorization
Categorical descriptions of redox conditions in the 

Mississippi embayment are useful for understanding the 
occurrence and distribution of constituents that are con-
trolled by redox processes. Redox zones (fig. 13D-F on 
sheet 3) were largely determined by predicted DO probabil-
ity; predicted iron concentrations were used as an additional 
check for the oxic category. The MRVA was mostly anoxic 
(fig. 13D on sheet 3). Oxic conditions were present mostly 
in the uplands of the MCAQ and LCAQ at the margins of 
the modeled area (fig. 13E-F on sheet 3). The presence 
of mixed redox zones between the oxic and anoxic zones 
depended on iron concentration, which is an important indi-
cator of where along the terminal electron acceptor sequence 
or redox condition groundwater may be (McMahon and 
Chapelle, 2008).

For describing redox conditions in groundwater aquifers 
across the United States, an iron concentration of 100 µg/L has 
been used as a water-quality criterion cutoff (McMahon and 
Chapelle, 2008). For Mississippi embayment BRT models, 
however, mapped iron concentrations generally were over-
predicted (that is, raster predictions were higher than well 
predictions and observations, figs. 7 and 11) and 99.8 percent 
of MRVA raster cells were greater than 100 µg/L. Therefore, 
a higher iron concentration threshold of 500 µg/L was used 
to separate mixed oxic and mixed anoxic categories, which 
helps account for raster predictions possibly being biased 
high. Mixed redox zones are present near the transition from 
oxic groundwater (in recharge areas along the margins of the 
MCAQ and LCAQ) to anoxic groundwater (fig. 13E-F on 
sheet 3). In the MRVA, most of the mixed redox conditions are 
mixed anoxic (fig. 13D on sheet 3), highlighting that much of 
the MRVA has low DO and high iron concentrations.

The upper and lower CIs of DO threshold probability 
and PIs of iron concentration were used to provide bounds on 
the qualitative redox zones (fig. 13A-C, G-I on sheet 3). Like 
the redox zones, the upper and lower bounds for redox zones 
largely were controlled by predicted DO conditions (fig. 8A-C, 
G-I sheet 1 and fig. 13A-C, G-I on sheet 3). For the MRVA, 
anoxic conditions ranged from 96 percent of the aquifer area 
for lower prediction bounds to 23 percent for upper predic-
tion bounds. Much of this difference was accounted for in the 
mixed anoxic category—for example, when anoxic and mixed 
anoxic zones are summed, the lower and upper bounds were 
97 and 78 percent, respectively, of the MRVA area. The pat-
tern is similar for the MCAQ (layer 5) in that the area of the 
aquifer categorized as anoxic ranged from 85 to 38 percent for 
lower and upper bounds, respectively. When summed together, 
mixed anoxic and anoxic zones ranged from 85 to 69 percent 
for lower and upper bounds, respectively.

Although there is much uncertainty about the magnitude 
of predicted iron concentrations in the MRVA, MCAQ, and 
LCAQ, there is greater confidence that more than three-fourths 
of these aquifers have either anoxic or mixed anoxic condi-
tions. Thus, constituents that are affected by reducing condi-
tions, such as manganese, might be present at high concentra-
tions across a majority of Mississippi embayment aquifers. 
Despite the presence of reducing conditions in both the MRVA 
and Claiborne aquifers (fig. 13D-F on sheet 3), iron (fig. 4 
on sheet 2), manganese, and arsenic concentrations are high 
predominantly in the MRVA and lower in the Claiborne aqui-
fers (Kingsbury and others, 2015). Geologic sources of trace 
elements and the availability of organic carbon also control the 
potential for high trace element concentrations in groundwater 
(McMahon and Chapelle, 2008). Therefore, the presence of 
anoxic groundwater and the potential for reducing conditions 
are not the only controls on trace element concentrations. In 
the Mississippi embayment, differences in depositional envi-
ronments and sediment mineralogy exert important controls 
on the occurrence and distribution of high manganese and 
arsenic concentrations (Parks and Carmichael, 1990; Sharif 
and others, 2008), as do reducing conditions found in anoxic 
and mixed anoxic zones.
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Summary
Redox conditions are important controls on the fate and 

transport of many naturally occurring and anthropogenic con-
taminants. To map redox zones in drinking-water aquifers in 
the Mississippi embayment, the U.S. Geological Survey devel-
oped ensemble machine-learning models (boosted regression 
trees [BRT]) to predict iron concentrations and the probabil-
ity that dissolved oxygen (DO) concentrations exceeded a 
1-milligram-per-liter (mg/L) threshold. DO threshold probabil-
ity (n = 556) and iron concentration (n = 1,758) were predicted 
with classification and regression BRT models, respectively, 
using a variety of explanatory variables, including attributes 
associated with well geometry, surficial variables, and vari-
ables extracted from a MODFLOW-2005 groundwater-flow 
model for the Mississippi embayment. The final DO model 
had an area under the receiver operating characteristic curve of 
0.84 for holdout data. The final iron model had a coefficient of 
determination (r2) of 0.49 for holdout data.

Model predictions indicate DO concentrations greater 
than 1 mg/L are uncommon across the Mississippi River 
Valley alluvial aquifer (MRVA) and when exceedances do 
occur, they tend to be located along the margins of the aquifer. 
Across the middle Claiborne aquifer (MCAQ) and lower 
Claiborne aquifer (LCAQ), DO concentrations greater than 
1 mg/L tend to be located along the margins of the Mississippi 
embayment in areas not overlain by the MRVA. Predicted 
iron concentrations were higher in the MRVA than in the 
MCAQ and LCAQ. Iron concentration predictions had high 
uncertainty, owing to upper prediction interval concentrations 
being very large in magnitude. Although the iron BRT model 
was not biased, predicted iron concentrations were greater 
in raster cells than at coincident groundwater wells. Despite 
the large magnitude of overpredictions, the proportion of the 
aquifer predicted to have very high iron concentrations (over 
100,000 micrograms per liter) was relatively small. Therefore, 
BRT iron models were able to predict the spatial distribution 
and general variability in low and high iron concentrations and 
can be used to categorize redox zones. Output from the iron 
BRT models may not be appropriate for accurately predicting 
iron concentration in any one well.

Where the predicted probability of exceeding a DO 
concentration of 1 mg/L was greater than 0.8 and predicted 
iron concentration was less than 1,000 micrograms per liter, 
Mississippi embayment aquifers are considered oxic, and these 
conditions mostly were in the uplands of the MCAQ and LCAQ 
at the margins of the modeled area. The MRVA was mostly 
anoxic, a category defined by predicted DO threshold prob-
abilities less than 0.1. The predictions and redox zones sup-
port conceptual models of redox conditions in the Mississippi 
embayment, where the MRVA is predominantly anoxic with 
high iron concentrations. For the Claiborne aquifers, as ground-
water flows along regional flow paths toward the axis of the 
Mississippi embayment in the approximate location of the Mis-
sissippi River, the residence time in the aquifer increases, DO is 
consumed, and groundwater transitions from oxic to anoxic.
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