
Simulating Riverine and  
Marsh Water Levels and Salinity

Simulating salinity for estuarine systems typically is 
done using dynamic deterministic models that incorporate the 
mathematical descriptions of the physics of coastal hydrody-
namics. These one-, two-, or three-dimensional models gener-
ally are expensive and time consuming to apply to complex 
coastal systems with satisfactory results. Conrads and Roehl 
(2005) assert that in estuaries, mechanistic model calibration 
is “… particularly difficult due to low watershed gradients, 
poorly defined drainage areas, tidal complexities, and a lack of 
understanding of watershed and marsh processes.” Although 
mechanistic models have been the state of the practice for 
regulatory evaluations of anthropogenic effects on estuarine 
systems, developments in the field of advanced statistics, 
machine learning, and data mining offer opportunities to 
develop empirical ANN models that are often more accurate. 
Conrads and Roehl (1999) compared the application of a 
deterministic model and an ANN model to simulate dissolved 
oxygen on the tidally affected Cooper River in South Carolina. 
Results of their study indicated that the ANN models offer 
important advantages, including faster development time, use 
of larger amounts of data, the incorporation of optimization 
routines, and model dissemination in spreadsheet applications. 
With the real-time gaging network on the Savannah River and 
the availability of large databases of hydrologic and water-
quality data, the GPA realized an opportunity to develop an 
empirical model using data-mining techniques, including ANN 
models, to simulate the water level and pore-water salinity of 
the tidal marshes in the vicinity of SNWR. 

The emerging field of data mining addresses the issue 
of extracting information from large databases. Data mining 
comprises several technologies that include signal process-
ing, advanced statistics, multidimensional visualization, chaos 
theory, and machine learning. Machine learning is a field of 
artificial intelligence (AI) in which computer programs are 
developed that automatically learn cause-effect relations from 
example cases and data. For numerical data, commonly used 
methods include ANN models, genetic algorithms, multivari-
ate adaptive regression splines, and partial and ordinary least 
squares (OLS). 

Data mining can solve complex problems that are unsolv-
able by any other means. Weiss and Indurkhya (1998) define 
data mining as “… the search for valuable information in 
large volumes of data. It is a cooperative effort of humans and 
computers.” A number of previous studies by the authors and 
others have used data mining to simulate hydrodynamic and 
water-quality behaviors in the Beaufort, Cooper, and Savan-
nah River estuaries (Roehl and Conrads, 1999; Conrads and 
Roehl, 1999; Roehl and others, 2000; Conrads and others, 
2002a; 2002b) and stream temperatures in western Oregon 
(Risley and others, 2002). These studies have demonstrated 
the performance of data mining to simulate water level, water 
temperature, dissolved oxygen, and specific conductance, and 

for assessing the effects of reservoir releases and point and 
nonpoint sources on receiving streams.

The ultimate goal of this study is to produce an effec-
tive model to simulate water level and specific conductance in 
the tidal marsh for a given set of streamflow, water-level, and 
tidal range conditions. The approach taken uses all available 
streamflow, water-level, and specific-conductance measure-
ments since the last major changes in channel configuration 
in 1994. The modeling approach uses correlation functions 
that were synthesized directly from data to simulate how the 
change in water level and specific conductance at each sta-
tion location is affected by streamflow and tidal conditions 
over time. 

Limitations of the Data Sets

As with any modeling effort, empirical or deterministic, 
the reliability of the model is dependent on the quality of the 
data and range of measured conditions used for training or 
calibrating the model. The available period of record for the 
river and marsh data-collection networks can limit the range 
of streamflow, water-level, tidal range, and salinity condi-
tions that the ANN model can accurately simulate. As noted 
previously, substantial changes in the salinity response of 
the system can occur due to a small change in streamflow 
(fig. 12). Using the specific-conductance record for the Little 
Back River at USFW Dock (station 021989791) as represen-
tative of the salinity dynamics of the system, scatter plots of 
daily streamflow and specific-conductance data were gener-
ated for each network for the period that it was active (fig. 18). 
The period of record for the USGS river network (fig. 18A) 
covers the full range of historical conditions from extreme 
low to high flows. The GPA river network (fig. 18A), active 
during summer 1997 and 1999, covers a much smaller range 
of hydrologic conditions and did not measure streamflow 
and the corresponding salinity response for streamflows less 
than 5,440 ft3/s or greater than 11,600 ft3/s. The USGS marsh 
network (fig. 18B) was established in 2000 during the drought 
and measured a large range of marsh salinity conditions for 
streamflow ranging from 4,310 to 39,600 ft3/s. The GPA marsh 
network (fig. 18B) also was established during the drought, 
but was discontinued in 2002 and only measured low-flow 
conditions less than 14,100 ft3/s. Data networks and the range 
of flows measured for each gaging network are summarized in 
table 2.

Signal Decomposition, Correlation Analysis, and 
State-Space Reconstruction

The behavior, or dynamics, of a natural system results 
from interactions between multiple physical forces. For 
example, the specific conductance at a fixed location is subject 
to daily, seasonal, and annual streamflow conditions and 
semidiurnal, fortnightly, seasonal, and annual tidal water-level 
conditions. For the application of the ANN models to the 
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Savannah River, data-mining methods are applied to maximize 
the information content in raw data while diminishing the 
influence of poor or missing measurements. Methods include 
digital filtering using fast Fourier Transforms, time derivatives, 
time delays, running averages, and differences between sta-
tions. Signals, or time series, manifest three types of behavior: 
periodic, chaotic, and noise. Periodic behavior is perfectly 
predictable. Examples of periodic behavior are the diurnal 
sunlight and temperature patterns caused by the rising and 
setting sun or tidal water levels attributed to orbital mechanics. 
Noise refers to random components, usually attributed to mea-
surement error, and is unpredictable. Chaotic behavior neither 
is totally periodic nor noise, and always has a physical cause. 
Weather is an example of chaotic behavior. Chaotic behavior 
is somewhat predictable, especially for small time frames and 
prediction horizons.

Signal Decomposition
Signal decomposition involves splitting a signal into 

subsignals, called “components,” which are independently 
attributable to different physical forces. To analyze and model 
these time series, the periodic and chaotic components of the 
signals need to be separated. Digital filtering can separate out 
the chaotic component in the water-level time series. Compu-
tation of the tidal range time series from the water-level time 
series separates out the periodic components of the water-level 
time series. Digital filtering can also diminish the effect of 
noise in a signal to improve the amount of useful information 
that it contains. 

Time derivatives are a common analytical method used in 
the sciences to analyze the dynamics of a system. Time deriva-
tives are also computed from the measured, computed, and 
filtered variables on the Savannah River to further understand 
the dynamics of the system. The 1-day derivative of the low-
pass filtered water-level time series for a 90-day period was 

plotted with the original time series and the low-pass filtered 
data (fig. 19). The 1-day derivatives show the rate of change 
of the chaotic component of the water-level time series. For 
the 90-day period, the daily change in filtered water level is as 
high as 1.5 ft. 

Often there are time delays between when an event is 
measured and the time that the response is observed in a 
system. Modeling a system is more complicated when two 
events of interest, a cause and an effect, do not occur simul-
taneously. The time between cause and effect is called the 
“time delay” or “delay.” Each input variable of a model has its 
own delay. Determining the correct time delays for pulses and 
system response is critical to accurately simulating a dynamic 
system. For the Savannah River, there is a time delay between 
the measured streamflow at Clyo, Ga., and the response in 
specific conductance at the stations near the SNWF. Time 
delays between when the flow enters the system and the river 
response of the specific conductance were determined for 
each station by analyzing the correlation between lagged flow 
values for various time delays and the salinity response values 
at a station. 

Table 2.  Period of record and range of daily flow conditions 
measured for the river and marsh gaging networks used in  
the study. 

[ft3/s, cubic foot per second; USGS, U.S. Geological Survey; GPA,  
Georgia Ports Authority] 

Gaging network
Period of record used in 

this study
Range of flow 

conditions (ft3/s)
USGS River Jan 1994–May 2005 4,320 – 52,600

GPA River July–Sept 1997
July–Oct 1999

5,440 – 11,600

USGS Marsh June 1999–May 2005 4,320 – 39,600

GPA Marsh June 1999–Oct 2002 4,320 – 14,100
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Figure 18.  The daily mean streamflow at Savannah River at Clyo, Ga., and daily mean specific conductance at  
U.S. Fish and Wildlife Service Dock, Little Back River, for the conditions during which the gaging network was active.  
The two river networks are shown in the plot on the left (A), and two marsh networks are shown on the plot on the right (B). 

Simulating Riverine and Marsh Water Levels and Salinity    19



Averages and running averages are commonly used 
to remove the variability of measurements and to represent 
prevailing behaviors of the system. To capture the effect of 
the extended low-flow condition as a result of the extended 
drought, time derivatives of running average flow conditions 
were computed. The 14-day difference (time derivative) of 
the 14-day running average flow conditions can capture the 
change in average flow conditions over a 28-day period. For 
example, if the 14-day running average for June 28, 2002 
(June 15–28) is 4,743 ft3/s and the 14-day running average 
for June 15, 2002 (June 2–15) is 4,900 ft3/s, then the 14-day 
difference (time derivative) for June 28, 2002 is –157 ft3/s. The 
daily streamflow at Clyo, Ga., the 14-day average streamflow, 
and the 14-day difference in 14-day average flows are shown 
in figure 20. The time derivative signal shows the 14-day trend 
of the change in 14-day average streamflow conditions. There 
is a significant difference in the time derivative signal for the 
extended drought after the high flows of the El Niño in 1998. 
Prior to the drought, 14-day differences in 14-day average 
flows fluctuate by more than 10,000 ft3/s. During the drought, 
fluctuations were less than 5,000 ft3/s.

Correlation Analysis

The relations between the many variables and their vari-
ous components are ascertained through correlation analyses 
to provide deeper understanding of system dynamics. For 
example, salinity intrusion is dependent on streamflow and 
tides, and correlation analysis provides a measure of relative 
contribution of each variable. Sensitivity analysis quantifies 
the relations between a dependent variable of interest and 
causal variables. Computing sensitivities requires defining the 
relation between variables through modeling.

Using statistical and(or) ANN software, the computer 
systematically correlates factors that most influence parame-
ters of interest (for example, specific conductance) to candi-
date combinations of controlled and uncontrolled variables 
(for example, streamflow and tidal conditions). Correlation 
methods based on statistics and ANNs are applied in combina-
tion. Promising results identified by the analysis are validated 
by comparing them to known patterns of behavior.
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Figure 19.  Hourly water levels at Fort Pulaski (station 02198980), low-pass filtered water levels, and 1-day change in 
filtered water levels for the 90-day period September 13 to December 13, 1994.
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State-Space Reconstruction
Chaos theory provides a conceptual framework called 

“state-space reconstruction” (SSR) for representing dynamic 
relations. Data collected at a point in time can be organized 
as a vector of measurements; for example, element one of the 
vector might be the water level, element two the streamflow, 
and so on. Engineers say that a process evolves from one state 
to another, in time, and that a vector of measurements, also 
referred to as a “state vector,” represents the process state at 
the moment the measurements were taken. A sequence of state 
vectors represents a “state history.” Mathematicians say that 
the state vector is a point in a “state space” having a number of 
dimensions equal to the number of elements in the vector. For 
example, eight vector elements equates to eight dimensions. 
Empirical modeling is the fitting of a multidimensional surface 
to the points arrayed in state space. 

Chaos theory proposes that a process can be optimally 
represented (reconstructed) by a collection of state vectors, 
Y(t), using an optimal number of measurements equal to 
“local dimension” d

L
 that are spaced in time by integer mul-

tiples of an optimal time delay, τ
d
 (Abarbanel, 1996)�. For a 

multivariate process of k independent variables:

� In Chaos theory, d
L
 and t

d
 are called “dynamical invariants,” and are  

analogous to the amplitude, frequency, and phase angle of periodic time series.

Y(t) = {[x1(t), x1(t – τd1),…, x1(t – (dL1 – 1)τd1)], 
	 …, [xk(t), xk(t – τdk),…, xk(t – (dLk – 1)τdk)]}	 (1)

where each x(t,τ
di
) represents a different dimension in state 

space, and therefore, a different element in a state vector. Val-
ues of d

Li
 and τ

di
 are estimated analytically or experimentally 

from the data. The mathematical formulations for models are 
derived from those for state vectors. To predict a dependent 
variable of interest y(t) from prior measurements (forecasting) 
of k independent variables (Roehl and others, 2000):

y(t) = F{[x1(t – τp1), x1(t – τp1 – τd1), 
	 …, x1(t – τp1 – (dM1 – 1)τd1)], 
	 …,[xk(t – τpk), xk(t – τpk – τdk), 
	 …, xk(t – τpk – (dMk – 1)τdk)]}	 (2)

where F is an empirical function such as an ANN, each 
x(t,τ

pi
,τ

di
) is a different input to F, and τ

pi
 is yet another time 

delay. For each variable, τ
pi
 is specified according to one of the 

following constraints: time delay at which an input variable 
becomes uncorrelated to all other inputs, but can still provide 
useful information about y(t); time delay of the most recent 
available measurement of x

i
; or time delay at which an input 

variable is most highly correlated to y(t). Here, the state space 
local dimension d

L
 of Equation 1 is replaced with a model 

0
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

10,000

20,000

30,000

40,000

50,000

60,000

DA
IL

Y 
AN

D 
14

-D
AY

 A
VE

RA
GE

 S
TR

EA
M

FL
OW

, I
N

 C
UB

IC
 F

EE
T 

PE
R 

SE
CO

N
D

-25,000

-20,000

-15,000

-10,000

-5,000

0

5,000

10,000

15,000

20,000

25,000

!4
-D

AY
 D

IF
FE

RE
N

CE
 IN

 1
4-

DA
Y 

AV
ER

AG
E 

ST
RE

AM
FL

OW
, I

N
 C

UB
IC

 F
EE

T 
PE

R 
 S

EC
ON

D

Streamflow - Savannah River at Clyo
14-day average streamflow
14-Day difference in 14-day average streamflows

Figure 20.  Daily flows, 14-day average flows, and 14-day differences in 14-day average flows for the Savannah River 
at Clyo, Ga., for the period 1994–2004. Note the scale for the 14-day differences in 14-day average flows is on the right.
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input variable dimension d
M

, which is determined experi-
mentally. It is noted that d

M
 ≤ d

L
, and tends to decrease with 

increasing k. 

Input-Output Mapping and  
Problem Representation

The development of ANN models to predict the water 
level and pore-water salinity of the tidal marsh was undertaken 
in two phases. The first phase was to train the ANN models 
to simulate the water level and specific conductance at the 
USGS and the GPA riverine sites. Inputs to the ANN models 
of the USGS river network include time series, or signals, of 
streamflow, tidal water level, and tidal range. Because of the 
limited data set, the GPA river network sites were modeled 
using differences in water level and specific conductance with 
the USGS river network stations. Outputs from these mod-
els are water level and salinity at the river network stations. 
Simulated specific-conductance values are post-processed to 
salinity values using the equation documented by Miller and 
others (1988). The second phase was to train the ANN models 
to simulate water level and pore-water specific conductance at 
the USGS and the GPA marsh sites. Inputs for these models 
include the water-level and specific-conductance signals from 
the USGS and GPA river networks near the marsh gaging 
sites. Outputs from these models are water level and salinity at 
the marsh network stations.

One of the ultimate applications of the ANN models will 
be to simulate the change in water level and specific conduc-
tance in the marsh likely to result from a potential harbor deep-
ening. As discussed previously, a 3D model, EFDC, has been 
applied and will be used to simulate water-level and salinity 
changes in the river resulting from geometric changes expected 
from proposed physical changes to the harbor. Using the USGS 
river network time series as input for the marsh, the ANN mod-
els can accommodate the integration of output from other mod-
els of the river. Rather than use the ANN river predictions as 
input to the ANN marsh models, EFDC predictions were used. 
The final application of the ANN models can be run under two 
different modes. Mode 1 uses the streamflow and tidal condi-
tion inputs and evaluates the effects of changing hydrologic 
conditions on water level and specific conductance of the river 
and marsh sites. Mode 2 uses EFDC predictions of changes 
from a base-case scenario at the USGS river network as inputs 
to evaluate the effects of changes in the channel geometry on 
water level and specific conductance of the marsh sites.

Decorrelation of Variables 

Often, explanatory variables share information about the 
behavior of a response variable. It is difficult, if not impos-
sible, to understand the individual effects of these variables 
(sometimes known as confounded or correlated variables), 
on a response variable. Empirical models have no notion 
of process physics, nor the nature of interrelations between 

input variables. To be able to clearly analyze the effects of 
confounded variables, the unique informational content of 
each variable must be determined by “de-correlating” the 
confounded variables. For the Savannah River application, the 
boundary input data, streamflow from Clyo, Ga., and water 
levels from Fort Pulaski, are both distant from the river and 
marsh gaging network near the SNWF. The Pearson correla-
tion coefficient, R, between Clyo streamflows and the Savan-
nah Harbor water level is -0.03, indicating very little correla-
tion between the two time series. 

The only variables in the application that needed to be 
decorrelated were data from the GPA specific-conductance 
stations (GPA10S, GPA11, GPA11R, and GPA12) used as 
inputs for the USGS marsh salinity models. Decorrelation is 
accomplished by generating an empirical correlation function 
and computing its residual error by subtracting the function’s 
predicted values from the actual measurement. The residual 
error is the “unshared” information between the two signals. 
Single Input Single Ouput (SISO) ANN models were built 
to decorrelate data from GPA11, GPA11R, and GPA12 from 
GPA10S. The residual error signal was then used in the 
USGS marsh salinity models as the decorrelated inputs for 
those stations.

Artificial Neural Network Models

Models generally fall into one of two categories, deter-
ministic (or mechanistic) or empirical. Deterministic models 
are created from first-principles equations, whereas empiri-
cal modeling adapts generalized mathematical functions to 
fit a line or surface through data from two or more variables. 
The most common empirical approach is OLS, which relates 
variables using straight lines, planes, or hyper-planes, whether 
the actual relations are linear or not. Calibrating either type 
of model attempts to optimally synthesize a line or surface 
through the observed data. Calibrating models is made dif-
ficult when data have substantial measurement error or are 
incomplete, and the variables for which data are available may 
only be able to provide a partial explanation of the causes of 
variability. The principal advantages that empirical models 
have over deterministic models are that they can be developed 
much faster and are often more accurate when the modeled 
systems are well characterized by data. Empirical models, 
however, are prone to problems when poorly applied. Overfit-
ting and multicollinearity caused by correlated input variables 
can lead to invalid mappings between input and output vari-
ables (Roehl and others, 2003). 

An ANN model is a flexible mathematical structure 
capable of describing complex nonlinear relations between 
input and output data sets. The architecture of ANN models 
is loosely based on the biological nervous system (Hinton, 
1992). Although there are numerous types of ANNs, the most 
commonly used type is the multilayer perceptron (MLP) 
(Rosenblatt, 1958). As shown in figure 21, MLP ANN’s are 
constructed from layers of interconnected processing elements 
called neurons, each executing a simple “transfer function.” 
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All input layer neurons are connected to every hidden layer 
neuron, and every hidden layer neuron is connected to every 
output neuron. There can be multiple hidden layers, but a 
single layer is sufficient for most problems.

Typically, linear transfer functions are used to simply 
scale input values to fall within the range that corresponds to 
the most linear part of the s-shaped sigmoid transfer functions 
used in the hidden and output layers. Each connection has a 
“weight,” w

i
, associated with it that scales the output received 

by a neuron from a neuron in an antecedent layer. The output 
of a neuron is a simple combination of the values it receives 
through its input connections and their weights, and the 
neuron’s transfer function. 

An ANN is “trained” by iteratively adjusting its weights 
to minimize the error by which it maps inputs to outputs for 
a data set comprising “input/output vector pairs.” Simula-
tion accuracy during and after training can be measured by a 
number of metrics, including coefficient of determination (R2) 
and root mean square error (RMSE). An algorithm that is com-
monly used to train MLP ANNs is the back error propagation 
(BEP) training algorithm (Rumelhart and others, 1986). Jensen 
(1994) describes the details of the MLP ANN, the type of 
ANN used in this study. MLP ANNs can synthesize functions 
to fit high-dimension, nonlinear multivariate data. Devine and 
others (2003) and Conrads and Roehl (2005) describe their use 
of MLP ANN in multiple applications to model and control 

combined man-made and natural systems including disinfec-
tion byproduct formation, industrial air emissions monitoring, 
and surface-water systems affected by point and nonpoint 
source contaminants. 

Experimentation with a number of ANN architectural and 
training parameters is a normal part of the modeling process. 
For correlation analysis or predictive modeling applications, a 
number of candidate ANNs are trained and evaluated for both 
their statistical accuracy and their representation of process 
physics. Interactions between combinations of variables also 
are considered. Finally, a satisfactory model can be exported 
for end-user deployment. In general, a high-quality predictive 
model can be obtained when:

the data are well distributed throughout the state space 
(historical range of conditions) of interest,

the input variables selected by the modeler share 
“mutual information” about the output variables, and

the form “prescribed” or “synthesized” for the model 
used to “map” (correlate) input variables to output 
variables is a good one. Techniques such as OLS and 
physics-based finite-difference models prescribe the 
functional form of the model’s fit of the calibration 
data. Machine learning techniques like ANN’s synthe-
size a best fit to the data.
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Subdividing a complex modeling problem into subprob-
lems and then addressing each is a means to achieving the best 
possible results. A collection of submodels whose calculations 
are coordinated by a computer program constitutes a “super-
model.” For the Savannah study, individual ANN models 
(submodels) were developed for the river and marsh water 
level and salinity at each continuous station. These submodels 
were then incorporated into a “super-model” application that 
integrates the model controls, model database, and model out-
puts. The “super-model” for the project is the Model-to-Marsh 
(M2M) DSS described later in this report. The ANN models 
and plots described herein were developed using the iQuestTM 
data-mining software� (Version 2.03C DM Rev31). The ANN 
models were deployed in the DSS using the Visual Basic run-
time library of the iQuest R/TTM software. 

Statistical Measures of Prediction Accuracy

The R2, the mean error (ME), root mean square error 
(RMSE), and percent model error (PME) have been computed 
for the training and testing data sets for each model and are 
listed in Appendix I. Model accuracy usually is reported in 
terms of R2 and commonly is interpreted as the “goodness of 
the fit” of a model. A second interpretation is one of answering 
the question, “How much information does one variable or a 
group of variables have about the behavior of another vari-
able?” In the first context, an R2 = 0.6 might be disappointing, 
whereas in the latter, it is merely an accounting of how much 
information is shared by the variables being used. The devel-
opers believe that the river and marsh water-level and salinity 
models are unusually accurate relative to one-dimensional, 
two-dimensional, and three-dimensional finite-difference 
models developed for comparably complex estuaries and tidal 
marsh systems. 

The ME and RMSE statistics provide a measure of the 
prediction accuracy of the ANN models. The ME is a measure 
of the bias of model predictions—whether the model over 
or under predicts the measured data. The ME is presented as 
the adjustment to the simulated values to equal the measured 
values. Therefore, a negative ME indicates an over simulation 
by the model and a positive ME indicates an under prediction 
by the ANN model. Mean errors near zero may be misleading 
because negative and positive discrepancies in the simulations 
can cancel each other. RMSE addresses the limitations of ME 
by computing the magnitude, rather than the direction (sign) 
of the discrepancies. The units of the ME and RMSE statistic 
are the same as the simulated variable of the model.

 The minimum and maximum values of the measured 
output are listed in Appendix I. The accuracy of the models, as 
given by RMSE, should be evaluated with respect to the range 
of the output variable. A model may have a low RMSE, but if 

� The iQuestTM software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone: 
864–201–8679, email: info@advdatamining.com: http://www.advdatamining.
com.

the range of the output variable is small, the model may only 
be accurate for a small range of conditions and the model error 
may be a relatively large percentage of the model response. 
Likewise, a model may have a large RMSE, but if the range of 
the output variable is large, the model error may be a relatively 
small percentage of the total model response. The PME was 
computed by dividing the RMSE by the range of the measured 
data. The models of the USGS river and marsh networks have 
the greatest range of the output variables. 

Generally, the USGS river water-level and specific-
conductance models have R2 values in the 0.95 to 0.99 and 
0.57 to 0.90 ranges, respectively, and PME values of 1.5 to 
4.1 percent and 1.0 to 6.3 percent, respectively. (The statis-
tics for the river models are based on the test data sets of the 
hourly models.) The USGS marsh water-level and specific-
conductance models’ range of R2 values are 0.72 to 0.87 for 
water levels, 0.74 to 0.93 for specific conductance, and 3.4 to 
5.4 percent and 4.0 to 10.6 percent, respectively, for PME. 
(Statistics for the marsh water level are based on the test data 
set of the hourly models, and statistics for the marsh specific-
conductance predictions are based on all measured data.)

Development of Artificial Neural 
Network Models

The following sections describe how the water-level and 
salinity models were developed for the river and marsh sites. 
All the stations from the USGS and the GPA river and marsh 
networks were modeled. The river stations used to model the 
marshes were generally limited to the USGS river stations 
because their long period of record covers the largest range of 
hydrologic conditions. The model developments for each type 
of station—river water level, river salinity, marsh water level, 
and marsh pore-water salinity—follow a similar approach. 
One example is given for each type of model and is followed 
by a general description of the performance of all the sta-
tions of that particular type. Figures are shown for each type 
of model. A graph of measured and simulated data for a short 
period (1 to 2 months) is shown for the example station to 
show model performance. The graph of the example station is 
followed by graphs showing the performance of the daily river 
water-level and specific-conductance models for the period of 
record to show how well the models simulate the long-term 
trends of the system. The graphs of measured and simulated 
daily data are followed by graphs showing the performance of 
the hourly models for a short period (2 to 3 months). For the 
marsh models, the graph of the measured and simulated values 
for the example station is followed by graphs showing the 
performance of the hourly models. Model summaries for the 
example models (the input and output variables, size of train-
ing and testing data sets, and their respective R2s) are given in 
table 3, and model summaries of all the models can be found 
in Appendix II. Summary statistics for all the models can be 
found in Appendix I. 
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The river models were developed in two stages. The 
first stage simulated the low-pass filtered daily water-level or 
specific-conductance signals to capture the long-term dynam-
ics of the system. The second stage simulated the higher-
frequency hourly water level or specific conductance, using 
the simulated water level and specific conductance as a carrier 
signal. Each river water-level model uses three general types 
of input signals, or time series: streamflow signal(s), water-
level signal(s), and tidal range signal(s). The signals may be 
of the measured series values, filtered values, and/or a time 
derivative of the signals. The specific-conductance (salinity) 
models use an additional streamflow input: a time derivative 
of a moving window average, such as the 14-day difference in 
the 14-day average streamflows (fig. 19). The available data 
set for developing the models was randomly bifurcated into 
training and testing data sets. For the large data sets, such as 
the USGS riverine network stations dating back to 1994, a 
zone averaging, or box, filter of the data, was used to separate 
the data into training and testing data sets. Using the zone 
average filter, all the data are used in the test data set and a 
small selected sample of the data is used for the training data 
set. The filter separates the data set into user-specified number 
of zones or boxes and determines the input vectors with the 
highest information content and reserves these vectors for the 
training data set. The percentage of training and testing data 
depended on the length of the data set and the range of hydro-
logic conditions in the data set. Typically, the zone averaging 
filter uses a small percentage of the data (less than 10 percent) 
for the training data set. Model development summaries and 
variable descriptions can be found in Appendixes II and III.

Riverine Water-Level Model at  
Little Back River near Limehouse

The daily water-level model (wl8979a-2005-1) for 
Little Back River near Limehouse (station 02198979) uses 
streamflow, water-level, and tidal range inputs (table 3). The 
streamflow inputs are daily average streamflow (Q8500A) 
and the 1‑day derivative of streamflow (DQ8500A). The 
water-level data inputs are daily water level from Fort Pulaski 
(FWL8980A) and the 1-day time derivative of daily water 
level lagged 1 day (DWLAD1). Gaps in the time series for 
Savannah River at Fort Pulaski (station 02198980) were filled 
by correlating to upstream water levels such as Front River at 
Broad Street (station 02198920). The tidal range inputs are 
daily tidal range (XWL8980A) and a 1-day time derivative 
of daily tidal range lagged 1 day (DXWLAD1). For testing 
and training the daily model, there were 78,980 data values 
available. Ten percent of the data was used for training and 
90 percent was used for testing. The coefficient of determi-
nation, R2, for the training and testing were 0.95 and 0.96, 
respectively (table 3, Appendices I and II). The daily model 
used two hidden-layer neurons. 

The hourly water-level model (wl8979h-2005-1) uses 
the simulated daily water level from the daily model and 
Fort Pulaski water-level inputs. The simulated daily water-

level input (PWL8979A) captures the long-term movement 
of the water level that is characterized by the streamflow 
and tidal range data in the daily model. The six water-level 
inputs; LG1NWL, LG1D3NWL, LG4D3NWL, LG7D3NWL, 
LG10D3NWL, LG13D3NWL, are the 1-hour lagged water 
level (LG1NWL), and 3-hour time derivatives of the water 
level lagged 1, 4, 7, 10, and 13 hours, respectively. The lagged 
water-level inputs capture the periodic semidiurnal tidal 
signal. For testing and training the hourly model, there were 
79,216 data values available (approximately 11 years of hourly 
data from 1994 to 2005). The data set was bifurcated into 
training and testing data sets. Ten percent of the data was used 
for training and 90 percent was used for testing. The R2 for 
the training and testing data were 0.98 and 0.98, respectively 
(table 3, Appendices I and II). The hourly model used two 
hidden-layer neurons. 

The measured and simulated hourly water levels are 
shown in figure 22 for the first quarter of 2002. The model 
simulates the measured data well, but does not capture the full 
range of the tide and slightly under simulates the maximum 
and minimum water levels. The PME for the period of record 
is less than 3 percent (Appendix I)).

The daily water levels represent the chaotic portion of the 
water-level signal and the long-term trend of the system. The 
models are able to simulate this portion of the signal quite well 
(R2 from 0.88 to 0.96) but miss the extreme high and low water 
levels (figs. 23 and 24). The simulations for the Front River at 
Houlihan Bridge (station 02198920, fig. 23B), under simulates 
the daily water levels more in the first half of the record than 
the second half. This may be the result of either a systematic 
change in the data collection or a change in the water-level 
behavior at the station. The under simulation for the first half 
of the time series explained the lower R2 for the daily water-
level model as compared to the other sites. The hourly water 
levels represent the periodic portion of the water-level signal 
and, generally, the models are able to simulate this portion of 
the signal quite well (R2 from 0.98 to 0.995, figure 24). 

Riverine Specific-Conductance Model at  
Little Back River at USFW Dock

The daily salinity model (sc89791a-2005-2) for Little 
Back River at USFW Dock uses six streamflow, three water-
level, and three tidal range inputs. The streamflow inputs are 
daily average streamflow (Q8500A), the 1-day derivative 
of streamflow (D8500A), daily streamflow lagged 2 days 
(LAQ2), the 2-day change in streamflow (DAQ2), the 16‑day 
change in streamflow (DAQ16), and the 30-day change in 
streamflow (DAQ30). The water-level data inputs are filtered 
daily water level from Fort Pulaski (FWL8980A), the 1-day 
time derivative of filtered daily water level (DWLA), and 
the 1-day time derivative of filtered daily water level lagged 
2 days (LG2DWL). The tidal range daily inputs are daily tidal 
range (XWL8980A), the 1-day time derivative of daily tidal 
range (DXWLA), and the 1-day time derivative of daily tidal 
range lagged 2 days (LG2DXWLA). For testing and training 
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Table 3.  Model name and model summary for four types of models used in the study.—Continued

[WL, water level; SC, specific conductance; XWL, tidal range; MWA, moving window average]

Model name 
Model 

type
Input variables Variable description

Training/testing 
data points

Hidden 
layer

neurons

wl8979a-2005-1 Daily Q8500A daily average flow 7,987/70,993 2

DQ8500A 1-day change in daily average flow

FWL8980A filled, filtered daily WL

XWL8980A daily tidal range

DXWLAD1 1-day change in tidal range, lagged 1 day

DWLAD1 1-day change in WL, lagged 1 day

wl8979h-2005-1 Hourly LG1NWL 1-hour lag in the in WL 8,029/71,187 2

LG1D3NWL 1-hour lag in the 3-hour change in WL

LG4D3NWL 4-hour lag in the 3-hour change in WL

LG7D3NWL 7-hour lag in the 3-hour change in WL

LG10D3NWL 10-hour lag in the 3-hour change in WL

LG13D3NWL 13-hour lag in the 3-hour change in WL

PWL8979A  Predicted daily WL at 02198979

sc89791a-2005-1 Daily Q8500A daily average flow 9,660/75,782 3

DQ8500A 1-day change in daily average flow

LAQ2 2-day lag of the daily flow

DAQ2 2-day change in daily flow

DAQ16 16-day change in daily flow

DAQ30 30-day change in daily flow

FWL8980A filled, filtered daily WL

XWL8980A daily tidal range

DWLA 1-day change in WL 

DXWLA 1-day change in tidal range

LG2DWLA 1-day change in WL, lagged 2 days

LG2DXWLA 1-day change in XWL, lagged 2 days

LG2DXWLA 1-day change in tidal range, lagged 2 days

sc89791h-2005-1 Hourly FWL8980A filled, filtered daily WL 9,736/76,366 3

XWL8980A daily tidal range

NXWL hourly WL

LG1NWL 1-hour lag in the in hourly WL

LG1D3NWL 1-hour lag in the 3-hour change in WL

LG4D3NWL 4-hour lag in the 3-hour change in WL

LG7D3NWL 7-hour lag in the 3-hour change in WL

LG10D3NWL 10-hour lag in the 3-hour change in WL

LG13D3NWL 13-hour lag in the 3-hour change in WL

PSC89791A Predicted daily SC at 021989791

Table 3.  Model name and model summary for four types of models used in the study.

[WL, water level; SC, specific conductance; XWL, tidal range; MWA, moving window average]
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Table 3.  Model name and model summary for four types of models used in the study.—Continued

[WL, water level; SC, specific conductance; XWL, tidal range; MWA, moving window average]

Model name 
Model 

type
Input variables Variable description

Training/testing 
data points

Hidden 
layer

neurons

pb2mwl-2005 Hourly FWL8840 WL at station 02198840 3,284/18,228 2

DFWL8840 difference with WL at 02198840  

LG3DFWL8840
difference with WL at 02198840 lagged 

3 days

LG6DFWL8840
difference with WL at 02198840 lagged 

6 days

FWLDIF8977 WL at station 02198977

FWLDIF8979 WL at station 02198979

FWLDIF8920 WL at station 02198920

pb2msc-2005-2 Hourly SCDIF8840A  
difference with SC between 02198840 and 

021989791 2,142/18,770 1

SCDIF8920A  
difference with SC with difference with SC 

between 021988920 and 021989791 

FSC89791A4WK 4-week MWAs of SC at 021989791

LG672FSC89791A4WKD4WK
difference between 4-week and lagged 

4‑week MWAs of SC at 021989791

FSC89791A2WKD4WK 
difference between 2- and 4-week and 

lagged MWAs of SC at 021989791

FSC89791A1WKD2WK 
difference between 1- and 2-week and 

lagged MWAs of SC at 021989791

FSC89791A48D1WK 
difference between 2-day and 1-week and 

lagged MWAs of SC at 021989791

FSC89791DA48 
difference between hourly and 2-day MWA 

of SC at 021989791 

DFSC89791DA48  3-hour time derivative of SC at 021989791 

LG3DFSC89791DA48  
time derivative lagged 3 hours of SC at 

021989791 

prb2msc Hourly RSC10S_12RS_A1WK 
residual error of predicted weekly average 

SCGPA12RS (for decorrelation) 4,176/16,736 1

RSC10S_11RB_A1WK 
residual error of predicted weekly average 

SCGPA11RB (for decorrelation)

RSC10S_11B_A1WK 
residual error of predicted weekly average 

SCGPA11B (for decorrelation)

PSCGPA10S_FLR_A1WK  
1-week MWA of predicted hourly SC at 

GPA10S
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the daily model, there were 85,442 data values available. 
Eleven percent of the data was used for training, and 89 per-
cent was used for testing. The R2 for the training and testing 
were 0.89 and 0.87, respectively. The daily model used three 
hidden-layer neurons. 

The hourly salinity model (sc89791h) uses simulated daily 
specific-conductance values from the daily model, two tidal 
range inputs, and six water-level inputs. The simulated daily 
specific-conductance input (PSC8979A) captures the long-term 
movement of the specific conductance that is characterized by 
the streamflow and tidal range data in the daily model. The 
two tidal range inputs are the daily tidal range (XWL8980A) 
and hourly tidal range (NXWL). The six water-level inputs—
LG1NWL, LG1D3NWL, LG4D3NWL, LG7D3NWL, 
LG10D3NWL, LG13D3NWL—are 1-hour lagged water level, 
and 3-hour time derivatives of the water level lagged 1, 4, 7, 
10, and 13 hours, respectively. The lagged water-level inputs 
capture the periodic semidiurnal tidal cycle signal. For testing 
and training the hourly model, there were 86,102 data values. 
Eleven percent of the data was used for training, and 89 per-
cent was used for testing. The R2 for the training and testing 
were 0.89 and 0.83, respectively. The hourly model used three 
hidden-layer neurons. A summary of the input variables, size 
of the training and testing data sets, number of hidden-layer 
neurons, and coefficient of determination for the hourly model 
can be found in table 3 and Appendix I. 

The measured and simulated hourly salinities are shown 
in figure 25 for the summer of 2002. This period was the end 
of the 5-year drought that began in 1998 and had the high-
est salinity intrusions of the drought. The model simulates 
the measured data and captures the salinity intrusions occur-
ring on a 14- and 28-day cycle. The model also is able to 
simulate the full range of the large salinity intrusion on about 
August 10, 2002.

The measured and simulated daily and hourly specific 
conductances for 1994 to 2005 for the four USGS river 
water-level gages are shown in figures 26 and 27. As with the 
water-level models, the daily specific conductance represents 
the chaotic portion of the signal, and the models are able to 
simulate this portion of the signal well (R2 from 0.85 to 0.87, 
fig. 26) but do not capture the variability as well as the daily 
water-level models. The quality of hourly models, in terms 
of the coefficient of determination, vary from a R2 of 0.57 at 
Savannah River at I-95 (station 02198840, fig. 27) to 0.87 at 
Front River at Houlihan Bridge (station 02198920, fig. 27). 
Although the specific-conductance model for I-95 explains 
only 57 percent of the variability, the results are quite satisfac-
tory, in terms of timing and magnitude of response, for a sta-
tion on the leading edge of the saltwater-freshwater interface 
where the salinity response is less than 0.5 psu. 
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Figure 22.  Measured and simulated hourly water levels at Little Back River near Limestone (station 02198979) for the 
period January 1 to March 31, 2002. Breaks in the prediction time series are caused by incomplete time series for one 
or more of the model inputs.
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Marsh Water-Level Model at Little Back River  
at Site B2

The hourly water-level model (pb2mwl-2005) for Little 
Back River at Site B2 uses seven water-level inputs and dif-
ferences in water levels from the four USGS riverine gages 
in the vicinity of SNWF. The water-level inputs include the 
water level at I-95 (station 02198840), 1-day change in water 
level, 1-day change in water level lagged 3 days, and 1-day 
change in water level lagged 6 days (variables FWL8840, 
DFWL8840, LG3DFWL8840, and LG6DFWL8840, respec-
tively). Differences in water level at Site B2 and the USGS riv-
erine gages are also used for inputs. These inputs include the 
difference in water level with stations 02198977, 02198979, 
and 02198920 (variables FWLDIF8977, FWLDIF8979, and 
FWLDIF8920, respectively). For testing and training the daily 
model, there were 21,512 data values available (approximately 
2.5 years of hourly data from 1999 to 2005). Fifteen percent 
of the data was used for training and 85 percent was used for 
testing. The R2 for the training and testing were 0.80 and 0.77, 
respectively. The daily model used two hidden-layer neurons. 

The measured and simulated hourly water levels are 
shown in figure 28 for the first quarter of 2002. The model 
simulates the measured data well but does not capture the full 

range of the tide and slightly under simulates the maximum 
and minimum water levels. 

The measured and simulated hourly water levels for the 
seven USGS marsh stations are shown in figures 29 and 30. 
The quality of marsh water-level models, in terms of the 
coefficient of determination, varies from a R2 of 0.72 to 0.87. 
Generally, the models for the stations closer to the harbor 
(Sites B3, B4, and F1) explain more of the water-level vari-
ability (R2 vary from 0.84 to 0.87) than the models for the 
stations farther from the harbor (R2 vary from 0.72 to 0.79). 

Marsh Specific-Conductance Model at Site B2

A potential mitigation scenario to ameliorate an increase 
in salinity in the vicinity of the SNWR would be to divert 
additional streamflow to the Middle and Little Back Rivers. 
One concern with using only the long-term USGS riverine 
gages to simulate the pore-water salinity in the marsh is 
that there would not be any data on the Middle Back River 
that may be important for evaluating mitigation alternatives. 
Data in this area are available from the GPA river networks. 
Although the data from these stations are limited to condi-
tions from either the summer of 1997 or 1999, data from 
GPA10, GPA11, GPA11R, and GPA12 were used as inputs to 
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Figure 25.  Measured and simulated hourly salinity at Little Back River at U.S. Fish and Wildlife Service Dock 
(station 02198979) for the period June 1 to August 31, 2002.
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the marsh salinity models to address spatial distribution of the 
river salinity inputs for the marsh salinity models. 

There are two technical issues with using the short-term 
GPA data that need to be addressed. The first technical issue 
is that the GPA data are not concurrent with the USGS marsh 
data (summers of 1997 and 1999 compared to 2000–2005). 
The models for the four GPA stations were used to simulate 
the time series of specific conductance for the period 2000–
2005. To generate the data for this period, the GPA models 
were used to make salinity predictions for a range of stream-
flow conditions much larger than measured during the sum-
mers of 1997 and 1999 (fig. 18A). The second issue is that the 
GPA data are highly correlated. To ensure that the data from 
the GPA site inputs unique information for the marsh predic-
tions, the data for stations GPA11, GPA11R, and GPA12 were 
systematically decorrelated from GPA10. 

The marsh pore-water salinities were modeled in two 
stages. The first stage used the USGS river data to simulate the 
marsh salinity. The second stage used the GPA river data to 
simulate the residual error (difference between the simulated 
and measured marsh salinity) from the first stage model. The 
final marsh salinity predictions are the sum of the predictions 
from the two models.

 The first stage pore-water salinity model (pb2msc-
2005-2) for Little Back River at Site B2 uses 10 specific-

conductance inputs and differences in specific conductance 
from two USGS riverine gages in the vicinity of SNWF. Two 
inputs are the difference in specific conductance at the Little 
Back River at USFW Dock (021989791) and the Savannah 
River at I-95 (station 02198840) and Front River at Houli-
han Bridge (station 02198920), variables SCDIF8840A and 
SCDIF8920A, respectively. There are four moving window 
average inputs of 48 hours, 1-, 2-, and 4-weeks (variables 
FSC89791A48, FSC89791D1WK, FSC89791D2WK, 
FSC89791D4WK) and four time derivative inputs (vari-
ables LG672FSC89791A4WKD4WK, FSC89791DA48, 
DFSC89791DA48, and LG3DFSC89791DA48). For testing 
and training the daily model, there were 20,912 data values 
available (approximately 5 years of hourly data from 1999 
to 2005). Ten percent of the data was used for training, and 
90 percent was used for testing. The R2 for the training and 
testing were 0.83. The model used one hidden layer neuron. 

The second stage model (prb2msc) simulates the residual 
error from the first stage marsh pore-water salinity model. 
Four inputs used to simulate the residual error included weekly 
averages of the decorrelated specific-conductance variable 
from each GPA site and a 1-week moving window average 
of specific conductance at GPA10 (variables RSC10S_11B_
A1WK, RSC10S_11BR_A1WK, RSC10S_12RS_A1WK, and 
PSCGPA10S_FLR_A1WK, respectively). A summary of the 
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Figure 28.  Measured and simulated hourly water levels at Site B2 on the Little Back River for the period January 1  
to March 31, 2002. Breaks in the prediction time series are caused by incomplete time series for one or more of  
the model inputs.
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input variables, size of the training and testing data sets, num-
ber of hidden-layer neurons, and coefficient of determination 
for the daily model can be found in table 3 and Appendix I. 

The measured and simulated hourly pore-water salini-
ties are shown in figure 31 for summer 2002. This period was 
the end of the 5-year drought that began in 1998 and had the 
highest salinity intrusions of the drought. The model simulates 
the salinity intrusions occurring on a 14- and 28-day cycle and 
generally under simulates the salinity concentrations.

The measured and simulated hourly salinity for the seven 
USGS marsh stations are shown in figures 32 and 33. The 
quality of marsh water-level models, in term of the coefficient 
of determination, varies from a R2 of 0.74 to 0.93. Generally, 
the models follow the trend of the measured data, as reflected 
in the high R2, but miss the variability over short time periods. 

Analysis of Estuary Dynamics Using 
Three-Dimensional Response Surfaces

The river and marsh ANN models can be used to examine 
the effect of water level and tidal range in the harbor, Savannah 

River streamflow at Clyo on water levels, and specific con-
ductance in the primary and secondary river channels and the 
marshes. Three-dimensional response surfaces can be generated 
to display two explanatory variables (water level, tidal range, or 
streamflow) with a response variable (specific-conductance or 
water level). The data for the surface are computed by the ANN 
model across the full range of the displayed input variables, 
while the “unshown” inputs (all the models have more than two 
inputs) are set to a constant value, such as a historical mid-
range or mean value. Response surfaces are a valuable tool for 
understanding the dynamics of an estuary and for comparing 
how variable interactions differ throughout the system. 	

The conceptual model of salinity intrusion occurring 
during de-stratified conditions during neap tides (fig. 13) 
can be seen in the plot of the time series at GPA04 for sum-
mer 1999 (fig. 14). Salinity intrusion dynamics can also be 
seen in the response surfaces showing the interaction of daily 
streamflow, water level, and specific conductance for neap 
and spring tidal conditions (fig. 34). For example, the salinity 
intrusion on the Front River at Houlihan Bridge site (station 
02198920) is shown in figure 34. The response surfaces show 
increasing streamflow along the x-axis (horizontal, out of the 
page), increasing water level along the y-axis (horizontal, into 
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Figure 31.  Measured and simulated hourly salinities at Little Back River at Site B2 for the period June 1 to  
August 31, 2002. Breaks in the prediction time series are caused by incomplete time series for one or more  
of the model inputs.
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the page), and increasing specific-conductance (salinity) along 
the z-axis (vertical) for neap and spring tides (left and right 
response surfaces, respectively). All other variables were set 
to their historical means. In figure 34, the neap tide surface on 
the left shows that salinity intrusion occurs during low-flow 
conditions for the entire range of water levels in the harbor. 
Note the change across the response surface when flows are 
below 10,000 ft3/s. The spring tide surface on the right in 
figure 34 shows that salinity intrusion during spring tides 
occurs only during low flow and increasing harbor water-level 
conditions. Note the slope of the edge of the response surface 
at low flows as water levels increase and specific conductance 
increases from 1,000 to 4,000 µS/cm.

The response surfaces at the I-95 Bridge (station 
02198840) show different salinity intrusion dynamics (fig. 35), 
with the greatest salinity intrusions occurring on spring tides. 
The response surface at left shows that during neap tides, 
increases in salinity occur during low-flow conditions and 
all water-level conditions in the harbor. The response sur-
face at right shows that during spring tides, similar specific-
conductance levels occur during low-flow conditions and 
for most water levels. During very high harbor water-level 
conditions, salinity intrusion can be more than twice as high as 
during neap tides. The increased salinity intrusion is possibly 
due to decreased stratification and fully mixed conditions 

during neap and spring tides in the upper reaches of the river, 
which would limit intrusion to periods with increased volumes 
of saltwater (high water-level conditions), high mixing energy 
(spring tides), and limited upstream flow resistance to intrud-
ing saltwater (low-flow conditions). It should be remembered 
that the response surfaces show daily values. Maximum hourly 
specific-conductance intrusions during the drought ranged 
from 100 to 8,000 µS/cm. 

The increased daily specific-conductance, or salinity, 
values during spring tides at I-95 (station 02198840) can also 
be seen by plotting streamflows, tidal ranges, and specific 
conductance with the other inputs set to their historical means. 
Figure 36 shows that during low flow and historical mean 
harbor water levels, daily specific conductance can increase as 
much as 100 µS/cm from neap to spring tides. 

Figure 37 shows specific-conductance response surfaces 
for two sites on the Little Back River. The response surface 
at left for Little Back River at the USFW Dock (Station 
021989791) shows that at mean harbor water levels, salin-
ity intrusion is greatest during low flows and spring tides. 
Downstream at Little Back River near the Lucknow Canal 
(Station 021989784), higher specific conductance under 
similar water-level conditions occurs during low flows and 
neap tides. Although neither response surfaces show dramatic 
changes in specific-conductance response under different tidal 

Figure 34.  The interaction of water level (FWL8980A) and streamflow (Q8500A) on specific conductance for Front River 
at Houlihan Bridge (station 02198920) for neap and spring tide conditions. The response surface on the left shows 
specific conductance response at the gage under neap tide conditions (all other input values set to the mean historical 
condition for both response surfaces). The response surface on the right shows the gage response under spring tide 
conditions. Note differences in the z-axis (vertical) scale. During neap tides, salinity intrusion at Front Street is greatest 
during low-flow conditions through the full range of Harbor water-level conditions. During spring tides, salinity intrusion 
is greatest during low-flow conditions and increasing water-level conditions in the Harbor.
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range conditions, they do indicate a gradual change in salin-
ity intrusion behavior from the I-95 Bridge to the station near 
Lucknow Canal. 

Response surfaces can also be used to analyze the influ-
ence of Savannah River streamflow and harbor water levels 
on the local water level in the vicinity of the SNWR. As noted 
above, streamflow at Clyo, Ga., (station 02198500) and harbor 
water levels (station 02198980) are virtually uncorrelated 
(R=‑0.03). The effect of streamflow and water level on local 
water levels depends on their proximity to the harbor. Water 
levels in the upper reaches exhibit more riverine influence 
than the downstream stations. The riverine influence dimin-
ishes farther downstream, and the influence of the tide is more 
prominent. Figures 38 and 39 show response surfaces for four 
water-level gages. The upstream station, Savannah River at 
I‑95 (fig. 38, left response surface), shows a significant contri-
bution of streamflow to the local water level. The downstream 
station, the Front River at Broad Street (fig. 39, right response 
surface), shows that streamflow has a negligible influence on 
its water level. The other two stations, Front River at the Hou-
lihan Bridge (station 02198920, fig. 38, right response surface) 
and Little Back River at Limehouse (station 02198979, fig. 39, 
left response surface), show large contributions of harbor 
water level and small contributions of streamflow to the local 
water levels.
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Figure 35.  The interaction of water level (FWL8980A) and streamflow (Q8500A) on specific conductance at Savannah River 
at I-95 (station 02198840) for neap and spring tide conditions. The response surface on the left shows specific conductance 
response at the gage under neap tide conditions (all other input values set to the mean historical condition for both response 
surfaces). The response surface on the right shows the specific conductance response under spring tide conditions. Note 
differences in the z-axis (vertical) scale. During neap tides, salinity intrusion at I-95 is greatest during low-flow conditions 
through the full range of water-level conditions. During spring tides, salinity intrusion can be over twice as high as neap tide 
during low-flow and high water-level conditions.
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Figure 36.  The interaction of tidal range (XWL8980A) and 
streamflow (Q8500A) on specific conductance at Savannah 
River at I-95 (station 02198840). The response surface shows 
the specific conductance response at the gage under mean 
water-level conditions (all other input values set to the mean 
historical condition for both surfaces). During mean water-level 
conditions, specific conductance intrusion at I-95 is greatest 
during low-flow and spring-tide conditions.
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Figure 37.  The interaction of tidal range (XWL8980A) and streamflow (Q8500A) on specific conductance at Little 
Back River at U.S. Fish and Wildlife Service Dock (station 021989791, left response surface) and for Little Back River 
at Lucknow Canal (station 021989784, right response surface). The response surface on the left shows higher salinity 
intrusion at the upstream station occurs during spring tides. The response surface on the right shows that high salinity 
intrusions occur during neap tides.
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Figure 38.  The interaction of harbor water level  (FWL8980A) and streamflow (Q8500A) on local water levels at Savannah River at 
I-95 (station 02198840, left response surface) and for Front River at Houlihan Bridge (station 02198920, right response surface). The 
response surface of water levels on the left shows higher contribution of streamflow than the downstream station on the right.
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