Skip Links

USGS - science for a changing world

Scientific Investigations Report 2006–5165

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 19. Leaching Characteristics of Composited Materials from Mine Waste-Rock Piles and Naturally Altered Areas near Questa, New Mexico

By Kathleen S. Smith, Philip L. Hageman, Paul H. Briggs, Stephen J. Sutley, R. Blaine McCleskey, K. Eric Livo, Philip L. Verplanck, Monique G. Adams, and Pamela A. Gemery-Hill

coverpage and link to report PDF (3.4 MB)Download Publication
SIR 2006-5165
PDF (3.4 MB)
Right-Click to 'Download' or 'Save As'

The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials.

For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2–4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0–6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles.

Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0–4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.

Version 1.0

Posted October 2007

Suggested citation:

Smith, K.S., Hageman, P.L., Briggs, P.H., Sutley, S.J., McCleskey, R.B., Livo, K.E., Verplanck, P.L., Adams, M.G., and Gemery-Hill, P.A., 2007, Questa baseline and pre-mining ground-water quality investigation. 19. Leaching characteristics of composited materials from mine waste-rock piles and naturally altered areas near Questa, New Mexico: U.S. Geological Survey Scientific Investigations Report 2006–5165, 49 p.

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Acrobat Reader or similarsoftware is required to view it. Download the latest version of Acrobat Reader, free of charge or go to for free tools that allow visually impaired users to read PDF files.

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contact USGS
Page Last Modified: Thursday, December 01 2016, 07:37:42 PM