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Logs and Data from the Starthistle Trench Across a Scarp 
within the Wallula Fault Zone, Southeastern Washington

By Stephen J. Angster,1 Brian L. Sherrod,1 and John Lasher2

1U.S. Geological Survey

2U.S. Geological Survey Volunteer

Introduction
The Wallula Fault Zone is composed of a series of northwest-

trending faults and folds that coincide with a prominent magnetic 
anomaly that extends uninterrupted for ~120 kilometers (km) 
within the Cascadia back arc of southeastern Washington and 
northeastern Oregon (fig. 1, on map sheet; Blakely and others, 
2014). It is part of the geologic structures associated with the 
topographic lineament known as the Olympic-Wallowa lineament 
(Raisz, 1945) and represents a relatively narrow zone of active 
faulting and seismicity that trend along the northern flank of the 
Horse Heaven Hills (fig. 1, on map sheet; Mann and Meyer, 1993; 
Schuster, 1994). Prior paleoseismic study of the Wallula Fault at an 
exposure at Finley Quarry indicates multiple Quaternary ruptures, 
including a Holocene liquefaction event (Sherrod and others, 
2016), demonstrating that this fault zone poses a seismic hazard to 
the Tri-Cities region (Richland, Pasco, Kennewick) in southeastern 
Washington (fig. 1, on map sheet). 

Recent airborne light detection and ranging (lidar) data cover-
age (Quantum Spatial 2017, 2018) east of the Columbia River 
reveals a ~0.5-meter-high south-facing scarp east of the Columbia 
River that extends, almost continuously, for ~25 km to the east 
along the base of the Horse Heaven Hills (fig. 2, on map sheet). As 
part of an effort to assess and characterize the seismic hazard posed 
by the Wallula Fault Zone, we excavated and studied a trench 
exposure across the scarp to understand its origin and the potential 
history of rupture along the fault zone. We present preliminary 
mapping and trench site information from a paleoseismic investi-
gation. These field and laboratory data may support development 
of a history of the latest Pleistocene and Holocene surface rupture 
within the Wallula Fault Zone.

Methods
The scarp was mapped using lidar images derived from 

the 2017 PSLC Walla Walla Washington and Columbia Garfield 

Walla 2018 Lidar datasets (Quantum Spatial 2017, 2018) and 
field-based reconnaissance in the summer of 2019. 

The trench was excavated perpendicular to the scarp by 
an excavator in September 2019. The east and west walls of 
the ~35-meter-long trench were benched for safety, providing 
~1.5 meters (m) vertical exposures of both the upper and lower 
walls of the trench. The trench was cleaned and gridded at 1-m 
spacing and then photographed with scale bars for the photomo-
saics. Structural and stratigraphic relations of sedimentary units 
were flagged and then logged on photomosaics developed with 
structure-from-motion modeling (for example, Reitman and oth-
ers, 2015; Angster and others 2016). Unit descriptions provide 
details and characteristics of the seven mapped units, including 
soil characteristics and comments on stratigraphic relations. Soil 
nomenclature and descriptions follow techniques and terminol-
ogy described by Birkeland (1984) and the U.S. Department of 
Agriculture Natural Resources Conservation Service (Schoene-
berger and others, 1998). Soil color was determined using 
Munsell soil color charts (Munsell Color, 2010). Microprobe 
chemical analysis and identification of a tephra sample were 
performed by Scott Borough at the Peter Hooper GeoAnalytical 
Laboratory at Washington State University. Results of chemical 
analysis are shown in table 1 and the source  identification is 
discussed below.

The Starthistle Trench Site
The Starthistle trench site is located ~2.5 km east of 

the Columbia River on a loess-capped interfluvial surface of 
approximately 18–15 kilo-annum (ka) Glacial Lake Missoula 
outburst flood deposits (fig. 3, on map sheet; Waitt, 1985; 
Schuster, 1994;). At the trench site, the ~0.5-m-high scarp 
bounds an ~5-m-wide trough to the south. By projecting the 
ground surface on either side of the scarp and trough, we mea-
sure ~0.27 m of down-to-south displacement across the scarp at 
the trench site (fig. 3B, on map sheet).
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The trench exposed a sequence of rhythmically bedded sand 
and silt slack-water deposits (unit 1) of the Missoula Floods, 
which occurred around 21,400–14,300 calibrated thousand 
years before present (cal. yr B.P. , where present is before 1950 
AD) (Waitt, 2016). Those deposits are overlain by a massive silt 
(unit 2) interbedded with a tephra that closely correlates (r>0.98, 
where r is the similarity coefficient) in chemical composition 
(table 1) to the Glacier Peak G tephra, 11,200 cal. yr B.P. (Kuehn 
and others, 2009 ), and thus identifying unit 2 as the L1 Loess 
(Busacca and others, 1992; McDonald and Busacca, 1992; 
Busacca and McDonald, 1994). A weak modern soil is devel-
oped within the upper ~0.5 m of unit 2 and is characterized by a 
<10-cm-thick A horizon (unit 2dA), a platy E horizon (unit 2cE), 
and a weak B horizon (unit 2aBw) distinguished by a darker stain 
(10YR 5/4) than the underlying unit 2a (10YR 6/3).

Large cross-cutting bodies of disorganized sand and silt 
(unit 3) form dike and sill structures within unit 1 and locally 
trace to dikes that extend into unit 2, mostly on the northern 
side of the scarp. The sills within unit 1 display massive to con-
torted bedding structure, remnant of collapsed beds of unit 1b 
and liquified sediment of unit 1a. Angular fragments of unit 1b 
form a distinct textural difference between unit 2 and the dike 
features. Silt-filled fractures originate from bodies of unit 3 and 
crosscut and locally deform beds within unit 1.

The process of scarp formation at this site remains unclear 
because unit 1 does not display detectable vertical offset below 
the scarp; rather, the bedded flood deposits gently dip (<5°) to 
the north, forming a gentle monoclinal fold. A series of thin 
fractures, which are not filled with silt, occur predominately 
within unit 2 at the base of the scarp and at the crest of a gentle 
monoclinal fold expressed within unit 1. Stratigraphic relations 
displayed in the trench show a distinct thickness change within 
the loess (unit 2) below the scarp. The liquefaction dikes that 
extend into unit 2 provides suggestive evidence for post-glacial 
ground shaking at this locality and supports the prior observa-
tions of Sherrod and others (2016) at the Finley Quarry site.
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