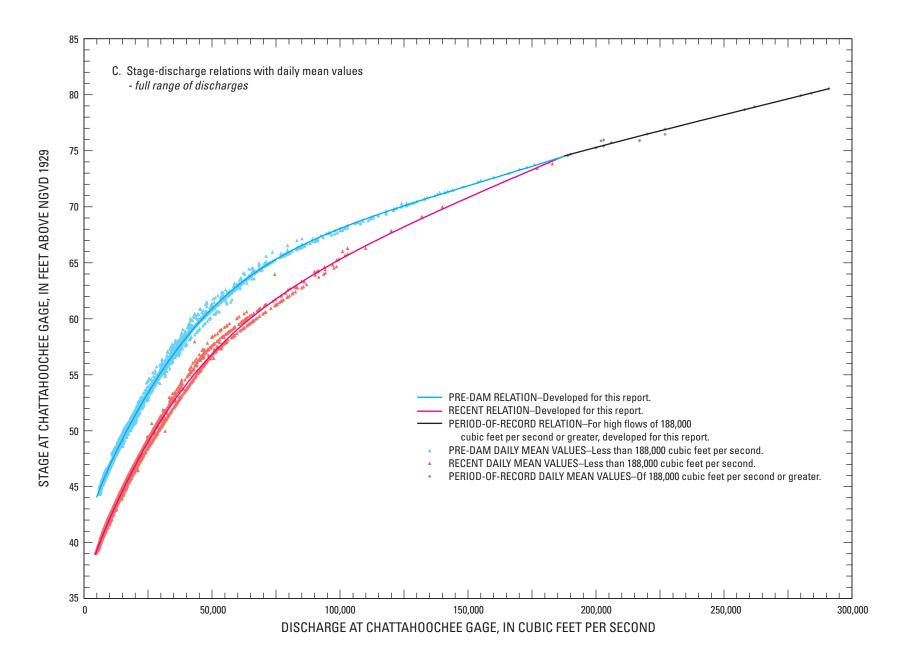
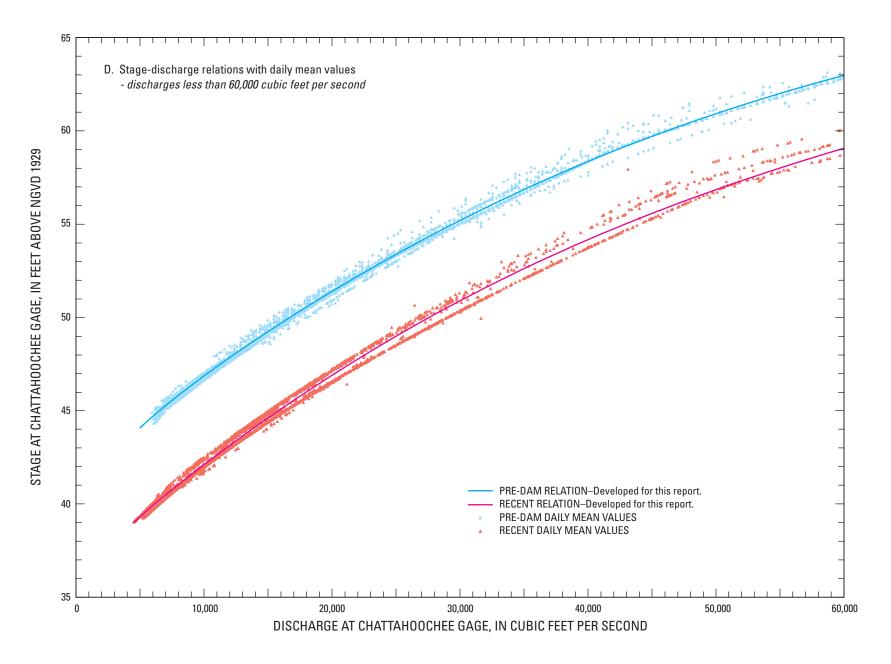
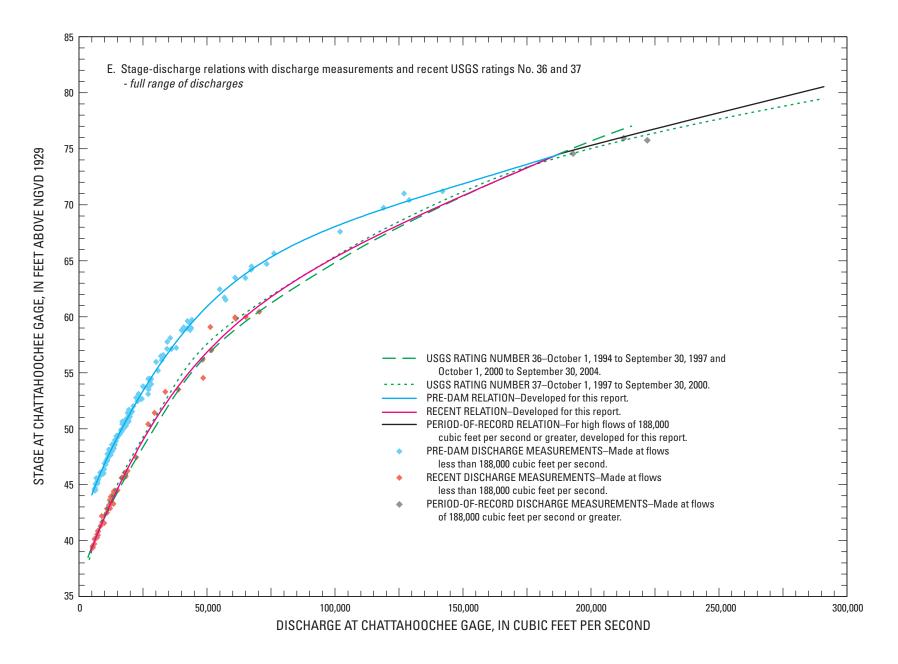

# Appendixes I–X



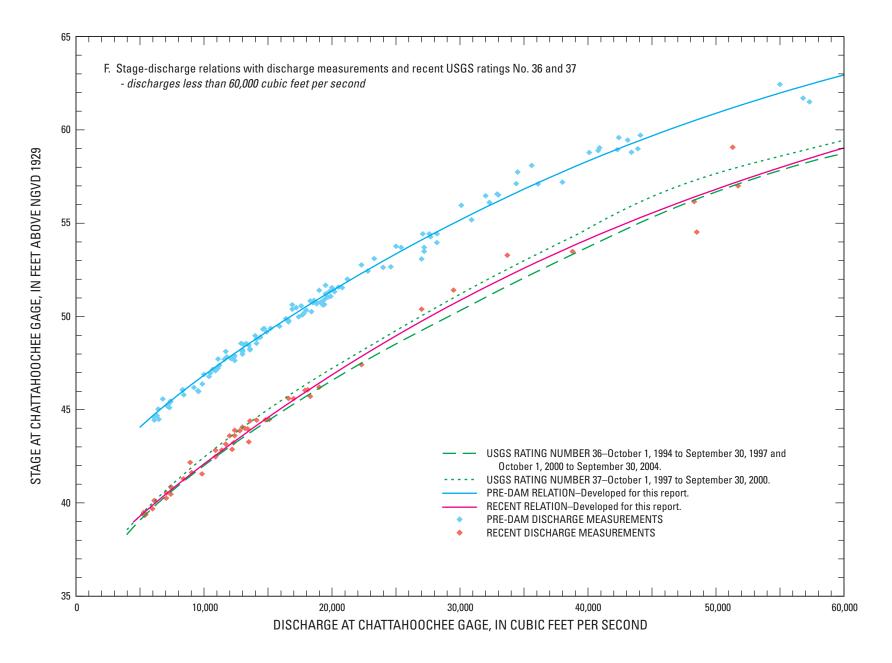

Appendix I. Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.


招

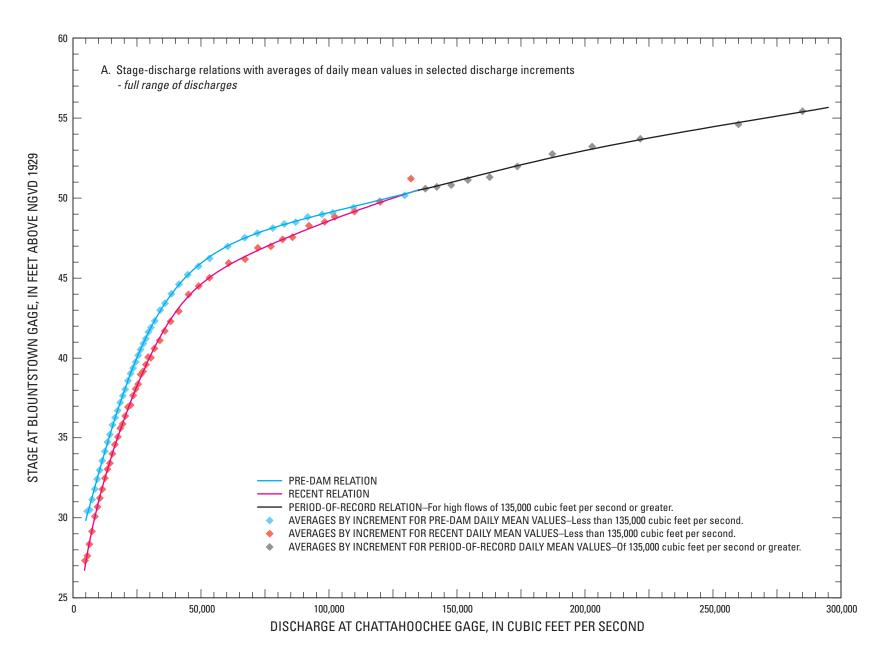



Appendix I. (Continued) Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.

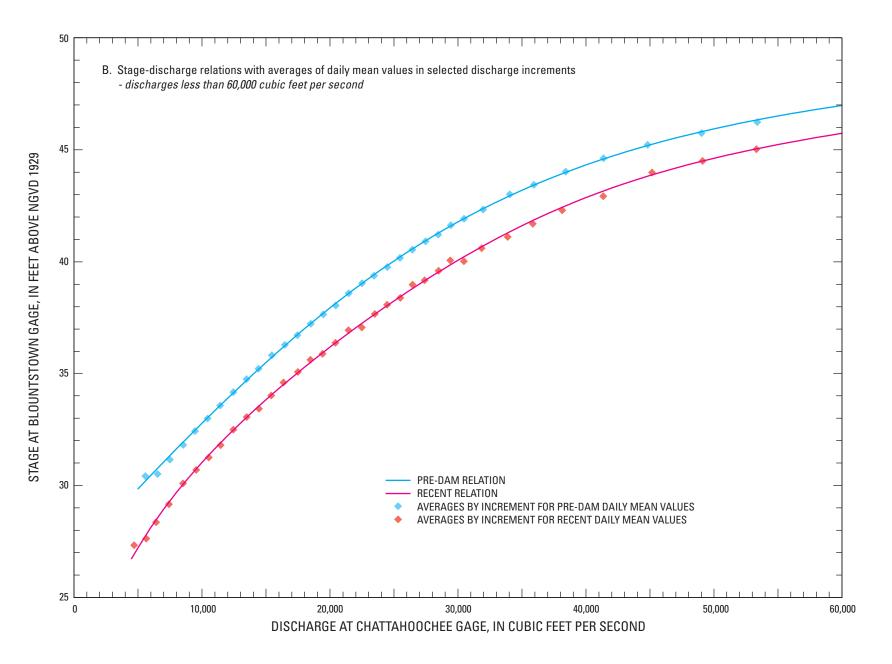



Appendix I. (Continued) Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.

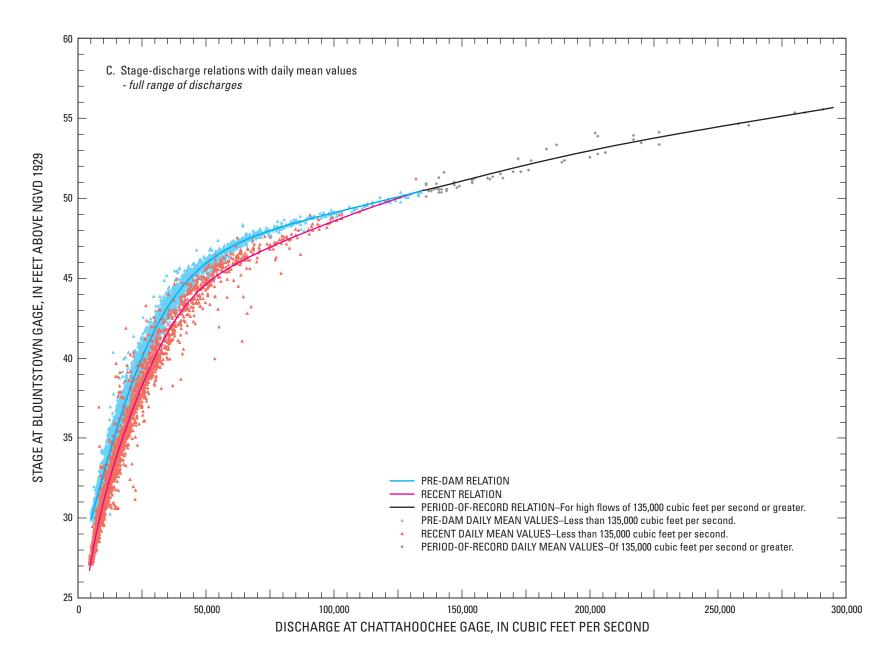



Appendix I. (Continued) Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.



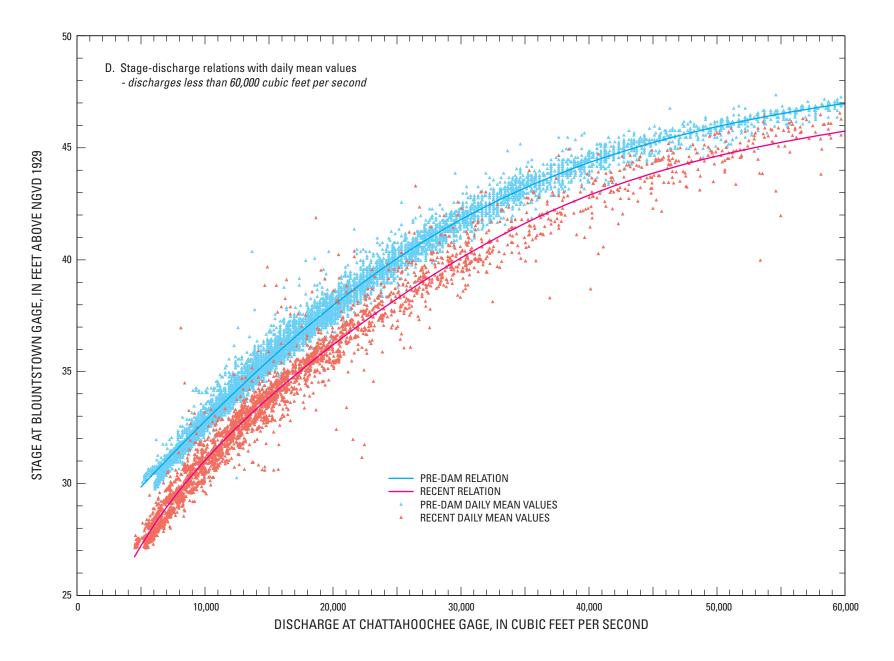

Appendix I. (Continued) Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.



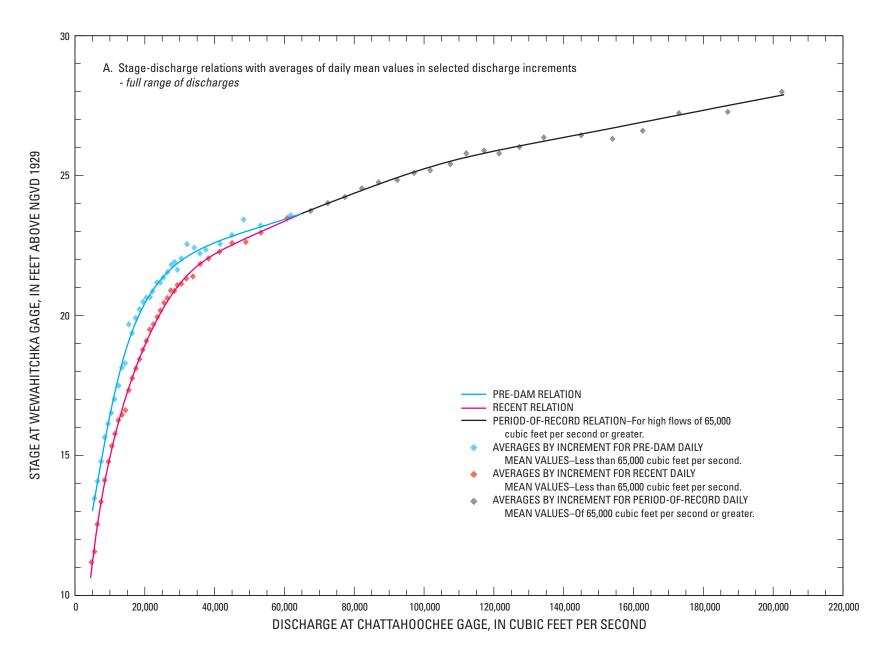

Appendix I. (Continued) Stage-discharge relations at the Chattahoochee streamgage in the Apalachicola River, Florida.



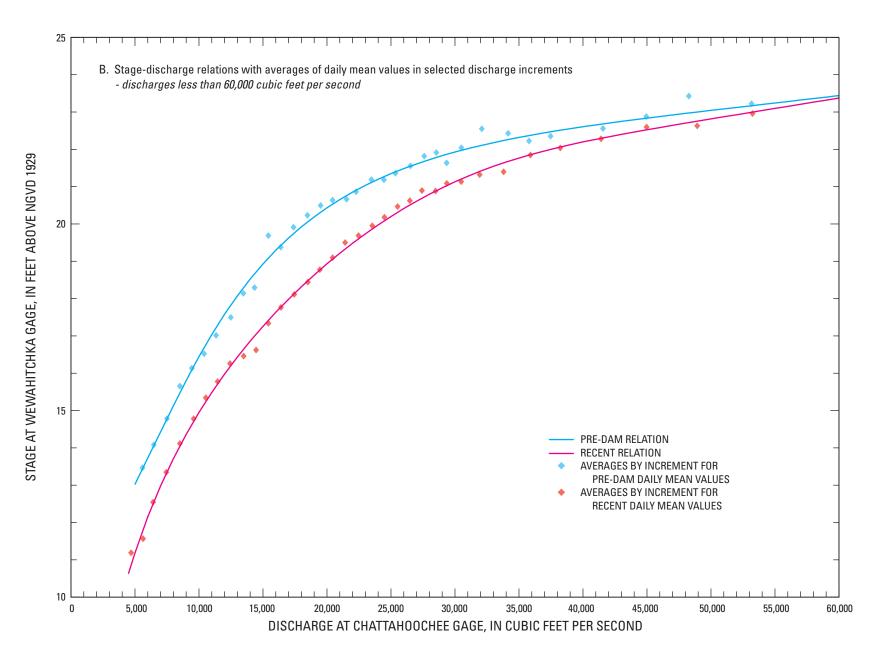
**Appendix II.** Stage at the Blountstown streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 1 day, as defined in glossary.



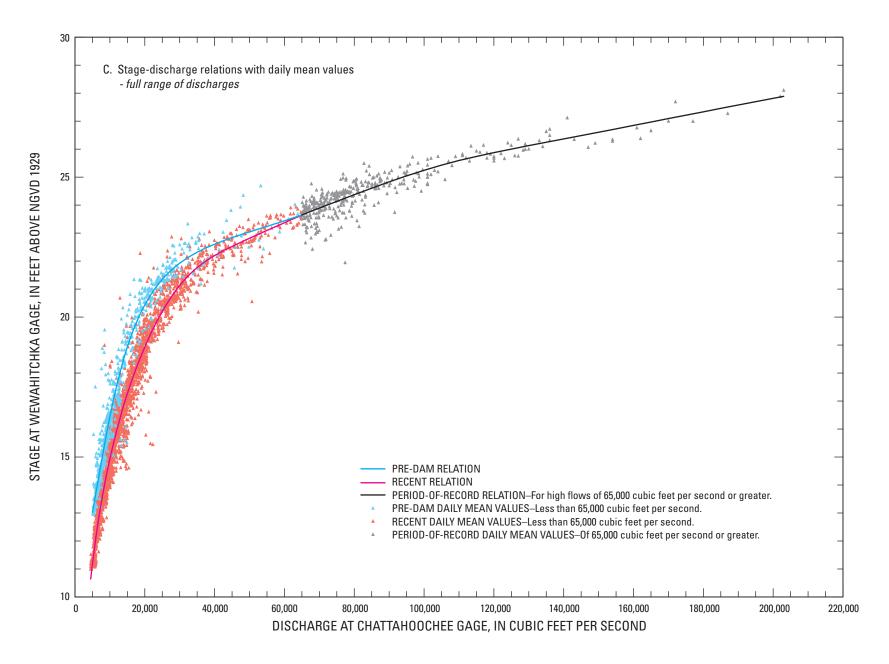

**Appendix II. (Continued)** Stage at the Blountstown streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 1 day, as defined in glossary.



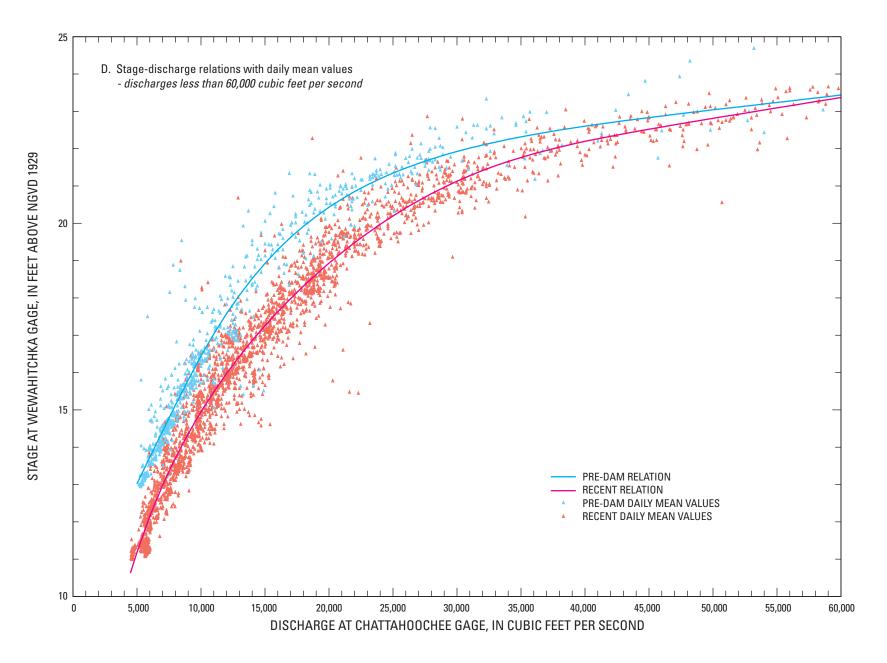

**Appendix II. (Continued)** Stage at the Blountstown streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 1 day, as defined in glossary.


ຊ

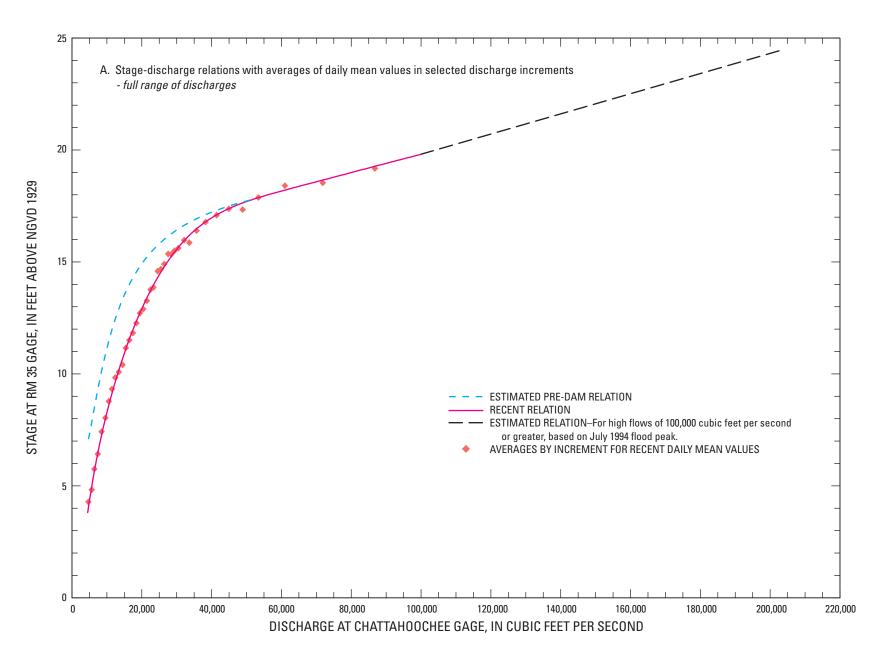



**Appendix II. (Continued)** Stage at the Blountstown streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 1 day, as defined in glossary.




**Appendix III.** Stage at the Wewahitchka streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.

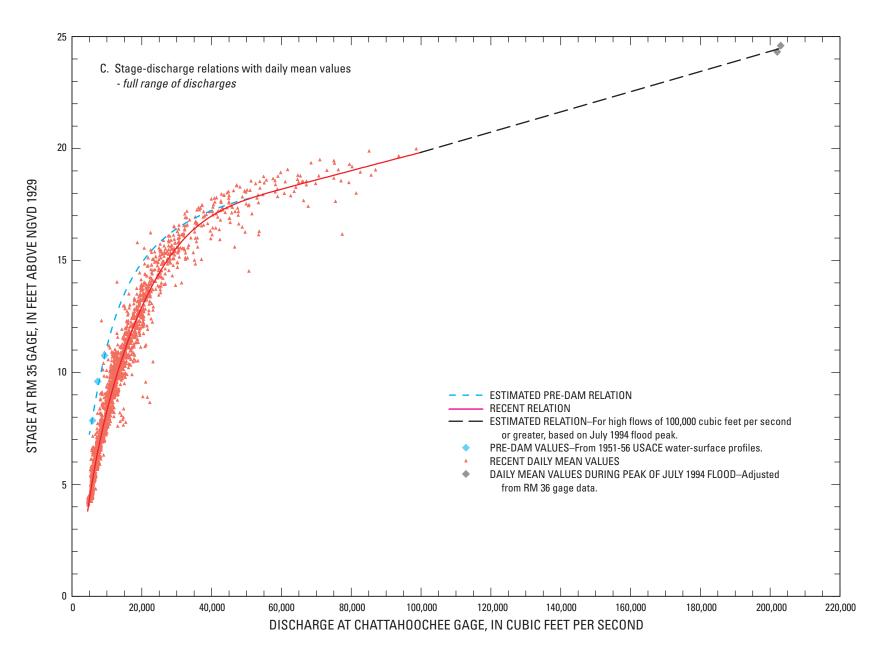



**Appendix III. (Continued)** Stage at the Wewahitchka streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.



**Appendix III. (Continued)** Stage at the Wewahitchka streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.

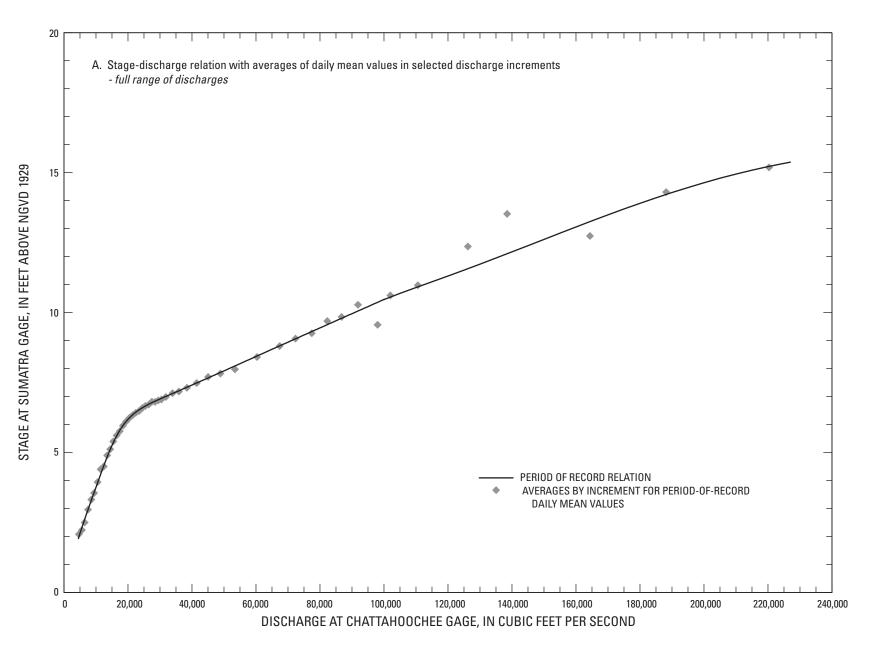



**Appendix III. (Continued)** Stage at the Wewahitchka streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.

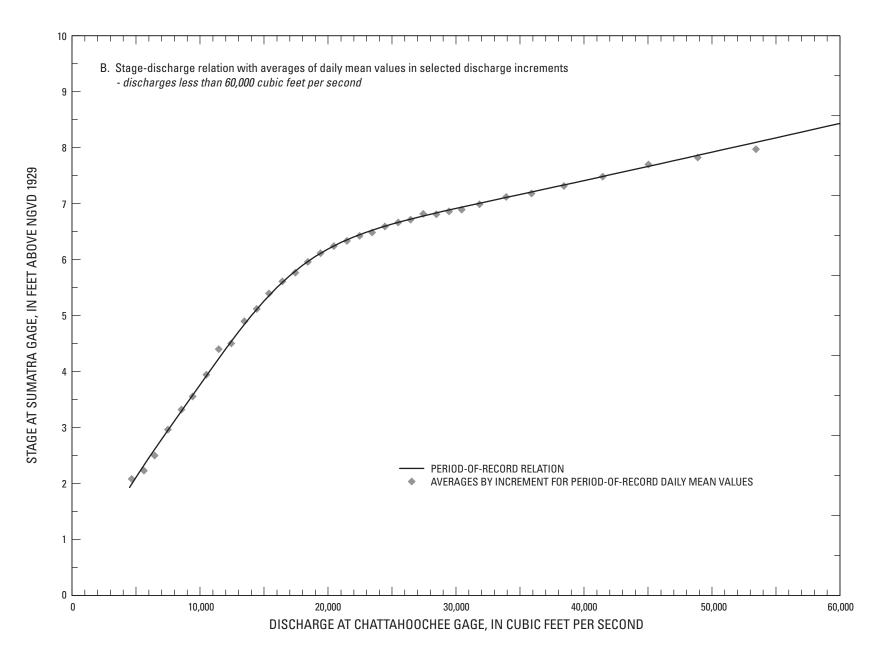


**Appendix IV**. Stage at the RM 35 streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.

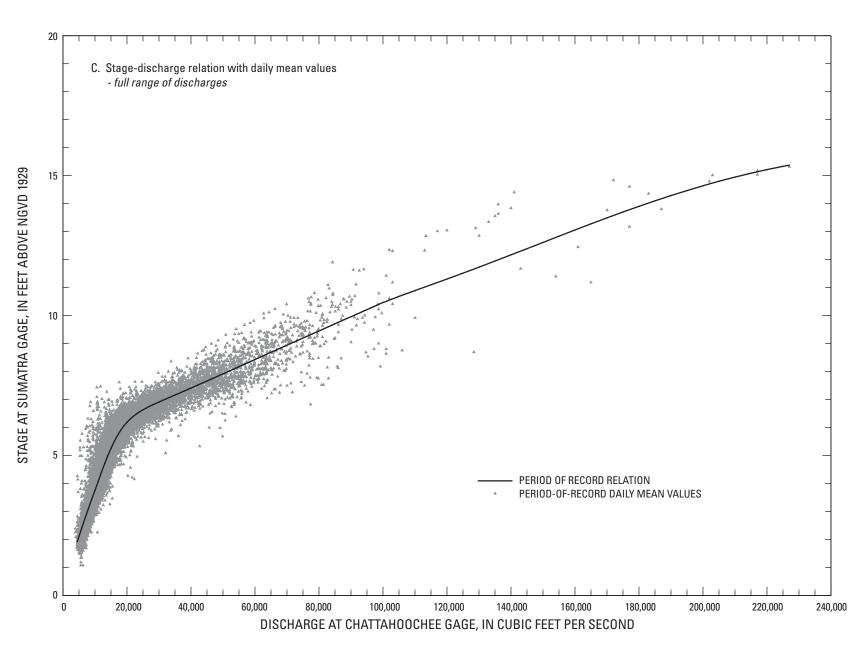



**Appendix IV. (Continued)** Stage at the RM 35 streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.

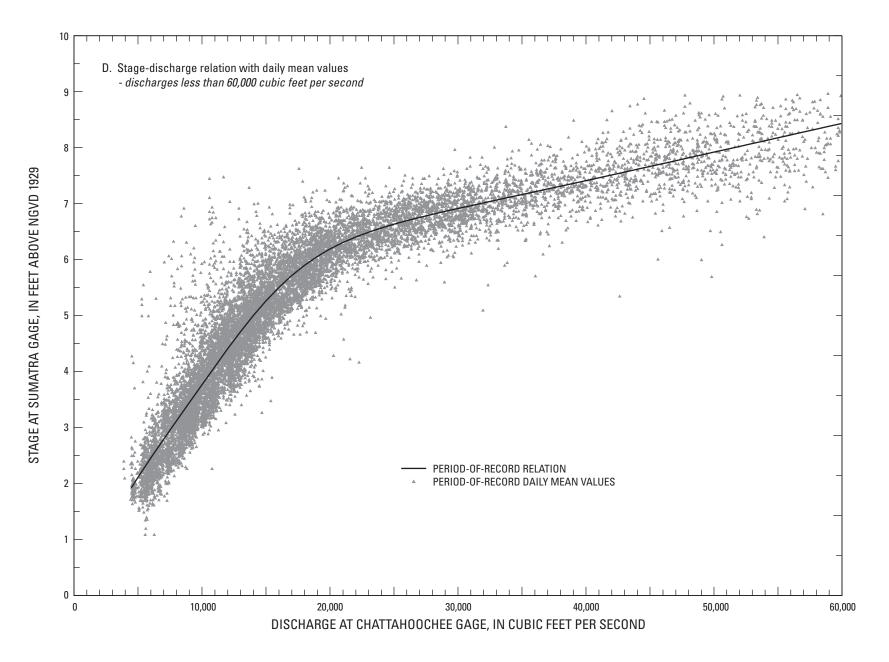



**Appendix IV. (Continued)** Stage at the RM 35 streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.




**Appendix IV. (Continued)** Stage at the RM 35 streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 2 days, as defined in glossary.




**Appendix V.** Stage at the Sumatra streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 3 days, as defined in glossary.



**Appendix V. (Continued)** Stage at the Sumatra streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 3 days, as defined in glossary.



**Appendix V. (Continued)** Stage at the Sumatra streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 3 days, as defined in glossary.



**Appendix V. (Continued)** Stage at the Sumatra streamgage in relation to discharge at the Chattahoochee streamgage in the Apalachicola River, Florida. Relations were developed using a lag time of 3 days, as defined in glossary.

# Appendix VI. Formulas defining stage-discharge relations developed from long-term streamgage data on the Apalachicola River, Florida.

[Stage-discharge relations developed for this report relate stage at all gages to discharge at Chattahoochee gage using lag times as defined in glossary. A hand-drawn line was fitted through the averages of daily mean values in selected discharge increments (shown in graphs A and B of appendixes I-V). The points defining the hand-drawn line were entered into a curve-fitting software program to generate the formulas shown here. NOTE: Relations were developed only for the specific range of discharges indicated. Symbols used in formulas: y, stage at gage site; x, discharge at Chattahoochee; LN, natural logarithm of; ^, raised to the power of; \*, times; /, divided by; SQRT, square root of. ft<sup>3</sup>/s, cubic feet per second]

| Name of stage-discharge relation                                                          | Range of discharges for<br>indicated<br>relation, in ft <sup>3</sup> /s | Formula that defines indicated relation (first formula, in bold italics, emphasizes form of equation and depicts coefficients using<br>letters a through h; second formula includes appropriate numeric values for coefficients;<br>other symbols explained in header)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chattahoochee pre-dam                                                                     | 5,000 to 188,000                                                        | $y = (a + cLNx + e(LNx)^2 + g(LNx)^3)/(1 + bLNx + d(LNx)^2 + f(LNx)^3) \qquad y = (36.46419 + .8.759358 * LN(x) + 0.7013277 * LN(x) + 0.01857202 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * LN(x) + .0.005656828 * (LN(x))^3)/(1 + .0.2476923 * LN(x) + .0.205087 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .0.207 * .$ |
| Chattahoochee recent                                                                      | 5,000 to 188,000                                                        | $y = (a + cLNx + e(LNx)^2 + g(LNx)^3)/(1 + bLNx + d(LNx)^2 + f(LNx)^3) \qquad y = (32.70129 + .7.959521 * LN(x) + 0.6462684 * LN(x) + 0.01726782 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * LN(x) + .0.005899609 * (LN(x))^3)/(1 + .0.2506587 * LN(x) + .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 * .0.210629 $ |
| Chattahoochee period of record<br>(discharges greater than<br>188,000 ft <sup>3</sup> /s) | 188,000 to 291,000                                                      | <i>y=a+bx</i> ^( <i>1.5</i> )+ <i>cLNx/x</i> ^2<br>y=71.502+0.000000063368*x*SQRT(x)+-6145800000*LN(x)/(x*x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Blountstown pre-dam                                                                       | 5,000 to 135,000                                                        | $y = (a + cx^{(0.5)} + ex)/(1 + bx^{(0.5)} + dx + fx^{(1.5)}) \qquad y = (25.7675 + -0.169116*SQRT(x) + 0.000707624*x)/(1 + -0.00795382*SQRT(x) + 0.000301019*x + -0.0000000195457*x*SQRT(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Blountstown recent                                                                        | 5,000 to 135,000                                                        | $y = (a + cx^{(0.5)} + ex + gx^{(1.5)})/(1 + bx^{(0.5)} + dx + fx^{(1.5)}) \qquad y = (16.2468 + 0.0838415^{*}SQRT(x) + -0.00158704^{*}x + 0.00000505012^{*}x^{*}SQRT(x))/(1 + -0.00602802^{*}SQRT(x) + -0.0000013423^{*}x + 0.000000613884^{*}x^{*}SQRT(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Blountstown period of record<br>(discharges greater than<br>135,000 ft <sup>3</sup> /s)   | 135,000 to 291,000                                                      | <i>y=a+bx+c/x^(0.5)+dLNx/x+e/x</i><br>y=-319.484+0.000164829*x+452543/SQRT(x)+-38552700*LN(x)/x+336092000/x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wewahitchka pre-dam                                                                       | 5,000 to 65,000                                                         | <i>y=a+b/LNx+c/(LNx)^2+d/(LNx)^3+e/(LNx)^4+f/(LNx)^5</i> y=36019.307+-1730956/LN(AI3)+33161881/(LN(AI3))^2+-316295790/(LN(AI3))^3+1501669600/(LN(AI3))^4+-2839282900/(LN(AI3))^5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Wewahitchka recent                                                                        | 5,000 to 65,000                                                         | $y = (a + cx^{(0.5)} + ex + gx^{(1.5)})/(1 + bx^{(0.5)} + dx + fx^{(1.5)}) \qquad y = (-6.04395 + 0.407601 * SQRT(x) + -0.00355355 * x + 0.00000911464 * x * SQRT(x))/(1 + -0.002056266 * SQRT(x) + -0.0000679837 * x + 0.000000255263 * x * SQRT(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wewahitchka period of record<br>(discharges greater than<br>65,000 ft <sup>3</sup> /s     | 65,000 to 203,000                                                       | $y=(a+cLNx+e(LNx)^{2}+g(LNx)^{3})/(1+bLNx+d(LNx)^{2}+f(LNx)^{3})$<br>y=(14.23322839+-3.115040943*LN(x)+0.2199988079*LN(x)*LN(x)+-0.004930216433*(LN(x))^{3})/(1+-0.2360226768*LN(x)+0.0184113499*LN(x)*LN(x)+-0.0004736537139*(LN(x))^{3}))/(1+-0.2360226768*LN(x)+0.0184113499*LN(x)*LN(x)+0.0004736537139*(LN(x))^{3}))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RM 35 estimated pre-dam                                                                   | 5,000 to 52,000                                                         | <i>y=a+bx+cx</i> <sup>2</sup> <i>+dx</i> <sup>2</sup> <i>lnx+ex</i> <sup>(2.5)</sup><br>y=-0.041366+0.0021784*x+-0.00000072654*x*x+0.000000071414*x*x*LN(x)+-0.000000003694*x*x*SQRT(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RM 35 recent                                                                              | 5,000 to 100,000                                                        | $y = (a + cx^{(0.5)} + ex + gx^{(1.5)})/(1 + bx^{(0.5)} + dx + fx^{(1.5)}) \qquad y = (-9.0383 + 0.28127 * \text{SQRT}(x) + -0.0018663 * x + 0.0000042952 * x * \text{SQRT}(x))/(1 + -0.0033541 * \text{SQRT}(x) + -0.000020966 * x + 0.00000011465 * x * \text{SQRT}(x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RM 35 estimated high flow                                                                 | 100,000 to 203,000                                                      | <i>y=a+bx</i> y=15.307+0.000045139*x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sumatra period of record<br>(discharges less than<br>100,000 ft <sup>3</sup> /s)          | 5,000 to 100,000                                                        | $\begin{aligned} y = (a + cx^{(0.5)} + ex + gx^{(1.5)})/(1 + bx^{(0.5)} + dx + fx^{(1.5)} + hx^{2}) \\ y = (-2.03362 + 0.0956435^* \text{SQRT}(x) + -0.00105982^* x + 0.00000394975^* x^* \text{SQRT}(x))/\\ (1 + -0.00806881^* \text{SQRT}(x) + -0.0000393046^* x + 0.00000489282^* x^* \text{SQRT}(x) + -0.00000000548872^* x^* x) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sumatra period of record<br>(discharges greater than<br>100,000 ft <sup>3</sup> /s)       | 100,000 to 227,000                                                      | <i>y=a+bx+c/LNx+d/x+e/x</i> ^( <i>1.5</i> )<br>y=2317.753+-0.0003114299*x+-29250.1/LN(x)+42348710/x+-5028014000/(x*SQRT(x))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

## 78 Water-Level Decline in the Apalachicola River, Florida, from 1954 to 2004, and Effects on Floodplain Habitats

**Appendix VII.** Formulas used to interpolate stage between gages in relation to discharge at the Chattahoochee gage in the Apalachicola River, Florida.

| onyms used in formulas                                                    |                                          |
|---------------------------------------------------------------------------|------------------------------------------|
| Location-related terms:                                                   |                                          |
| BGS (between-gage site for which interpolated stage-discharge relation is | being calculated)                        |
| BGSStg (stage at BGS)                                                     |                                          |
| USG (closest upstream gage to between-gage site)                          |                                          |
| USGStg (stage at USG derived from stage-discharge relations based on lo   | ng-term gage records)                    |
| DSG (closest downstream gage to between-gage site)                        |                                          |
| DSGStg (stage at DSG derived from stage-discharge relations based on lo   | ng-term gage records)                    |
| RM (river mile)                                                           |                                          |
| Terms related to slope proportions:                                       | Other terms:                             |
| WSP (water-surface profile)                                               | JP (joining point flow)                  |
| WSPP (slope proportion calculated from stage in WSP)                      | JPS (stage at JP)                        |
| WSPPStg (stage calculated using WSPP)                                     | AVGP&R (average of pre-dam and recent)   |
| DISTP (slope proportion based on straight-line RM distance)               | DIFF9300 (Difference between DISTPStg    |
| DISTPStg (stage calculated using DISTP)                                   | and WSPPStg at 9,300 ft <sup>3</sup> /s) |

| A. Calculation of | BGSStg in low f | low range (Chat | tahoochee flow: | s of 9,300 ft³/s or less) |  |
|-------------------|-----------------|-----------------|-----------------|---------------------------|--|
| 0. 1              |                 |                 |                 |                           |  |

Step 1.

```
Pre-dam WSPP for BGS =
```

 $\label{eq:2.1} \begin{array}{l} ((USGStg at 9,300 \ ft^3/s) \mbox{--} (BGSStg at 9,300 \ ft^3/s \ derived \ from \ 1956 \ WSP)) \ / \\ ((USGStg at 9,300 \ ft^3/s) \mbox{--} (DSGStg \ at 9,300 \ ft^3/s)) \end{array}$ 

#### Step 2.

Recent WSPP for BGS =

((USGStg at 9,300 ft<sup>3</sup>/s) - (BGSStg at 9,300 ft<sup>3</sup>/s derived from 1995 WSP)) /

((USGStg at 9,300 ft<sup>3</sup>/s) - (DSGStg at 9,300 ft<sup>3</sup>/s))

#### Step 3 (final step for pre-dam stage).

Pre-dam WSPPStg at BGS for given discharge = (pre-dam USGStg at given discharge) -

((pre-dam WSPP for BGS) x ((pre-dam USGStg at given discharge) - (pre-dam DSGStg at given discharge)))

## Step 4 (final step for recent stage).

Recent WSPPStg at BGS for given discharge = (recent USGStg at given discharge) -

((recent WSPP for BGS) x ((recent USGStg at given discharge) - (recent DSGStg at given discharge)))

#### B. Calculation of BGSStg in high flow range (Chattahoochee flows greater than or equal to JP) Step 1.

DISTP for BGS = ((RM of USG) - (RM of BGS)) / ((RM of USG) - (RM of DSG))

#### Step 2.

Pre-dam DISTPStg at BGS for given discharge = (pre-dam USGStg at given discharge) -

```
((DISTP at BGS) x ((pre-dam USGStg at given discharge) - (pre-dam DSGStg at given discharge)))
```

## Step 3.

Recent DISTPStg at BGS for given discharge = (recent USGStg at given discharge) -

((DISTP at BGS) x ((recent USGStg at given discharge) - (recent DSGStg at given discharge)))

Step 4 (final step).

AVP&R DISTPStg at BGS for given discharge =

((pre-dam DISTPStg at BGS for given discharge) + (recent DISTPStg at BGS for given discharge)) / 2

**Appendix VII. (Continued)** Formulas used to interpolate stage between gages in relation to discharge at the Chattahoochee gage in the Apalachicola River, Florida.

| C. Calculation of BGSStg in intermediate flow range (Chattahoochee flows between 9,300 ft <sup>3</sup> /s and JP)                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1. (same as B.1.)                                                                                                                                                                                                                                                     |
| DISTP for BGS = ((RM of USG) - (RM of BGS)) / ((RM of USG) - (RM of DSG))                                                                                                                                                                                                  |
| Step 2.                                                                                                                                                                                                                                                                    |
| Pre-dam DISTPStg at BGS for 9,300 ft <sup>3</sup> /s = (pre-dam USGStg at 9,300 ft <sup>3</sup> /s) -                                                                                                                                                                      |
| ((DISTP at BGS) x ((pre-dam USGStg at 9,300 ft <sup>3</sup> /s) - (pre-dam DSGStg at 9,300 ft <sup>3</sup> /s)))                                                                                                                                                           |
| Step 3.                                                                                                                                                                                                                                                                    |
| Recent DISTPStg at BGS for 9,300 ft <sup>3</sup> /s = (recent USGStg at 9,300 ft <sup>3</sup> /s) -                                                                                                                                                                        |
| ((DISTP at BGS) x ((recent USGStg at 9,300 ft <sup>3</sup> /s) - (recent DSGStg at 9,300 ft <sup>3</sup> /s)))                                                                                                                                                             |
| Step 4.                                                                                                                                                                                                                                                                    |
| Pre-dam DIFF9300 at BGS =                                                                                                                                                                                                                                                  |
| (pre-dam DISTPStg at BGS for 9,300 ft <sup>3</sup> /s) - (pre-dam BGSStg for 9,300 ft <sup>3</sup> /s derived from 1956 WSP)                                                                                                                                               |
| Step 5.                                                                                                                                                                                                                                                                    |
| Recent DIFF9300 at BGS =                                                                                                                                                                                                                                                   |
| (recent DISTPStg at BGS for 9,300 ft <sup>3</sup> /s) - (recent BGSStg for 9,300 ft <sup>3</sup> /s derived from 1995 WSP)                                                                                                                                                 |
| Step 6.                                                                                                                                                                                                                                                                    |
| Pre-dam JPS at BGS = (pre-dam JPS at USG) - ((DISTP at BGS) x ((pre-dam JPS at USG) - (pre-dam JPS at DSG)))                                                                                                                                                               |
| Step 7.                                                                                                                                                                                                                                                                    |
| Recent JPS at BGS = (recent JPS at USG) - ((DISTP at BGS) x ((recent JPS at USG) - (recent JPS at DSG)))                                                                                                                                                                   |
| Step 8.                                                                                                                                                                                                                                                                    |
| AVGP&R JPS at BGS = ((pre-dam JPS at BGS) + (recent JPS at BGS)) / 2                                                                                                                                                                                                       |
| Step 9.                                                                                                                                                                                                                                                                    |
| JP for BGS = (JP at USG) - ((DISTP for BGS) x ((JP at USG) - (JP at DSG)))                                                                                                                                                                                                 |
| NOTE: Our calculations were made for selected discharge increments. Therefore, this step includes a process similar to rounding, in which a lookup formula selects the largest discharge increment that is less than or equal to the resulting discharge from this formula |
| Step 10. (final step for pre-dam stage)                                                                                                                                                                                                                                    |
| Pre-dam BGSStg for given discharge (smoothed from pre-dam BGSStg at 9,300 ft <sup>3</sup> /s from 1956 WSP to AVGP&R JPS) =                                                                                                                                                |
| pre-dam DISTPStg at BGS for given discharge -                                                                                                                                                                                                                              |
| (((JP for BGS - given discharge)/(JP for BGS - 9300)) x (pre-dam DIFF9300 at BGS)) -                                                                                                                                                                                       |
| (((given discharge - 9300)/(JP for BGS - 9300)) x ((pre-dam JPS at BGS) - (AVGP&R JPS at BGS)))                                                                                                                                                                            |
| Step 11. (final step for recent stage)                                                                                                                                                                                                                                     |
| Recent BGSStg for given discharge (smoothed from recent BGSStg at 9,300 ft <sup>3</sup> /s from 1995 WSP to AVGP&R JPS) =                                                                                                                                                  |
| recent DISTPStg at BGS for given discharge -                                                                                                                                                                                                                               |
| (((JP for BGS - given discharge)/(JP for BGS - 9300)) x (recent DIFF9300 at BGS)) -                                                                                                                                                                                        |
| (((given discharge - 9300)/(JP for BGS - 9300)) x ((recent JPS at BGS) - (AVGP&R JPS at BGS)))                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                            |

**NOTE:** A minor adjustment was made in the 1995 WSP data in a 1.5 rm reach from rm 22.2 to 20.7. In that reach (just upstream of Sumatra gage), stage in the 1956 WSP was slightly less than the stage in the 1995 WSP. The differences ranged from 0.02 to 0.11 feet. At the Sumatra gage, both the 1956 and 1995 WSP's were higher (by about 0.3 or 0.4 ft) than the stage at 9,300 ft<sup>3</sup>/s that was determined from long-term gage data. Because the 1956 water-surface profile more closely matched the long-term gage data, it was assumed to be more accurate at that location, and 1995 WSP data were adjusted to match the 1956 values in this 1.5 rm reach.

## Appendix VIII. Description of attached digital files of stage-discharge relations at all streamgages and between gage sites on the Apalachicola River, Florida.

A. Annotated example of contents of contents of attached digital files.

[Tables below show example data from pre-dam files for two subreaches. Relations were developed using lag times as defined in glossary. rm, river mile; Chatt, Chattahoochee; Blount, Blountstown; Q, discharge; ft<sup>3</sup>/s, cubic feet per second. Separate pre-dam and recent files were created for each of the following subreaches (file size in parentheses includes some duplicate relations at gages)]

Upper1 - rm 105.7-91.7 (141 relations with 506 points each) Upper2 - rm 91.6-77.5 (142 relations with 506 points each) Middle1 - rm 77.5-59.7 (179 relations with 488 points each) Middle2 - rm 59.6-41.8 (179 relations with 488 points each) Lower1 - rm 41.8-35.3 (66 relations with 488 points each) Lower2 - rm 35.3-20.6 (148 relations with 488 points each)

| ChattQ, in ft                                                             | ₃ <sub>/s</sub> Uppe                                                    | er1_Pre- | dam       | ,                          |          |       | eadings ar<br>0.1 increm |                                                                 | Upper2                  | _Pre-da | ım    |       | relatio                 | n in eac<br>is at a g | h reach                 |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|-----------|----------------------------|----------|-------|--------------------------|-----------------------------------------------------------------|-------------------------|---------|-------|-------|-------------------------|-----------------------|-------------------------|
|                                                                           | <u> </u>                                                                | Chatt    |           | $\boldsymbol{\mathcal{A}}$ |          |       |                          |                                                                 |                         |         |       |       |                         | Blount                |                         |
|                                                                           | Chat                                                                    | tQ gage  |           |                            |          |       |                          |                                                                 | ChattQ                  |         |       |       |                         | gage                  |                         |
|                                                                           | 105                                                                     | 7 105.7  | 105.6     |                            | 91.8     | 91.7  | Chatt Q                  |                                                                 | 105.7                   | 91.6    | 91.5  |       | 77.6                    | 77.5                  | Chatt Q                 |
|                                                                           | 4,50                                                                    | 0 Relat  | ions star |                            |          |       | 4,500<br>4,600           | Upper1 stops here<br>and Upper2 picks up                        | 4,500<br>4,600          |         |       |       | ) to 4,900              |                       | 4,500<br>4,600          |
| <u>.</u>                                                                  | 4,70<br>4,80<br>4,90                                                    | 0        | m and 4,  | 500 π 7                    | s for re | cent  | 4,700<br>4,800<br>4,900  | 0.1 rm downstream                                               | 4,700<br>4,800<br>4,900 |         |       |       | r row-to-<br>recent fil |                       | 4,700<br>4,800<br>4,900 |
| files)<br>100                                                             | 5,00                                                                    | 0 44.07  | 43.41     |                            | 36.76    | 36.72 | 5,000                    |                                                                 | 5,000                   | 36.68   | 36.64 |       | 29.93                   | 29.85                 | 5,000                   |
| h t                                                                       | 5,10                                                                    | 0 44.13  | 43.48     | • • •                      | 36.83    | 36.79 | 5,100                    |                                                                 | 5,100                   | 36.75   | 36.71 | • • • | 29.99                   | 29.91                 | 5,100                   |
| in ft³/s<br>upper reach                                                   |                                                                         | ÷        | ÷         |                            | ÷        | ÷     | ÷                        |                                                                 | ÷                       | ÷       | ÷     |       | ÷                       | ÷                     | ÷                       |
| in ft³/s<br>upper r                                                       | 29,9                                                                    | 00 55.13 | 54.56     |                            | 48.25    | 48.22 | 29,900                   |                                                                 | 29,900                  | 48.18   | 48.14 |       | 41.81                   | 41.74                 | 29,900                  |
| n t<br>Ipp                                                                | 30.0                                                                    |          |           |                            | 48.29    | 48.25 | 30.000                   |                                                                 | 30,000                  | 48.21   | 48.17 |       | 41.84                   | 41.77                 | 30,000                  |
| s, i                                                                      | 30,5                                                                    |          |           |                            | 48.45    | 48.41 | 30,500                   |                                                                 | 30,500                  | 48.38   | 48.34 |       | 42.00                   | 41.93                 | 30,500                  |
| Discharge increments,<br>(total of 506 discharge values in<br>0 1,000 500 | $\left\{ \begin{array}{c} \cdot \\ \cdot \\ \cdot \end{array} \right\}$ | ÷        | ÷         |                            | ÷        | ÷     |                          | Values in body of table<br>are stage, in feet                   |                         | ÷       | :     |       | ÷                       | ÷                     |                         |
| Va Va                                                                     | 99,5                                                                    | 00 67.99 | 67.62     |                            | 58.44    | 58.38 | 99,500                   |                                                                 | 99,500                  | 58.32   | 58.25 |       | 49.16                   | 49.08                 | 99,500                  |
| e in<br>rge                                                               | > 100,0                                                                 | 00 68.03 | 67.67     | • • •                      | 58.47    | 58.41 | 100,000                  |                                                                 | 100,000                 | 58.35   | 58.29 |       | 49.18                   | 49.10                 | 100,000                 |
| hai                                                                       | 101,0                                                                   | 00 68.13 | 67.76     | • • • •                    | 58.54    | 58.48 | 101,000                  |                                                                 | 101,000                 | 58.42   | 58.35 |       | 49.22                   | 49.14                 | 101,000                 |
| Discha<br>6 disc<br>1,000                                                 | { :                                                                     | ÷        | ÷         |                            | ÷        | ÷     | ÷                        |                                                                 | ÷                       | ÷       | :     |       | ÷                       | ÷                     | ÷                       |
| J 80 P                                                                    | 187,0                                                                   | 00 74.45 | 74.37     |                            | 63.64    | 63.56 | 187,000                  |                                                                 | 187,000                 | 63.48   | 63.41 |       | 52.60                   | 52.52                 | 187,000                 |
| of (                                                                      | 188,0                                                                   |          |           | • • •                      | 63.70    | 63.62 | 188,000                  |                                                                 | 188,000                 | 63.54   | 63.47 | • • • | 52.64                   | 52.56                 | 188,000                 |
| alo                                                                       | / 190,0                                                                 | 00 74.68 | 74.60     | • • •                      | 63.81    | 63.73 | 190,000                  |                                                                 | 190,000                 | 63.66   | 63.58 | • • • | 52.71                   | 52.63                 | 190,000                 |
| , to                                                                      | 195,0                                                                   | 00 74.99 | 74.91     | • • •                      | 64.05    | 63.98 | 195,000                  | ChattQ repeated at end of                                       | 195,000                 | 63.90   | 63.82 | • • • | 52.88                   | 52.80                 | 195,000                 |
| (tr<br>5,000                                                              | $\{ :$                                                                  | ÷        | :         |                            | ÷        | ÷     | :                        | each file to accommodate <sup>—</sup><br>EXCEL's lookup formula |                         |         |       |       |                         |                       | ÷                       |
|                                                                           | 285,0                                                                   | 00 80.19 | 80.11     |                            | 67.97    | 67.88 | 285,000                  | •                                                               | 285,000                 | 67.79   | 67.71 |       | 55.48                   | 55.40                 | 285,000                 |
|                                                                           | 290,0                                                                   |          |           |                            | 68.18    | 68.09 | 290,000                  |                                                                 | 290,000                 | 68.00   | 67.92 |       | 55.62                   | 55.53                 | 290,000                 |
|                                                                           | 291,0                                                                   | 00 80.54 | 80.45     | • • •                      | 68.22    | 68.14 | 291,000                  |                                                                 | 291,000                 | 68.05   | 67.96 | •••   | 55.65                   | 55.56                 | 291,000                 |

10. Lower1\_Recent 11. Lower2\_Pre-dam 12. Lower2 Recent

#### B. Organization of files in EXCEL format (1 file with 12 worksheets named as follows)

| 1. Upper1_Pre-dam | 4. Upper2_Recent   | 7. Middle2_Pre-dam | 10. Lower1_Recent  |           |
|-------------------|--------------------|--------------------|--------------------|-----------|
| 2. Upper1_Recent  | 5. Middle1_Pre-dam | 8. Middle2_Recent  | 11. Lower2_Pre-dam | NOTE: P   |
| 3. Upper2_Pre-dam | 6. Middle1_Recent  | 9. Lower1_Pre-dam  | 12. Lower2_Recent  | include v |

## C. Organization of files in flat file format (12 separate files named as follows)

| <ol> <li>Upper1_Pre-dam</li> </ol> | <ol><li>Upper2_Recent</li></ol> | <ol><li>Middle2_Pre-dam</li></ol> |
|------------------------------------|---------------------------------|-----------------------------------|
| 2. Upper1_Recent                   | 5. Middle1_Pre-dam              | 8. Middle2_Recent                 |
| 3. Upper2_Pre-dam                  | 6. Middle1_Recent               | 9. Lower1_Pre-dam                 |

**NOTE**: Pre-dam and recent relations in this appendix include values above the joining point that were derived from period-of-record data. Thus all points above the joining point flow in each pair of pre-dam and recent files in this appendix give exactly the same stage.

The first and/or last

**Appendix IX.** Water-level decline, at various discharges, that occurred at streamgages and within reaches along the nontidal Apalachicola River, Florida, as a result of long-term changes in stage-discharge relations from 1954 to 2004.

[Data in this table are the same as shown in figure 17. Physical changes in the river channel caused the changes in stage-discharge relations; thus, the decline is greatest at low discharges when all streamflow is contained within the channel, and least at high discharges when much of the runoff is flowing over the floodplain. ft<sup>3</sup>/s, cubic feet per second]

|                        | Change in water level, in feet, at selected discharge |                  |                  |       |         |                   |                 |                         |                          |  |  |
|------------------------|-------------------------------------------------------|------------------|------------------|-------|---------|-------------------|-----------------|-------------------------|--------------------------|--|--|
| Selected<br>discharge, |                                                       |                  | At gages         |       |         | Averaged by reach |                 |                         |                          |  |  |
| in ft <sup>3</sup> /s  | Chatta-<br>hoochee                                    | Blounts-<br>town | Wewa-<br>hitchka | RM 35 | Sumatra | Upper<br>reach    | Middle<br>reach | Nontidal<br>Iower reach | Entire nontidal<br>river |  |  |
| 5,000                  | -4.8                                                  | -2.6             | -1.8             | -2.9  | 0.0     | -3.4              | -1.9            | -1.5                    | -2.3                     |  |  |
| 10,000                 | -4.8                                                  | -1.8             | -1.5             | -2.9  | 0.0     | -3.0              | -1.3            | -1.4                    | -1.9                     |  |  |
| 15,000                 | -4.6                                                  | -1.7             | -1.7             | -2.6  | 0.0     | -2.9              | -1.3            | -1.3                    | -1.8                     |  |  |
| 20,000                 | -4.5                                                  | -1.8             | -1.5             | -2.0  | 0.0     | -2.9              | -1.3            | -1.0                    | -1.8                     |  |  |
| 25,000                 | -4.4                                                  | -1.8             | -1.1             | -1.4  | 0.0     | -2.8              | -1.1            | -0.7                    | -1.6                     |  |  |
| 30,000                 | -4.3                                                  | -1.7             | -0.8             | -0.9  | 0.0     | -2.8              | -0.9            | -0.4                    | -1.4                     |  |  |
| 40,000                 | -4.2                                                  | -1.5             | -0.4             | -0.2  | 0.0     | -2.6              | -0.6            | -0.1                    | -1.1                     |  |  |
| 50,000                 | -4.1                                                  | -1.3             | -0.2             | 0.0   | 0.0     | -2.4              | -0.5            | 0.0                     | -1.0                     |  |  |
| 60,000                 | -3.9                                                  | -1.2             | -0.1             | 0.0   | 0.0     | -2.3              | -0.4            | 0.0                     | -0.9                     |  |  |
| 80,000                 | -3.4                                                  | -0.9             | 0.0              | 0.0   | 0.0     | -1.9              | -0.2            | 0.0                     | -0.7                     |  |  |
| 100,000                | -2.7                                                  | -0.5             | 0.0              | 0.0   | 0.0     | -1.4              | -0.1            | 0.0                     | -0.5                     |  |  |
| 120,000                | -2.1                                                  | -0.2             | 0.0              | 0.0   | 0.0     | -0.9              | 0.0             | 0.0                     | -0.3                     |  |  |
| 150,000                | -1.1                                                  | 0.0              | 0.0              | 0.0   | 0.0     | -0.3              | 0.0             | 0.0                     | -0.1                     |  |  |
| 180,000                | -0.2                                                  | 0.0              | 0.0              | 0.0   | 0.0     | 0.0               | 0.0             | 0.0                     | 0.0                      |  |  |

# 82 Water-Level Decline in the Apalachicola River, Florida, from 1954 to 2004, and Effects on Floodplain Habitats

**Appendix X.** Equivalent-stage discharges, corresponding percent exceedance values, and approximate decreases in percent duration of inundation, at various discharges, calculated at gages and within reaches along the nontidal Apalachicola River, Florida, as a result of long-term changes in stage-discharge relations from 1954 to 2004.

[This is a three-part table with the first two parts (A and B) providing data upon which the final data in part C are based. Data in part C are the same as shown in figure 19. Equivalent-stage discharges are provided in part A and corresponding percent exceedance values for those discharges are listed in part B. Steps for determining equivalent-stage discharge are illustrated in figure 13. Percent exceedance is the percent of time a specified discharge is equaled or exceeded during a given time period. Percent duration of inundation is numerically equivalent to percent exceedance in this report (see discussion in text). The time period used to calculate exceedance values in part B and approximate decreases in duration of inundation in part C is the recent period 1995-2004 (October 1, 1994 – September 30, 2004). ft<sup>3</sup>/s, cubic feet per second]

# A. Equivalent-stage discharge that would be required in the recent period to replicate pre-dam stage

| Selected<br>discharge, in ft³/s<br><i>This is the</i> |                    | This i           |                  | e in step 4 of | •       | harge, in ft <sup>3</sup> /s<br>would be requi<br>of a selected di |                 | cent period             |                          |
|-------------------------------------------------------|--------------------|------------------|------------------|----------------|---------|--------------------------------------------------------------------|-----------------|-------------------------|--------------------------|
| discharge in step<br>1 of figure 13                   |                    |                  | At gages         |                |         |                                                                    | Aver            | aged by reach           |                          |
| used to determine<br>pre-dam stage                    | Chatta-<br>hoochee | Blounts-<br>town | Wewa-<br>hitchka | RM 35          | Sumatra | Upper<br>reach                                                     | Middle<br>reach | Nontidal<br>Iower reach | Entire<br>nontidal river |
| 5,000                                                 | 13,900             | 8,200            | 7,100            | 8,400          | 5,000   | 10,300                                                             | 7,100           | 7,000                   | 8,100                    |
| 10,000                                                | 19,900             | 13,000           | 13,000           | 15,500         | 10,000  | 15,700                                                             | 12,300          | 12,800                  | 13,600                   |
| 15,000                                                | 25,700             | 18,500           | 20,000           | 21,700         | 15,000  | 21,300                                                             | 18,200          | 18,600                  | 19,400                   |
| 20,000                                                | 31,500             | 24,200           | 26,100           | 26,900         | 20,000  | 27,000                                                             | 23,900          | 24,000                  | 24,900                   |
| 25,000                                                | 37,500             | 29,900           | 31,500           | 31,500         | 25,000  | 32,700                                                             | 29,100          | 28,500                  | 30,100                   |
| 30,000                                                | 43,500             | 35,500           | 36,500           | 35,000         | 30,000  | 38,600                                                             | 34,100          | 32,600                  | 35,200                   |
| 40,000                                                | 56,500             | 48,000           | 46,500           | 42,500         | 40,000  | 51,300                                                             | 44,400          | 41,400                  | 45,900                   |
| 50,000                                                | 70,000             | 62,000           | 54,000           | 50,500         | 50,000  | 64,700                                                             | 54,700          | 50,500                  | 57,000                   |
| 60,000                                                | 82,500             | 75,500           | 61,500           | 60,000         | 60,000  | 77,400                                                             | 64,500          | 60,000                  | 67,700                   |
| 80,000                                                | 105,000            | 94,500           | 80,000           | 80,000         | 80,000  | 98,000                                                             | 83,400          | 80,000                  | 87,400                   |
| 100,000                                               | 124,000            | 109,000          | 100,000          | 100,000        | 100,000 | 114,300                                                            | 101,400         | 100,000                 | 105,300                  |
| 120,000                                               | 139,000            | 123,000          | 120,000          | 120,000        | 120,000 | 129,000                                                            | 120,000         | 120,000                 | 123,000                  |
| 150,000                                               | 161,000            | 150,000          | 150,000          | 150,000        | 150,000 | 153,000                                                            | 150,000         | 150,000                 | 151,000                  |
| 180,000                                               | 182,000            | 180,000          | 180,000          | 180,000        | 180,000 | 179,000                                                            | 180,000         | 180,000                 | 180,000                  |

## B. Percent exceedance in recent period (1995-2004) for selected and equivalent-stage discharge values

|                        | Percent               |                    | Percent exceedance for equivalent-stage discharge listed in part A |                  |       |         |                |                 |                         |                          |  |  |
|------------------------|-----------------------|--------------------|--------------------------------------------------------------------|------------------|-------|---------|----------------|-----------------|-------------------------|--------------------------|--|--|
| Selected<br>discharge, | exceed-<br>ance for   |                    |                                                                    | At gages         |       |         |                | Avera           | aged by reach           |                          |  |  |
|                        | selected<br>discharge | Chatta-<br>hoochee | Blounts-<br>town                                                   | Wewa-<br>hitchka | RM 35 | Sumatra | Upper<br>reach | Middle<br>reach | Nontidal<br>Iower reach | Entire<br>nontidal river |  |  |
| 5,000                  | 99.1                  | 50.6               | 78.5                                                               | 84.7             | 77.5  | 99.1    | 67.5           | 84.6            | 85.6                    | 78.7                     |  |  |
| 10,000                 | 68.6                  | 29.3               | 55.3                                                               | 55.3             | 42.8  | 68.6    | 41.9           | 59.2            | 56.5                    | 52.8                     |  |  |
| 15,000                 | 45.3                  | 20.6               | 33.7                                                               | 29.0             | 25.7  | 45.3    | 26.4           | 34.5            | 33.1                    | 30.7                     |  |  |
| 20,000                 | 29.0                  | 14.1               | 22.0                                                               | 20.1             | 19.2  | 29.0    | 19.1           | 22.4            | 22.3                    | 21.4                     |  |  |
| 25,000                 | 21.4                  | 10.9               | 16.0                                                               | 14.1             | 14.1  | 21.4    | 13.2           | 16.8            | 17.4                    | 15.8                     |  |  |
| 30,000                 | 15.9                  | 8.6                | 11.9                                                               | 11.4             | 12.3  | 15.9    | 10.5           | 12.6            | 13.2                    | 12.2                     |  |  |
| 40,000                 | 10.2                  | 4.3                | 6.8                                                                | 7.3              | 9.0   | 10.2    | 5.7            | 8.3             | 9.5                     | 7.6                      |  |  |
| 50,000                 | 6.2                   | 1.9                | 3.3                                                                | 4.9              | 6.0   | 6.2     | 2.6            | 4.7             | 6.0                     | 4.2                      |  |  |
| 60,000                 | 3.7                   | 1.0                | 1.5                                                                | 3.5              | 3.7   | 3.7     | 1.3            | 2.6             | 3.7                     | 2.2                      |  |  |
| 80,000                 | 1.1                   | 0.3                | 0.5                                                                | 1.1              | 1.1   | 1.1     | 0.4            | 0.9             | 1.1                     | 0.8                      |  |  |
| 100,000                | 0.4                   | 0.2                | 0.3                                                                | 0.4              | 0.4   | 0.4     | 0.2            | 0.3             | 0.4                     | 0.3                      |  |  |
| 120,000                | 0.2                   | 0.2                | 0.2                                                                | 0.2              | 0.2   | 0.2     | 0.2            | 0.2             | 0.2                     | 0.2                      |  |  |
| 150,000                | 0.1                   | 0.1                | 0.1                                                                | 0.1              | 0.1   | 0.1     | 0.1            | 0.1             | 0.1                     | 0.1                      |  |  |
| 180,000                | 0.1                   | 0.1                | 0.1                                                                | 0.1              | 0.1   | 0.1     | 0.1            | 0.1             | 0.1                     | 0.1                      |  |  |

**Appendix X. (Continued)** Equivalent-stage discharges, corresponding percent exceedance values, and approximate decreases in percent duration of inundation, at various discharges, calculated at gages and within reaches along the nontidal Apalachicola River, Florida, as a result of long-term changes in stage-discharge relations from 1954 to 2004.

[This is a three-part table with the first two parts (A and B) providing data upon which the final data in part C are based. Data in part C are the same as shown in figure 19. Equivalent-stage discharges are provided in part A and corresponding percent exceedance values for those discharges are listed in part B. Steps for determining equivalent-stage discharge are illustrated in figure 13. Percent exceedance is the percent of time a specified discharge is equaled or exceeded during a given time period. Percent duration of inundation is numerically equivalent to percent exceedance in this report (see discussion in text). The time period used to calculate exceedance values in part B and approximate decreases in duration of inundation in part C is the recent period 1995-2004 (October 1, 1994 – September 30, 2004). ft<sup>3</sup>/s, cubic feet per second]

## C. Approximate decrease in percent duration of inundation as a result of long-term changes in stage-discharge relations

| Selected   | Percent<br>exceed-    | (Pe                | rcent exceed     |                  |       | hange in perce<br>ge discharge n |                |                 | for selected di            | ischarge)                |
|------------|-----------------------|--------------------|------------------|------------------|-------|----------------------------------|----------------|-----------------|----------------------------|--------------------------|
| discharge, | ance for              |                    |                  | At gages         |       |                                  |                | Averag          | ed by reach                |                          |
| in ft³/s   | selected<br>discharge | Chatta-<br>hoochee | Blounts-<br>town | Wewa-<br>hitchka | RM 35 | Sumatra                          | Upper<br>reach | Middle<br>reach | Nontidal<br>Iower<br>reach | Entire<br>nontidal river |
| 5,000      | 99.1                  | -48.5              | -20.6            | -14.4            | -21.6 | 0.0                              | -31.6          | -14.4           | -13.5                      | -20.4                    |
| 10,000     | 68.6                  | -39.3              | -13.3            | -13.3            | -25.8 | 0.0                              | -26.7          | -9.4            | -12.1                      | -15.8                    |
| 15,000     | 45.3                  | -24.7              | -11.6            | -16.3            | -19.6 | 0.0                              | -18.9          | -10.8           | -12.2                      | -14.6                    |
| 20,000     | 29.0                  | -14.9              | -7.0             | -8.9             | -9.8  | 0.0                              | -9.9           | -6.6            | -6.7                       | -7.6                     |
| 25,000     | 21.4                  | -10.4              | -5.4             | -7.3             | -7.3  | 0.0                              | -8.2           | -4.5            | -3.9                       | -5.6                     |
| 30,000     | 15.9                  | -7.3               | -4.0             | -4.5             | -3.6  | 0.0                              | -5.4           | -3.3            | -2.7                       | -3.7                     |
| 40,000     | 10.2                  | -5.9               | -3.4             | -2.8             | -1.1  | 0.0                              | -4.4           | -1.8            | -0.7                       | -2.5                     |
| 50,000     | 6.2                   | -4.3               | -2.8             | -1.3             | -0.2  | 0.0                              | -3.6           | -1.5            | -0.2                       | -2.0                     |
| 60,000     | 3.7                   | -2.7               | -2.2             | -0.2             | 0.0   | 0.0                              | -2.3           | -1.1            | 0.0                        | -1.5                     |
| 80,000     | 1.1                   | -0.9               | -0.7             | 0.0              | 0.0   | 0.0                              | -0.7           | -0.2            | 0.0                        | -0.4                     |
| 100,000    | 0.4                   | -0.2               | -0.1             | 0.0              | 0.0   | 0.0                              | -0.1           | 0.0             | 0.0                        | -0.1                     |
| 120,000    | 0.2                   | 0.0                | 0.0              | 0.0              | 0.0   | 0.0                              | 0.0            | 0.0             | 0.0                        | 0.0                      |
| 150,000    | 0.1                   | 0.0                | 0.0              | 0.0              | 0.0   | 0.0                              | 0.0            | 0.0             | 0.0                        | 0.0                      |
| 180,000    | 0.1                   | 0.0                | 0.0              | 0.0              | 0.0   | 0.0                              | 0.0            | 0.0             | 0.0                        | 0.0                      |