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Pore-Water and Substrate Quality of the Peat Marshes at
the Barataria Preserve, Jean Lafitte National Historical

Park and Preserve, and Comparison with Penchant Basin
Peat Marshes, South Louisiana, 2000-2002

By Christopher M. Swarzenski, Thomas W. Doyle, and Thomas G. Hargis

Abstract

Pore-water and substrate quality of the peat marshes at the
Barataria Preserve of Jean Lafitte National Historical Park and
Preserve were measured from January 2000 to June 2002. The
six major plant communities, including those dominated by
Panicum hemitomon, were studied. The data were compared
with pore-water and substrate quality of peat marshes domi-
nated by Panicum hemitomon in the Penchant Basin, an area of
coastal Louisiana that has functioned as the hydrological and
ecological equivalent of a freshwater diversion for over
30 years. Surface-water quality between the two areas also was
compared. The comparisons were made to evaluate possible
long-term responses of the peat marshes in the Barataria Pre-
serve to the Davis Pond Freshwater Diversion, which began
operations in 2003, and is introducing Mississippi River water
to Barataria Preserve waterways and marshes.

The marshes sampled at the Barataria Preserve align along
a gradient of increasing exchange with adjacent surface water
and proximity to the southern portion of the Barataria Preserve,
where pulses of higher salinity water from the Gulf of Mexico
first enter waterways. The gradient influences pore-water salin-
ity and sulfide concentrations. Panicum hemitomon occurred as
the dominant marsh community only at the two innermost hab-
itats, which are better protected from saltwater intrusion than
areas closer to waterways. These two sites had significantly
lower median chloride concentrations (about 380-670 mg/L
[milligrams per liter]) than the four other habitats (about
1,300-1,800 mg/L). Pore-water concentrations of inorganic
nutrients, potassium, sulfate, and sulfide increased from the
innermost sites to the southernmost sites, marsh communities
dominated by Spartina patens and Schoenoplectus americanus.
Median filtered ammonium concentrations ranged from about
0.022 to 1.95 mg/L as nitrogen; median sulfide concentrations
ranged from about 0.07 to over 11.0 mg/L. The substrate of the
Panicum hemitomon dominated communities was more fibric
and less decomposed than that at the remaining four sites. The

soil at the southernmost community, with the highest nutrient
and sulfide concentrations, was the most highly decomposed.
Environmental conditions in the Barataria Preserve may repre-
sent the extremes under which peat can accumulate and peat
marshes can sustain themselves in coastal Louisiana.

Flow of river water across wetlands and shallow ponds in
the Penchant Basin resulted in the transformation and uptake of
nutrients, sulfate, and atrazine. Pore-water chloride concentra-
tions in Panicum hemitomon dominated marshes were signifi-
cantly lower, and average inorganic nutrient and sulfide con-
centrations were significantly higher in the Penchant Basin than
in the Barataria Preserve. Median pore-water ammonium con-
centrations were about 0.26 mg/L as nitrogen, and median sul-
fide concentrations were about 0.33 mg/L in the Penchant
Basin. The peat substrate of marsh communities dominated by
Panicum hemitomon was more decomposed in the Penchant
Basin than the substrate of any of the six marsh communities in
the Barataria Preserve. Elevated concentrations of inorganic
nutrients and sulfide in pore water and a more decomposed peat
substrate represent a substantial deterioration of the Panicum
hemitomon habitat. Long-term exposure of a peat substrate to
the regular influx of nitrate and sulfate may initiate and sustain
biogeochemical reactions in the organic matter that result in the
deterioration of the peat substrate. Such reactions could include
the reduction of nitrate and sulfate, as well as the inhibition of
nutrient uptake by the plants resulting from elevated sulfide
concentrations. In this view, freshwater diversions may com-
promise the long-term sustainability of highly organic marshes
in coastal Louisiana.

Introduction

Severe wetland loss is occurring along much of Louisi-
ana's coastline, in part because of disruptions to the inflow of
freshwater and sediments to the wetlands and because of
regional submergence of the wetlands below long-term sea
level (Gagliano and others, 1981; Mendelssohn and others,
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1983; Turner and Cahoon, 1988; Boesch and others, 1994
Reed, 1995). The confinement of the Mississippi River
between flood-control levees in much of southeastern Louisi-
ana has reduced and in places eliminated the regular overbank
flooding that historically brought freshwater and sediment to
coastal wetlands. Even though accretion rates in many coastal
Louisiana wetlands are among the highest anywhere in the
world, they are insufficient to keep pace with increasing water
levels (Hatton and others, 1983). To combat the loss of these
economically and ecologically valuable wetlands, large-scale
restoration projects are being proposed and implemented
(Barataria- Terrebonne National Estuary Program, 1994). One
restoration approach is to divert freshwater from the Missis-
sippi River across flood-control levees and into adjacent wet-
lands in order to recreate the natural springtime overbank
flooding that occurred before the levees were built.

Despite the potential benefits, the use of large river diver-
sions to restore Louisiana’s coastal wetlands is largely experi-
mental, with uncertain outcomes. Most coastal Louisiana
marshes increasingly rely on in-situ produced organic matter to
maintain elevation with respect to sea level. Large volumes of
organic matter accumulate in the shallow substrate (Turner and
others, 2004; Nyman and others, 1990). Moreover, water qual-
ity of the Mississippi River has changed markedly since the
turn of the 201 century (Turner and Rabalais, 1991) when the
river last overflowed its banks unencumbered by flood-control
levees. Since the early 1950’s, the annual spring floodwaters
of the Mississippi River have been characterized by a variety of
agricultural chemicals, as herbicides and fertilizers are washed
from farm fields in the Midwest (Meade, 1995; Clark and oth-
ers, 1999; Goolsby and Battaglin, 2000). Nitrate concentra-
tions are now (2005) as much as three times higher than in pre-
vious times when the river historically overflowed its banks
during the spring flood (Turner and Rabalais, 1991). Atrazine,
a herbicide commonly used on corn and sugarcane crops, was
not present in the Mississippi River prior to the early 1960’s.
By 2002, atrazine was present in low levels throughout the
year, and concentrations routinely peaked during the spring
flood (Demcheck and Swarzenski, 2003).

The increased reliance of marshes on organic matter to
maintain elevation, coupled with the changed water quality of
the Mississippi River, creates considerable uncertainty in using
freshwater diversions to restore coastal wetlands. Potential
problems include substrate biogeochemical changes, especially
those that affect the degradation and decomposition of the
organic matter. Nitrate and atrazine in particular could
adversely affect the ability of marshes to maintain elevation by
interfering with the incorporation of organic matter into the
marsh substrate. Other potential problems include changes to
plant productivity and patterns of biomass allocation between
aboveground and belowground partitions. Atrazine, designed
to inhibit root production, could interfere with the accumula-
tion of organic material into the peat substrate. Alone or in

combination, these potential problems could lead to other than
the desired outcome of wetland restoration.

The highest uncertainty of marsh response to the influx of
river water probably lies with peat marshes. These are common
in the freshwater reaches of coastal Louisiana (O’Neil, 1949;
Swarzenski and others, 1991; Sasser and others, 1994). The
Barataria Preserve of Jean Lafitte National Historical Park and
Preserve, hereinafter referred to as the Preserve, is one such
area containing large expanses of peat marsh. The Preserve is
located about 10 miles southwest of New Orleans, Louisiana
(fig. 1) and about 15 miles southeast of the Davis Pond Fresh-
water Diversion, the largest freshwater diversion project in
coastal Louisiana. The U.S. Geological Survey, in cooperation
with the National Park Service, surveyed pore-water and sub-
strate quality in the peat marshes of the Preserve from
January 2000 to June 2002 (fig. 2).

The study was originally designed to characterize pore-
water and substrate quality prior to and after the opening of the
Davis Pond diversion and to describe the rate, extent, and dura-
tion of river-water infiltration into the marsh interior (fig. 1).
The Davis Pond diversion was not open during the study period
due to construction delays. Since the first opening in 2003,
only small volumes of Mississippi River water have been
diverted (usually about 500-1,000 ft3/s), and then only intermit-
tently (Baumann and others, 2005). Flow has been well below
the 10,650 ft3/s capacity of the Davis Pond diversion. The data
collected from the Preserve were instead compared and con-
trasted with data on pore-water and substrate quality collected
from similar peat marshes receiving annual river water influx
from the Lower Atchafalaya River. These marshes are located
in the Penchant Basin, adjacent to the Lower Atchafalaya River
(fig. 1). The Penchant Basin area is the hydrological and eco-
logical equivalent of a large freshwater diversion, although the
river inflow is passive, due to prevailing hydraulic gradients
rather than deliberate routing through diversion structures. The
marshes and waterways of the Penchant Basin are ideally
located to evaluate the long-term effects of regular inflow of
river water on water quality and sustainability of a peat marsh
habitat in coastal Louisiana.

Purpose and Scope

This report describes pore-water and substrate quality of
the peat marshes at the Barataria Preserve of Jean Lafitte
National Historical Park and Preserve from January 2000 to
June 2002. The data collected at the Barataria Preserve provide
a baseline in anticipation of future changes in pore-water chem-
istry and possible changes in peat quality. The report also com-
pares similar constituents and properties sampled in some peat
marshes in the Penchant Basin and discusses potential changes
in pore-water and substrate quality in Preserve marshes that
could result after many years of regular inundation by Missis-
sippi River water. Data on water quality of the Mississippi
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Substrate samples were collected from the surface to a
depth of 25 c¢m in 5-cm increments at all 12 sites to determine
carbon and fiber content. The latter is a measure of substrate
decomposition or humification (Lynn and others, 1974). A
portion of each soil sample was dried at 70 °C to constant
weight and ground using a Wiley Mill. Total carbon content of
this subsample was measured using an elemental carbon ana-
lyzer (PerkinElmer 2400 Series II CHN). For the fiber determi-
nation, 30 mL of wet soil from each sample increment was
placed into a 60-mL syringe split longitudinally and marked in
1 mL increments. The soil was packed to approximate natural
moisture conditions, removed from the syringe, and then gently
rinsed through a sieve with 0.12-mm openings. The volume of
material remaining in the sieve was measured as a percentage
of the original by repacking the syringe. This remainder was
again rinsed through the same sieve, but this time was rubbed
between the thumb and fingers 10 times, to fractionate and
remove well decomposed material. The syringe was repacked
with the soil material remaining after the two rinsings, and the
volume measured as a percentage of the original. This proce-
dure was performed two or three times on each depth incre-
ment.

Fiber analysis is a standard technique used by soil scien-
tists to qualitatively assess the state of decomposition of a given
soil (Lynn and others, 1974). The analysis is subjective and
involves breaking down the organic matter by rubbing the
material between thumb and finger (mechanical fractionation).
Absolute values can differ depending on the person performing
the analyses, but the technique provides data useful for qualita-
tive trends. The technique has been successfully applied to
coastal Louisiana peat marshes in previous studies (Swarzenski
and others, 1991; Holm and others, 2000).

Samples from marshes in the Penchant Basin were col-
lected and analyzed in the same way as samples from the Pre-
serve. Sampling in the Penchant Basin and the Preserve was
usually carried out within a day of each other. Pore water in the
Penchant Basin was sampled at four sites dominated by Pani-
cum hemitomon. Fiber analyses were performed for the organic
substrate at the same four sites and at two additional sites dom-
inated by Sagittaria lancifolia.

Most water-quality data did not meet the normality and
equal variance criteria necessary to use parametric statistical
comparisons. Transforming the data using a logarithmic func-
tion did not effect a substantial change. For this reason, all sta-
tistical comparisons of water-quality constituents among plant
communities at the Preserve were made using the Kruskal-Wal-
lis ANOVA (analysis of variance) on ranks, with p< . If a dif-
ference in median were detected, Dunn’s method for pair-wise
multiple comparisons (p<0.05) was then applied to the data
from individual sites. Comparisons of water-quality constitu-
ents between the Preserve and the Penchant Basin were made

using the non-parametric equivalent of the paired student’s t-
test, the Mann-Whitney Rank Sum test.

Minimum reporting levels at OWQL for nutrients were
0.002 mg/L. In some instances, median concentrations were
just slightly above this level. Inferences among sites for these
constituents, even if statistically significant, should be made
with this in mind. Minimum reporting levels for atrazine were
0.004 pg/L. Values for all other constituents were at least 5
times greater than the minimum reporting level. The coeffi-
cients of variation for nitrite plus nitrate, orthophosphate, and
atrazine were 11, 7, and 3.7 percent, respectively, on duplicate
analyses for a subset of samples.

Substrate data met the requirements of normality and
equality of variance. The different plant communities at the
Preserve were compared using a one-way ANOVA. Tukey’s
test was used for the pair-wise multiple comparison. A paired
student’s t-test was used to compare substrate quality between
the two study areas. All water-quality data are presented as
25th percentile, median, and 75th percentile. Substrate data are
presented as the average + 1 standard deviation.
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Pore-Water and Substrate Quality of
Barataria Preserve Marshes

The pore-water constituents analyzed were selected either
because they were directly related to the health of the peat
marshes, including plants and the substrate, or because they
could be used to track the influx of river water into Preserve
marshes. Inorganic nutrients (ammonium and orthophos-
phate), potassium, chloride, and sulfate affect marsh productiv-
ity and processes that control the accretion of the peat substrate.
Peat-based wetlands generally are adapted to low-nutrient con-
ditions by extensive root systems. If nutrient concentrations
increase, the balance between accretion and decomposition
may be altered and thereby compromise the stability of the



8 Pore-Water and Substrate Quality of the Peat Marshes at the Barataria Preserve, Jean Lafitte National Historical Park

marsh (Boar and others, 1989). Chloride in this study is used
as a surrogate for salinity. Both chloride and its ionic comple-
ment sodium can be toxic to plants. Sulfide, the reduced form
of sulfate, is toxic to wetland plants, and inhibits uptake of
inorganic nutrients (Koch and Mendelssohn, 1989). The sul-
fate-sulfide redox pair is involved in many biogeochemical
reactions in marsh soils. Calcium and magnesium, and espe-
cially the relative proportions of their concentrations, can be
used to track influx of water from the Mississippi River (Hem,
1985; Swarzenski, 2003a).

Pore-Water Quality

Concentrations of the inorganic nutrients ammonium and
orthophosphate, the ions potassium and sulfate, and sulfide
generally increased in a consistent manner from the innermost
Panicum hemitomon dominated marsh communities to the
southernmost marsh communities dominated by Spartina pat-
ens and Schoenoplectus americanus (table 1). Median concen-
trations of filtered ammonium and orthophosphate in pore
water varied more than one order of magnitude among the six
major marsh communities at the Preserve. Nutrient concentra-
tions were much greater at the marsh communities dominated
by either Sagittaria lancifolia or by Spartina patens and
Schoenoplectus americanus, than at the four more interior
marsh communities. The nonfloating marsh dominated by
Panicum hemitomon had the lowest concentration of ammo-
nium at 45-cm depth, with amedian of 0.022 mg/L as nitrogen.
Median filtered ammonium (1.95 mg/L) and orthophosphate
(about 0.16 mg/L at 45-cm depth) concentrations were high-
est at the southernmost marsh community dominated by Spar-
tina patens and Schoenoplectus americanus. The floating
marsh dominated by Panicum hemitomon contained higher
inorganic nutrient concentrations at both 15- and 45-cm depths
than the non-floating Panicum hemitomon marsh.

Calcium, magnesium, and chloride concentrations were
about two to three times lower in the floating and nonfloating
marshes dominated by Panicum hemitomon than in the other
four marsh communities (table 1). Median chloride concentra-
tions were about 380-670 mg/L in the innermost habitat, and
about 1,400-1,800 mg/L in the remaining four communities.
The interior marshes are relatively well isolated from intrusion
of saltwater from the Gulf of Mexico, which has a higher chlo-
ride, calcium, and magnesium content. Ratios of calcium to
magnesium at all six marsh communities were lower than the
3-to-1 ratio typical of Mississippi River water (Swarzenski,
2003a) and decreased in order from the innermost sites to the
exposed marshes at the southern end of the Preserve (table 1).
A decrease was expected because the relative proportion of
magnesium relative to calcium is higher in saltwater (Hem,
1985). The consistent decrease in calcium to magnesium ratio
was surprising because concentrations of calcium and magne-
sium did not vary consistently among marsh communities
along the same gradient. Potassium concentrations increased

inversely in relation to calcium to magnesium ratios among the
six marsh communities, with one exception at 45-cm depth at
the marsh type monotypically dominated by Sagirtaria lanci-
folia (table 1). Sulfate concentrations increased steadily along
the gradient of increasing exchange with adjacent surface
waters except at the marsh dominated by Sagirtaria lancifolia
(table 1).

Median sulfide concentrations in pore water varied from
about 0.07 mg/L at 5-cm depth in the nonfloating marsh dom-
inated by Panicum hemitomon to 6.0 mg/L at 5-cm and
11.0 mg/L at 45-cm depth at the southernmost site dominated
by Spartina patens and Schoenoplectus americanus (table 2).
Concentrations generally increased with depth, except at the
nonfloating Panicum hemitomon marsh. In the two marsh
communities dominated by Panicum hemitomon, pH was
around 5.7-5.9; pH did not vary much with depth and was
highest, around 6.4, at the southernmost site. The redox poten-
tial of the soil decreased rapidly and consistently with depth;
values at corresponding depths were similar at the three marsh
communities sampled (table 2).

The segregation of plants in the Preserve into distinct
communities is readily apparent, and formed the basis for the
sampling design for this study. Sharply contrasting concentra-
tions in pore water among the six major marsh communities
indicate that differential tolerance to salinity and sulfide are
important factors underlying this segregation (fig. 4). Chlo-
ride (and its complement sodium) and sulfate are introduced to
the Preserve by water from the Gulf of Mexico; pore-water
concentrations are influenced by the frequency and duration of
saltwater intrusion events into the Preserve. Locations within
the Preserve experience the salinity pulses with differing
intensity, depending on their proximity to canals and the
southern end of the Preserve. Interior areas of the Preserve are
better protected from intrusion by higher salinity water than
areas closer to waterways and the southern end of the Preserve.

Salinity, as represented by chloride, appeared to divide
Preserve marshes into two zones that differed in whether Pani-
cum hemitomon was dominant or was at best marginally
present (table 1). At the four communities not dominated by
Panicum hemitomon, sulfide appeared to play a bigger role in
segregating the plants into readily identifiable communities
because median chloride concentrations were similar (1,400-
1,800 mg/L). Sulfide concentrations rapidly increased with
increasing exchange and proximity to the southernmost part of
the Preserve.

The consistent decrease in calcium to magnesium ratios
in pore water was mirrored by a consistent increase in sulfide
concenirations along the gradient of increasing exchange with
adjacent surface water and proximity to the southern end of the
Preserve (fig. 4). There was no direct relation between chlo-
ride and the ratio of calcium to magnesium (fig. 4). The sen-
sitivity of this ratio to changes in sulfide concentrations sug-
gests that it may be useful in distinguishing among the plant
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at the 9- and 18-cm depths in the Penchant Basin marshes
(table 6). Soil conditions in Penchant Basin marshes were
more reduced at these depths than those in the Preserve.

Substrate Quality

There was significantly less organic matter in the upper
25 cm of substrate in Penchant Basin marshes than in Preserve
marshes (table 7). This held for both marsh habitats sampled.
The higher mineral content in Penchant Basin marshes demon-
strated that suspended mineral sediment from river water
reaches marsh interiors.

Penchant Basin marshes were more decomposed than
those in the Preserve by all three measures of fiber content used
(table 7). The rubbed fiber content of Penchant Basin marshes
was less than 50 percent of the original, unsieved soil volume.
About 75 percent of the unrubbed soil volume of samples from
Preserve marshes remained in the sieve after mechanical frac-
tionation in both marsh community types. In the Penchant
Basin area, the corresponding value was more than 20 percent
lower.

Lower fiber content indicates a more decomposed sub-
strate (Lynn and others, 1974). Substrate with high fiber con-
tent can be considered of higher quality, and less likely to break
apart.

Relevance to the Barataria Preserve

The marshes of the Preserve provide a good contrast for an
ecologically similar area that through June 2002 had received
very little, if any, inflow of river water. A comparison of con-
ditions in the two study areas can provide some insight into how
the marshes of the Preserve may respond to the future regular
influx of water from the Mississippi River through the Davis
Pond Freshwater Diversion.

Surface-Water Quality

One purpose of diverting freshwater into estuaries is to
keep salinity of surface waters low. Chloride and sulfate con-
centrations in surface water were significantly lower in the Pen-
chant Basin than in the Preserve. Regular inflow of river water

Table 7. Carbon content and fiber analysis of substrate (surface to 25-cm depth) of marshes at the Barataria Preserve, Jean Lafitte
National Historical Park and Preserve, and the Penchant Basin, Louisiana.

[Averages within a plant community were compared using a paired student’s t-test, p < 0.001; numbers in the same row with the same letter
superscript are not statistically different. n, number of samples; s.d., standard deviation]

Panicum hemitomon (n = 4)

Sagittaria lancifolia (n = 2)

Parameter Statistic Barataria Preserve Penchant Basin Barataria Preserve  Penchant Basin
n=30 n=20 n=10 n=10
Average 45.1% 37.9° 39.12 3}?’

Percent carbon +1 s.d. L5 55 6.9 .
Percent fiber content

Unrubbed! Average 88.2% 76.2° 8411. ; a 72.9*’

(percent of original soil +1 s.d. 28 25 . -

volume)

Rubbed? Average 68.9% 44.0° 61.7° 4:(1).(5"’

(percent of original soil +1 s.d. 4.0 39 5.7 X

volume)

Rubbed Average 78.32 57.8° 73.28 54.£21b

(percent of unrubbed soil +1s.d. 4.8 4.8 5.6 9.

volume)

! Unrubbed refers to volume of soil remaining after rinsing through a sieve with an opening of 0.125 mm.
2 Rubbed refers to volume of soil remaining after consistent fractionation of the soil and rinsing over the same sieve.















Flow of river water across wetlands and shallow ponds
during the spring mid-continent flush resulted in the uptake of
nitrogen, sulfate, and atrazine in peat marshes. Filtered nitrite-
plus-nitrate and orthophosphate concentrations in receiving
water in the Penchant Basin were reduced by about 80 to
90 percent and 65 to 75 percent respectively, compared with
the inflowing river water. Filtered sulfate concentrations were
about 30 percent lower in receiving waters than in the inflowing
river water. Median atrazine concentrations were about 66 to
75 percent lower in receiving water.

The freshwater input in the Penchant Basin lowered chlo-
ride concentrations in surface water and pore water. River
inflow could lower chloride in parts of the Preserve and
increase the area where Panicum hemitomon communities
could occur.

Regular exposure of the peat substrate to nitrate and sul-
fate from an external source, such as a freshwater diversion,
could over time result in deterioration of the organic substrate
and compromise the long-term sustainability of peat marshes.
Both nitrite-plus-nitrate and sulfate are terminal electron accep-
tors and become reduced upon entering the flooded, anaerobic
marsh soil. Organic matter, an electron donor, is oxidized dur-
ing both reactions and becomes more decomposed in the pro-
cess. Because of the steady input of sulfate, and its reduction
to sulfide in the Penchant Basin, pore-water sulfide concentra-
tions are higher there than in corresponding Panicum hemito-
mon dominated marshes in the Barataria Preserve. High sulfide
concentrations inhibit uptake of nutrients by plants and allow
pools of inorganic nutrients to accumulate in pore water. Large
pools of inorganic nutrients and sulfides represent a degrada-
tion of the soil environment in which the marsh plants grow.
Microbial activity is stimulated by elevated nutrient concentra-
tions and may further accelerate decomposition of the organic
substrate.

A comparison of pore-water and substrate quality in simi-
lar peat marshes either regularly inundated by river water or not
at all, indicated possible adverse effects to marshes that rely
almost exclusively on in-situ derived organic matter to build
their substrate. The severe decline of the Panicum hemitomon
dominated marsh community in the Penchant Basin over the
past 30 years could be, in part, a response to the changed water
quality associated with river water inflow. The effect the Davis
Pond Freshwater Diversion, designed to simulate natural pro-
cesses, will have on the peat marshes of the Barataria Preserve
is uncertain, and will depend on hydrology (how much and how
frequently river water penctrates the Barataria Preserve) as well
as water-quality characteristics associated with the Mississippi
River.
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