Simulation of Ground-Water Flow and Evaluation of Water-Management Alternatives in the Assabet River Basin, Eastern Massachusetts

By Leslie A. DeSimone

In cooperation with the Massachusetts Department of Conservation and Recreation

Scientific Investigations Report 2004-5114

U.S. Department of the Interior
U.S. Geological Survey
Contents

Abstract .. 1
Introduction ... 2
 Purpose and Scope ... 4
 Description of the Study Area ... 4
 Previous Studies ... 4
Ground- and Surface-Water Resources .. 5
 Geologic Setting .. 5
 Hydraulic Properties ... 7
 Ground-Water Flow .. 10
 Recharge .. 10
 Water Levels ... 11
 Surface Water ... 17
 Streamflow .. 17
 Ponds and Wetlands .. 20
Water Use and Management .. 22
 Water Supply and Consumptive Use ... 24
 Wastewater Discharge and Return Flow ... 32
Simulation of Ground-Water Flow ... 33
 Steady-State Numerical Model .. 33
 Spatial Discretization ... 33
 Boundary Conditions ... 33
 Stresses ... 36
 Recharge and Evapotranspiration ... 36
 Water Withdrawals and Discharges .. 37
 Hydraulic Properties .. 37
 Model Calibration ... 40
 Model-Calculated Water Budgets and Flows ... 45
Transient Numerical Model .. 46
 Temporal Discretization and Initial Conditions .. 46
 Boundary Conditions and Stresses ... 49
 Hydraulic Properties .. 50
 Model Calibration ... 50
 Model-Calculated Water Budgets and Flows ... 58
Model Limitations .. 65
Evaluation of Ground-Water-Management Alternatives 66
Simulation of Altered Withdrawals and Discharges ... 66
 Simulation of No Water Management .. 66
 Simulation of Increased Withdrawals and Discharges 69
 Simulation of Ground-Water Discharge of Wastewater 72
 Hypothetical Discharge Site in the Fort Meadow Brook Subbasin 76
 Hypothetical Discharge Site in the Taylor Brook Subbasin 77
 Hypothetical Discharge Site in the Cold Harbor and Howard Brooks Subbasins ... 77
Hypothetical Discharge Site in the Stirrup Brook Subbasin ... 78
Summary of Scenarios of Ground-Water Discharge of Wastewater 78
Simulation-Optimization of Withdrawals, Discharges, and Streamflow Depletion 78
Methods .. 79
Simulation-Optimization of Withdrawals and Discharges in Westborough 79
Response Coefficients ... 79
Management-Model Application ... 81
Summary ... 85
Acknowledgments ... 88
References ... 88
Appendix 1: Estimated Average Monthly Streamflow, Nonstorm Streamflow, and Model-Calculated Average Monthly Nonstorm Streamflow at Measurement Sites in the Assabet River Basin, Eastern Massachusetts ... 95
Appendix 2: Model-Calculated Average Annual, March, and September Hydrologic Budgets for Subbasins in the Assabet River Basin, Eastern Massachusetts 105
Appendix 3: Average Monthly Withdrawals and Discharges at Permitted Municipal and Nonmunicipal Water-Supply Sources and Wastewater-Treatment Facilities used in the Calibrated Transient Model to Simulate Average 1997–2001 Conditions and in a Scenario of Increased Withdrawals and Discharges in the Assabet River Basin, Eastern Massachusetts ... 125

Figures

1–3. Maps showing:
1. The Assabet River Basin, subbasins, streamflow-gaging stations, and long-term observation well, eastern Massachusetts ... 3
2. Surficial geology of the Assabet River Basin .. 6
3. Depth-weighted hydraulic conductivity from well logs and transmissivity zones in stratified glacial deposits in the Assabet River Basin ... 9

4, 5. Graphs showing:
5. Monthly recharge rates estimated from A, streamflow records at the Assabet River streamflow-gaging station in Maynard; B, streamflow records at the Nashoba Brook streamflow-gaging station; and C, climate data from Bedford and West Medway weather stations, for long-term average conditions and 1997–2001 .. 12

6. Map showing streamflow-measurement sites, observation wells, and pond-measurement sites in the Assabet River Basin ... 13

7–12. Graphs showing:
7. Monthly and daily average water levels at long-term observation well ACW158, Assabet River Basin .. 15
10. Instantaneous streamflow measurements, June 2001 through December 2002, and estimated mean monthly streamflow and nonstorm streamflow at selected flow-measurement sites in the Assabet River Basin ..21
11. Measured water levels, September 2001 through December 2002, at selected ponds and impoundments in the Assabet River Basin ...22
12. Schematic diagram showing water use and return flows in the Assabet River Basin ...23
13, 14. Maps showing:
13. Public-water and sewer systems in the Assabet River Basin26
14. Permitted water-supply withdrawals and wastewater discharges in the Assabet River Basin ..30
15. Graph showing monthly average permitted withdrawals, wastewater discharges, and imported water for public supply, 1997–2001, in the Assabet River Basin30
16, 17. Maps showing:
16. Areas of private-water supply with consumptive water use and areas of public-water supply with septic-system return flow in the Assabet River Basin ..31
17. Model area, grid, hydraulic conductivity zones, and simulated ponds, streams, water withdrawals and surface-water inflows for ground-water-flow models of the Assabet River Basin ...34
18. Diagram showing vertical discretization for ground-water-flow models of the Assabet River Basin ..35
19. Relation between observed and model-calculated A, ground-water levels; and B, nonstorm streamflow for average conditions, 1997–2001, for the steady-state ground-water-flow model of the Assabet River Basin ..43
20. Map showing model-calculated steady-state water table in the Assabet River Basin ..44
21. Graph showing model-calculated average annual inflows to and outflows from the surficial layer of the simulated ground-water-flow system in subbasins of the Assabet River Main Stem and tributary subbasins, 1997–2001, Assabet River Basin46
22. Map showing anthropogenic outflows relative to total model-calculated average A, annual; and B, September outflows from the simulated ground-water-flow system in subbasins of the Assabet River Basin ..47
23, 34. Graphs showing:
23. Model-calculated components of average annual nonstorm streamflow in subbasins of the Assabet River Main Stem, 1997–2001 ...48
24. Model-calculated average annual total nonstorm streamflow and the component of flow that originated as wastewater, for existing conditions and two hypothetical scenarios of altered withdrawals and discharges in the Assabet River Basin ...48
25. Monthly average recharge rates and rates of evaporative loss of ground water for the transient ground-water-flow model of the Assabet River Basin49
26. Model-calculated and observed water-level fluctuations during the average annual cycle for selected observation wells and ponds in the Assabet River Basin51
27. Model-calculated and observed mean monthly nonstorm streamflow at the A, Assabet River at Maynard; and B, Nashoba Brook near Acton streamflow-gaging stations on the Assabet River, Assabet River Basin ..52
28. Model-calculated and observed mean monthly nonstorm streamflow at flow-measurement sites on the A, Assabet River; and B, tributaries, Assabet River Basin ..53
29. Observed and model-calculated monthly nonstorm streamflow for the calibrated transient model and for several alternative model parameters at the Assabet River at Maynard and a selected tributary site in the Assabet River Basin. Horizontal and vertical hydraulic conductivity of stratified glacial deposits multiplied and divided by 2 for the \(A \), Assabet River at Maynard and \(B \), Cold Harbor Brook; horizontal and vertical hydraulic conductivity of till multiplied and divided by 2 for the \(C \), Assabet River at Maynard and \(D \), Cold Harbor Brook; storage property of stratified glacial deposits increased and decreased by 50 percent for the \(E \), Assabet River at Maynard and \(F \), Cold Harbor Brook; recharge fluctuations during the annual cycle and evapotranspiration rate in wetlands and nonwetland areas decreased by 50 percent for the \(G \), Assabet River at Maynard and \(H \), Cold Harbor Brook.

30. Model-calculated average \(A \), March; and \(B \), September inflows to and outflows from the surficial layer of the simulated ground-water-flow system in subbasins of the Assabet River Main Stem and tributary subbasins, 1997–2001, Assabet River Basin.

31. Model-calculated components of average \(A \), March; and \(B \), September nonstorm streamflow in subbasins of the Assabet River Main Stem.

32. Model-calculated average \(A \), March and \(B \), September total nonstorm streamflow and the component of streamflow that originated as wastewater, for existing conditions and two hypothetical scenarios of altered withdrawals and discharges in the Assabet River Basin.

33. Model-calculated average \(A \), annual; \(B \), March; and \(C \), September nonstorm streamflow from subbasins of the Assabet River Main Stem and tributaries for comparison with minimum streamflow requirements for the protection of aquatic habitat.

34. Model-calculated changes, relative to simulated 1997–2001 conditions, in average annual inflows to and outflows from the surficial layer of the simulated ground-water-flow system in subbasins of the \(A \), Assabet River Main Stem; and \(B \), tributary subbasins, in a hypothetical scenario of no anthropogenic water management in the Assabet River Basin.

35. Map showing changes in sewer lines and areas of septic-system return flow simulated in a hypothetical scenario of increased withdrawals and discharges in the Assabet River Basin.

36. Graphs showing:

 36. Model-calculated changes, relative to simulated 1997–2001 conditions, in average annual inflows to and outflows from the surficial layer of the simulated ground-water-flow system in subbasins of the \(A \), Assabet River Main Stem; and \(B \), tributary subbasins, in a hypothetical scenario of increased withdrawals and discharges in the Assabet River Basin.

 37. Model-calculated components of average \(A \), March; and \(B \), September nonstorm streamflow in subbasins of the Assabet River Main Stem, in a hypothetical scenario of increased withdrawals and discharges in the Assabet River Basin.

38. Map showing hypothetical ground-water discharge sites for wastewater used in simulations in the Assabet River Basin: \(A \), Fort Meadow Brook subbasin in Hudson; \(B \), Taylor Brook subbasin in Maynard; \(C \), Cold Harbor and Howard Brooks subbasin in Northborough; and \(D \), Stirrup Brook subbasin in Westborough.
39, 40. Graphs showing:

39. Model-calculated average annual, March, and September nonstorm streamflow in tributaries to the Assabet River for existing conditions and scenarios of hypothetical ground-water discharge of wastewater at four sites in the Assabet River Basin: A, Fort Meadow Brook; B, Taylor Brook; C, Cold Harbor Brook; and D, Sturrip Brook ..76

40. Monthly withdrawal and discharge rates for 1997–2001 and for the management-model applications for decreased streamflow depletion in the Assabet River and tributaries in low-flow months in the upper part of the Assabet River Basin: A, OPT1; B, OPT2; C, OPT3; D, OPT4; E, OPT5; F, OPT6; and G, 1997–2001 ..84

Tables

1. Hydraulic properties of stratified glacial deposits as determined by analysis of aquifer tests at public-supply wells in the Assabet River Basin, eastern Massachusetts ... 8

2. Average annual recharge rates and precipitation for the Assabet River Basin11

3. Characteristics and water levels at observation wells and ponds in the Assabet River Basin ..14

4. Characteristics and water levels at long-term observation wells near the Assabet River Basin ...15

5. Drainage-area characteristics and mean annual flows at streamflow-gaging stations in and near the Assabet River Basin ..18

6. Drainage-area characteristics and mean annual flows at streamflow-measurement sites in the Assabet River Basin ..19

8. Permitted water-supply withdrawals and wastewater discharges in the Assabet River Basin ...27

9. Existing (1997-2001) and permitted withdrawals for municipal public-water systems in the Assabet, Sudbury, and Concord River Basins ...30

10. Simulated water withdrawals and discharges in calibrated models (1997–2001) and in scenario 2 for permitted withdrawals and wastewater discharges and unpermitted golf-course withdrawals in the Assabet River Basin ..38

11. Steady-state model-calculated average annual water levels and observed water levels at observation wells and ponds in the Assabet River Basin ...41

12. Steady-state model-calculated average annual nonstorm streamflow and observed nonstorm streamflow at measurement sites in the Assabet River Basin ...42

13. Steady-state model-calculated average annual water budget for the Assabet River Basin ...45

14. Water-level-fluctuation residuals and mean absolute-flow residuals for the calibrated transient model and model runs that use alternative model parameters, Assabet River Basin ...57

15. Transient model-calculated average March and September water budgets for the Assabet River Basin ...59

16. Model-calculated mean monthly nonstorm streamflows for August and September at sites for comparison with minimum streamflow requirements for habitat protection, Assabet River Basin ...64
17. Model-calculated nonstorm streamflow from subbasins in the Assabet River Basin for existing conditions (1997-2001) and two scenarios of altered water-management practices ... 67
18. Hypothetical ground-water discharge sites for wastewater used in simulations in the Assabet River Basin ... 75
19. Hydrologic response coefficients for the public-supply wells and a hypothetical ground-water-discharge site in the upper Assabet River Basin 80

Conversion Factors, Datums, and Abbreviations

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubic foot per day (ft³/d)</td>
<td>0.02832</td>
<td>cubic meter per day (m³/d)</td>
</tr>
<tr>
<td>cubic foot per second (ft³/s)</td>
<td>0.02832</td>
<td>cubic meter per second (m³/s)</td>
</tr>
<tr>
<td>cubic foot per second per square mile (ft³/s/ mi²)</td>
<td>0.01093</td>
<td>cubic meter per second per square kilometer (m³/s/km²)</td>
</tr>
<tr>
<td>foot (ft)</td>
<td>0.3048</td>
<td>meter (m)</td>
</tr>
<tr>
<td>foot per day (ft/d)</td>
<td>0.3048</td>
<td>meter per day (m/d)</td>
</tr>
<tr>
<td>gallon per person per day (gal/person/d)</td>
<td>0.00378</td>
<td>cubic meter per person per day (m³/person/d)</td>
</tr>
<tr>
<td>inch (in.)</td>
<td>25.4</td>
<td>millimeter (mm)</td>
</tr>
<tr>
<td>inch per month (in/mo)</td>
<td>25.4</td>
<td>millimeter per month (mm/mo)</td>
</tr>
<tr>
<td>inch per year (in/yr)</td>
<td>25.4</td>
<td>millimeter per year (mm/yr)</td>
</tr>
<tr>
<td>mile (mi)</td>
<td>1.609</td>
<td>kilometer (km)</td>
</tr>
<tr>
<td>million gallons per day (Mgal/d)</td>
<td>0.04381</td>
<td>cubic meter per second (m³/s)</td>
</tr>
<tr>
<td>square foot per day (ft²/d)</td>
<td>0.0929</td>
<td>square meter per day (m²/d)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.590</td>
<td>square kilometer (km²)</td>
</tr>
</tbody>
</table>

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C) as follows:

°C = (°F - 32) x 0.5555

In this report, vertical coordinate information is referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29), and horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). Altitude above the vertical datum is referred to as elevation.

ABF Aquatic Base Flow
GIS Geographic Information System
MADCR Massachusetts Department of Conservation and Recreation
MADEP Massachusetts Department of Environmental Protection
MWRA Massachusetts Water Resources Authority
NPDES National Pollution Discharge Elimination System
TMDL Total Maximum Daily Load
USGS U.S. Geological Survey
WMA Water Management Act