Link to USGS home page.
PUBLICATIONS—Scientific Investigations Reports

Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2nd Edition

By Mark D. Munn, Robert J. Gilliom, Patrick W. Moran, and Lisa H. Nowell


U.S. GEOLOGICAL SURVEY


Scientific Investigations Report 2006-5148


Sacramento, California 2006



National Water-Quality Assessment Program

Complete accessible text of report (4.8 MB PDF)

To view PDF documents, you must have the Adobe Acrobat Reader (free from Adobe Systems) installed on your computer.
(download free copy of Acrobat Reader).

Abstract

   The U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program is designed to assess current water-quality conditions, changes in water quality over time, and the effects of natural and human factors on water quality for the Nation’s streams and ground-water resources. For streams, one of the most difficult parts of the assessment is to link chemical conditions to effects on aquatic biota, particularly for pesticides, which tend to occur in streams as complex mixtures with strong seasonal patterns.

A Pesticide Toxicity Index (PTI) was developed that combines pesticide exposure of aquatic biota (measured concentrations of pesticides in stream water) with acute toxicity estimates (standard endpoints from laboratory bioassays) to produce a single index value for a sample or site. The development of the PTI was limited to pesticide compounds routinely measured in NAWQA studies and to toxicity data readily available from existing databases. Qualifying toxicity data were found for one or more types of test organisms for 124 of the 185 pesticide compounds measured in NAWQA samples, but with a wide range of available bioassays per compound (1 to 232). In the databases examined, there were a total of 3,669 bioassays for the 124 compounds, including 398 48-hour EC50 values (concentration at which 50 percent of test organisms exhibit a sublethal response) for freshwater cladocerans, 699 96-hour LC50 values (concentration lethal to 50 percent of test organisms) for freshwater benthic invertebrates, and 2,572 96-hour LC50 values for freshwater fish. The PTI for a particular sample is the sum of toxicity quotients (measured concentration divided by the median toxicity concentration from bioassays) for each detected pesticide, and thus, is based on the concentration addition model of pesticide toxicity. The PTI can be calculated for specific groups of pesticides and for specific taxonomic groups.

Although the PTI does not determine whether water in a sample is toxic to aquatic organisms, its values can be used to rank or compare the toxicity of samples or sites on a relative basis for use in further analysis or additional assessments. The PTI approach may be useful as a basis for comparing the potential significance of pesticides in different streams on a common basis, for evaluating relations between pesticide exposure and observed biological conditions, and for prioritizing where further studies are most needed.

CONTENTS

Abstract

Introduction

Background

Purpose and Scope

Acknowledgments

Development of the Pesticide Toxicity Index

Applications of the Pesticide Toxicity Index

Example Application

Limitations of the Pesticide Toxicity Index

Summary and Conclusions

References Cited


Document Accessibility: Adobe Systems Incorporated has information about PDFs and the visually impaired. This information provides tools to help make PDF files accessible. These tools convert Adobe PDF documents into HTML or ASCII text, which then can be read by a number of common screen-reading programs that synthesize text as audible speech. In addition, an accessible version of Acrobat Reader 6.0 for Windows (English only), which contains support for screen readers, is available. These tools and the accessible reader may be obtained free from Adobe at Adobe Access.



Water Resources of California


FirstGov button  Take Pride in America button