
Development of a Model-to-Marsh 
Decision Support System

Dutta and others (1997) define DSSs as, “systems helping 
decision-makers to solve various semistructured and unstruc-
tured problems involving multiple attributes, objectives, 
and goals …. Historically, the majority of DSSs have been 
either computer implementations of mathematical models or 
extensions of database systems and traditional management 
information systems.” Environmental resource managers com-
monly use complex mathematical (mechanistic) models based 
on first principles physical equations to evaluate options for 
using the resource without damage. While there appears to be 
no strict criteria that distinguish a DSS from other types of 
programs, Dutta and others (1997) suggest that artificial intel-
ligence (AI) is a characteristic of more advanced DSSs, “With 
the help of AI techniques DSSs have incorporated the heuristic 
models of decision-makers and provided increasingly richer 
support for decision-making. AI systems have also benefited 
from DSS research as they have scaled down their goal from 
replacing to supporting decision makers.” 

The authors have previously developed a DSS to support 
the permitting of three water-reclamation facilities that dis-
charge into South Carolina’s Beaufort River estuary (Conrads 
and others, 2002b; Conrads and others, 2003; Conrads and 
Roehl, 2005). The Beaufort DSS incorporated a water-quality 

model comprising several dozen ANN “submodels” that 
simulated both point and nonpoint source effects on water 
quality throughout the system. ANN execution speeds were 
also found to be much faster than mechanistic models, greatly 
reducing the turn-around time for users performing waste load 
allocation scenarios. The Beaufort DSS was a spreadsheet 
application that connected the ANN super-model to a database 
storing time series of the area’s rainfall and riverine water 
level, specific conductance, water temperature, and dissolved 
oxygen from seven different USGS gaging stations. The DSS 
could run 3-year simulations under different point and non-
point loading scenarios while providing users with streaming 
tabular output and graphics to provide situational awareness. 
Its graphical user interface (GUI) requires no typing. These 
features make the DSS easily distributed and immediately 
usable by all stakeholders. The development, performance, and 
features of the Savannah DSS are described below.

The development of a DSS for the Savannah River Estu-
ary and surrounding wetlands, called the Model-to-Marsh DSS 
(M2M), required a number of steps (described previously), 
including (1) merging all the data into a single comprehen-
sive database, (2) developing water-level and salinity ANN 
submodels, and (3) developing of a spreadsheet application 
that integrates the new database, output from an existing 3D 
hydrodynamic model, and ANN submodels into a single pack-
age that is easy to use and readily disseminated.
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Figure 39.  The interaction of harbor water level  (FWL8980A) and streamflow (Q8500A) on local water levels at Little Back 
River at Limehouse (station 02198979, left response surface) and at Front River at Broad Street (station 02198977, right response 
surface). Both response surfaces show larger contributions of harbor water levels than streamflow on local water-level 
conditions. The response surface on the right shows negligible influence of streamflow on local water levels.
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Architecture 
Figure 40 shows the basic architectural elements of the 

DSS. The DSS reads and writes files for the various run-time 
options that can be selected by the user through the system’s 
GUI. A historical database contains 11 years of hydrodynamic 
data that are read into the simulator along with the ANN 
submodels at the start of a simulation. Using GUI controls, the 
user can evaluate alternative flow scenarios, or load specially 
formatted output files from the 3D hydrodynamic model that 
adjust historical riverine water level and specific conductance 
to evaluate alternative channel geometries and “replumbing” 
scenarios. The outputs generated by the simulator are written 
to files for post processing a spreadsheet application used by 
the DSS’s “2D Color-Gradient Visualization Program”. The 
DSS also provides streaming graphics during simulations, 
visually representing historical and simulated behaviors side-
by-side. These features are described in more detail below. 

Historical Database

The measured data required extensive clean up for a vari-
ety of problems, including erroneous and missing values and 
phase shifts. The locations of the gaging stations are shown 
in figures 1 and 5. The resulting database comprises 11 years 
of half-hourly data (≈160,000 time stamps) for 110 variables. 
A summary of the historical databases stored in the DSS is 
described below.

Clyo streamflow (Q
clyo

) and harbor water levels—
11 years of half-hourly water-level measurements in 
Savannah Harbor at Fort Pulaski, Ga., and river flows 
measured inland at Clyo, Ga., by the USGS. 

USGS riverine water level and specific conduc-
tance—11 years of half-hourly measurements collected 

•

•

from four stations in the Savannah River Estuary by 
the USGS.

GPA riverine water level and specific conductance—
half-hourly measurements collected on behalf of the 
GPA from 14 stations over 3 months each in 1997 and 
1999. Some stations recorded both surface and bottom 
specific-conductance measurements.

USGS marsh water level and specific conductance—
71 months (June 1999 to May 2005) of half-hourly 
measurements from seven stations.

GPA marsh water level and specific conductance—
40 months (June 1999 to October 2002) of half-hourly 
specific conductance and water-level measurements 
from 10 stations.

Linkage to the Three-Dimensional 
Hydrodynamic Model

The ANN super-model comprises 127 submodels that are 
configured as follows. Simulation models of water level and 
specific conductance at four USGS stations in the main chan-
nel of the river were developed using Savannah River stream-
flow data and Savannah Harbor water-level data for inputs, 
incorporating multiple time delays, moving window averages, 
and time derivatives to capture the system’s dynamic behavior. 
The simulations were then used as inputs to model the much 
shorter time series of water level and specific conductance at 
the many remaining riverine and marsh stations. This provided 
one set of ANN models that link the river’s main channel 
behavior to tidal forcing and fresh water flowing down the 
river, and a second set that links main channel behaviors to 
backwater riverine and marsh behaviors. 

•

•

•

Historical database
37 stations, WL, SC, Q

127 ANN models

3D Hydro model
scenarios

3D
Hydrodynamic

model

Microsoft® Excel™
or other analysis

package

Lower Savannah Decision Support System (DSS)

Percentile flow
input files

User defined
hydrographs

Simulation
output files

Simulator controls

GUI USERSSimulator
(iQuest/RT™, VBA)

Streaming graphics

User-defined
hydrographs Program

Input/output files Microsoft® Excel™ applications

2D Color gradient
visualization program

Figure 40.  Architecture of the lower Savannah River Estuary Decision Support System (DSS).
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Linking the 3D hydrodynamic model to the simulator 
is accomplished by reading in a file of simulated differences 
in water-level and specific-conductance values for the river, 
which reflect hypothetical channel geometry and replumbing 
scenarios run in the hydrodynamic model, to drive the riverine 
and marsh ANN models.

Much of the continuous data was collected during a 
record-setting 5-year drought, raising concerns that the rela-
tively short time series from the riverine and marsh stations 
was not representative of “typical” hydrodynamic conditions. 
River flows had been at record lows, leading to unprecedented 
salinity intrusion, even without a deepened harbor (fig. 12). 
This concern was mitigated by the fact that the main channel 
ANNs were able to “learn” the full range of behaviors exhib-
ited over 11 years, starting long before the onset of the drought. 
Therefore, ANNs could both “hindcast” the riverine and marsh 
behaviors to nondrought conditions, and be retrained on post-
drought conditions as new data become available. 

Model Simulation Control, User-Defined 
Hydrographs Program, Streaming Graphics,  
and Two-Dimensional Color-Gradient 
Visualization Program

The Simulator in the M2M DSS integrates the historical 
database with the 127 ANN models. The Date/Time Controls 
on the User Controls panel (fig. 41) are used to adjust start and 
end dates and time-step size for a simulation. The Simulator 
allows the user to run “What-if?” simulations by varying the 
streamflow from its historical values. The user has five Simu-
lation Input Variable Options: 

Percent of historical Clyo streamflows, 

User-set Clyo streamflow to constant value,

Percentile hydrograph of daily Clyo streamflow, 

User-defined daily hydrograph for Clyo 
streamflow, and

3D-model inputs at the USGS river stations and 
selected GPA river stations.

Explanations of how to use each of the options in the M2M 
can be found in the User’s Manual in Appendix IV.

Streaming graphics display output while a simulation is 
running for any four simulated variables selected by the user 
(fig. 42). Each graph displays the historical time series, the 
simulated output using the measured streamflow (to show 
model accuracy), and the simulated output using streamflow 
set by the user using the GUI controls or an input file.

To spatially visualize the marsh salinity response, the 
DSS is distributed with the “2D Color-Gradient Visualization 
Program” (fig. 43) that interpolates and extrapolates simulator 
output to fill and color a grid of the study area. The program 
provides a qualitative view of the large-scale, longitudinal 

•

•

•

•

•

gradients of the marsh parallel to the river, rather than a 
quantitative view of small-scale lateral gradients in the marsh 
perpendicular to the river. For the application, the seven USGS 
marsh gages were used because of the large range of measured 
hydrologic conditions, especially nondrought conditions, com-
pared with the GPA marsh sites. 

Although the marsh data time series provides a tempo-
rally detailed description of changing salinity conditions, the 
seven sites provide only information on large-scale, longitu-
dinal gradients in the system rather than small-scale, lateral 
variations in the marsh. Ecological interest in marsh salinity 
response typically is on seasonal and annual time scales rather 
than the smaller time scales of riverine responses of hours 
and days. For the color-gradient visualization program, users 
can select moving window averages of 1–12 months from the 
M2M simulator results. 

Spatial visualization is based on a 100 meter (m) 
(107.6 square feet) grid of the study area. The 29,000-cell grid 
covers the tidal marshes from I-95 to the Highway 17 bridges 
on the Back and Front Rivers (fig. 2). Interpolation is per-
formed using a simple ratio of linear distances between nearest 
USGS marsh gages and distance from a cell to the nearest sta-
tions. To enlarge the areal extent of measured marsh data (see 

Figure 41.  Simulator controls used to set parameters and run 
a simulation.
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USGS marsh network, fig. 5C), riverine gages on the Savan-
nah River at I-95 (Station 02198840, fig. 5A) and Back River 
upstream from the Tide Gate (GPA05, fig. 5B) were added to 
interpolate and extrapolate cells above Sites M1 and M2 and 
below Site B4. 

The program allows the user to configure the color scale 
and export all salinity values and grid parameters, i.e., cell 
size, and corner coordinates, as an ASCII file for input into 
a mapping package such as ArcViewTM. In addition to the 
100‑m grid, a 10-m (107.6 square feet) grid (2,900,000 cells) 
was developed to minimize numerical computation errors 
when overlaying the grid data and irregular polygons in 
GIS applications. 

Application of the Model-to-Marsh 
Decision Support System

The development of the ANN models and the DSS appli-
cation for the Savannah River Estuary had two objectives. The 
first was to provide the ecologists responsible for developing 
marsh succession models of the tidal marshes with a predic-
tive tool that could simulate riverine water-level and salinity 
responses to changes in hydrologic conditions, and to simulate 

marsh water-level and pore-water salinity responses to chang-
ing river conditions. The models allow ecologists to evaluate 
the system under different hydrologic conditions to better 
understand the relation between riverine and marsh water-level 
and salinity dynamics. The second objective was to integrate 
predictions from the 3D EFDC model with the predictive 
marsh succession models. Ultimately, the M2M is a tool to 
assist in understanding the complex Savannah River Estuary 
system, and to evaluate alternative scenarios for the potential 
harbor deepening. The following sections describe the applica-
tion of the M2M to various hydrologic scenarios.

User-Defined Hydrology

As discussed previously, salinity dynamics result from 
three large-scale forcing factors: (1) harbor tidal range; 
(2) water levels at Fort Pulaski; and (3) Savannah streamflows. 
Tidal range and water-level variability depend on orbital 
mechanics and meteorological conditions, and are not regu-
lated. The streamflow depends on meteorological conditions, 
the hydrologic cycle, and a combination of regulated stream-
flow upstream from Augusta and unregulated streamflow 
downstream from Augusta. The M2M allows the user to set 
the input streamflow conditions to evaluate river and marsh 
dynamics, and alternative regulated streamflow conditions. 

Figure 42.  Streaming graphics displayed during simulation.
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Percentile and Constant Streamflow
It is instructive to analyze riverine and estuarine systems 

under extreme conditions. Often the critical dynamics of a 
system manifest themselves during these periods rather than 
during average hydrologic conditions. The 5-year drought 
(1998–2002) in South Carolina and Georgia provides an 
opportunity to analyze salinity dynamics and hydrologic 
conditions during the worst extended drought on record. To 
evaluate the state of the hydrology of the Savannah River for 
a particular year, an actual daily streamflow hydrograph can 
be compared to a percentile flow hydrograph. During the 
last year of the drought, 2002, the daily streamflow recorded 
at Clyo, Ga., was at or below the 5th percentile flow for the 
entire historical record. Figure 44 shows the actual daily 2002 

streamflow at Clyo, Ga., with selected percentile flow hydro-
graphs. During the first 5 months of the year, the streamflow 
was establishing new record lows. During the summer, flows 
generally were between the 5th percentile and the historical 
minimum flows. It was not until early fall that streamflows 
increased consistently above the 5th percentile. During the 
summer, large salinity intrusions were recorded throughout the 
USGS river and marsh gaging networks.

To evaluate the effect of low-flow conditions on the salin-
ity response in the system, the M2M was set up to simulate a 
constant streamflow of 6,000 ft3/s during 2002. The salinity 
response to the constant flows on the Little Back River at the 
USFW Dock (station 021989791) is shown in figure 45 along 
with the measured and constant streamflows, and harbor tidal 
range. Constant flow does not manifest the high streamflow 

Figure 43.  Screen capture of the Two-Dimensional Color-Gradient Visualization Program. Left image shows spatial distribution of 
marsh salinity based on data from the seven USGS marsh stations. Panel in the upper right of the screen shows the user-specified 
color scheme. Panel in the lower right shows the user’s controls of the visualization program.
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pulses, which exceeded 8,000 ft3/s, in February through April 
and December. During the summer low-flow period, the 
constant 6,000 ft3/s flow was substantially greater than the 
measured 2002 conditions.

The constant streamflow did not significantly affect the 
salinity intrusions during the first 4 months (January to April) 
of 2002 when the average measured streamflow was approxi-
mately 6,000 ft3/s. During this period, the greatest intrusions 
occur on 14- and 28-day cycles that are co-incident with the 
spring tides. The three higher-flow pulses during this period 
did not occur during the spring tides. During the low-flow 
period after May, the constant flow is above the actual flow 
and did substantially affect salinity levels. For the actual flow 
conditions, the salinity intrusions (blue line) were approxi-
mately 3.0 psu, with the greatest intrusion of 8.0 psu occurring 
in early August. The salinity response to the constant  
6,000 ft3/s (red line) shows that the difference in the flows 
decreases the early salinity intrusions to approximately 1.5 to 
2.0 psu, and the high intrusion in August fell to approximately 
4.0 psu.
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The reduction in the salinity intrusion by constant stream-
flow also had a substantial effect on the pore-water salinity 
in the tidal marshes. Figure 46 shows the pore-water salinity 
response to the actual and constant 6,000 ft3/s streamflows. 
Some of the input data for the marsh ANN models were miss-
ing during the first 3 months of the year, and predictions are 
not shown. For Site B1, the salinity response to the measured 
streamflow is between 0.5 and 1.0 psu, with the large intrusion 
in August being approximately 1.2 psu. The constant stream-
flow decreased the pore-water salinity by approximately 50 per-
cent to 0.5 psu or less. The response to the increased streamflow 
virtually changed Site B1 from an oligohaline marsh to a tidal 
freshwater marsh (fig. 15). Downstream at Site B2, there is a 
similar substantial decrease in the salinity for the measured and 
constant 6,000 ft3/s streamflows. Note the similarities in the 
responses in the marsh pore-water salinity at Site B1 for mea-
sured flow conditions and Site B2 for the constant flow condi-
tions. The slight increase in the streamflow of the constant input 
changed the marsh response at Site B2 to one that is equivalent 
to the marsh upstream during measured conditions. 

Percent of Historical Streamflow 
Another user-specified streamflow option is percent of 

historical streamflow. This allows the DSS user to modify the 
measured streamflow from 50 to 200 percent of the histori-
cal value. The salinity response on the Little Back River at 
USFW Dock (station 021989781) for a 25-percent increase 
in streamflow during 2002 is shown in figure 47. There is an 
overall decrease in salinity with high streamflow. In the con-
stant flow simulation above, during the first 4 months the three 
flow pulses were decreased substantially but there was little 
response in salinity owing to the timing of the 28-day spring 
tide cycle (fig. 45). With the 25-percent increase in stream-
flow (fig. 47), there is a consistent reduction in the salinity, 
with the largest percentage reduction occurring during spring 
tides. During the low flows in August, the 25-percent increase 
in streamflows was not as great a difference over the actual 
streamflow as the constant 6,000 ft3/s simulation; therefore the 
large salinity intrusion values were reduced to 5 psu, rather 
than the 4 psu with the 6,000 ft3/s constant flow.
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Figure 46.  Hourly salinity response for two tidal marsh sites (B1 and B2) off the Little Back River for calendar 
year 2002 streamflows and constant 6,000 ft3/s streamflows. Tidal range for Savannah River at Fort Pulaski 
(station 02198980) also are shown.
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The marsh response to the 25-percent higher streamflow 
during 2002 is shown in figure 48 for marsh sites B1, B2, and 
B3. The three sites have similar and different responses to 
higher streamflow. Generally, the three sites respond more to 
the higher streamflow beginning in June, with Site B3 showing 
the greatest response. For the 14-day period around the large 
salinity intrusion in August 2002, Site B2 had the greatest 
percentage change (approximately 300 percent) of the three 
sites. For 2002, Site B3 showed the largest overall response (to 
0.8 psu). The different responses at the marsh sites show that 
percentage change in flow does not yield a consistent, propor-
tional change in salinity.

The marsh responses to a 25-percent increase in stream-
flow can also be displayed as frequency distributions to reveal 
the changes in the occurrence of salinity in the pore-water. 
The cumulative percent distribution of salinity occurrences for 
the three marsh sites at a 25-percent increase in streamflow is 
shown in figure 49. For all three sites, the increase in stream-
flow shifts the frequency distribution to the left as pore-water 
salinity concentrations decrease. The differences in the slopes 
and the shapes of the frequency response curves show that the 
marshes are responding differently to marsh and river salinity 

dynamics. The 25-percent increase shifted the salinity fre-
quency at Site B2 to conditions that are similar to the actual 
flow conditions at Site B1 upstream. 

Percentile Hydrograph of Daily Streamflow 
Percentile hydrographs can be used as inputs to the 

M2M to estimate riverine and marsh water-level and salinity 
responses for these graduated streamflow conditions. The user 
selects the time period to simulate and the percentile hydro-
graph to use as input. The M2M DSS will simulate the water-
level and salinity responses using the measured harbor water 
level and tidal range data from the selected time period. The 
percentile flow hydrograph option allows, “normalized” water-
level and salinity conditions to be determined. For example, 
for a period when the system is experiencing extreme low-
flow conditions, a percentile flow hydrograph (for example 
the 25th to 75th percentile) will allow “normal” salinities 
and water levels to be estimated. Figure 50 shows the salinity 
response at the USFW Dock on the Little Back River (station 
021989791) during 2002. The response for the 25th percentile 
flow hydrograph can be considered the “normal” response to 
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Figure 47.  Hourly salinity response at Little Back River at U.S. Fish and Wildlife Service Dock (station 021989791) 
for calendar year 2002 streamflows and a 25-percent increase in streamflows. Tidal range for Savannah River at 
Fort Pulaski (station 02198980) also are shown.
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Figure 48.  Hourly salinity response for three tidal marsh sites (B1, B2, and B3) along the Little Back River for 
a 25-percent increase in calendar year 2002 streamflows. Salinity response is the difference between salinity 
response for actual streamflows and a 25-percent increase in streamflows. Tidal range for Savannah River at  
Fort Pulaski (station 02198980) also are shown.
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statistically derived streamflow conditions. The effect of the 
drought in 2002 is the difference between the salinity response 
to the actual flows and the 25th percentile hydrograph. During 
the seasonally high flows in the spring, the salinity intrusion in 
April is reduced from about 2.0 psu to less than 0.5 psu. Dur-
ing the extreme low flows during the summer, salinity intru-
sions of 3.0 psu are reduced to 1.0 to 1.5 psu, and 8.0 psu is 
reduced to 3.0 psu. With the return of slightly higher flows in 
the fall and winter, the reductions of the intrusions are lower. 

The pore-water salinity response at three marsh sites 
for three different percentile flow conditions were simulated 
for the 2002 calendar year (fig. 51). When the streamflow 
is reduced to the 15th percentile, the pore-water salinities 
increase and the frequency distributions are shifted to the 
right. The frequency distribution for 15th percentile at Site B1 
is similar to the 25th frequency distribution for Site B2. Fur-
ther reduction in the streamflows to the 5th percentile shifts 
the frequency distributions even farther to the right. Sites B1 
and B2 are shifted from freshwater tidal marsh to oligohaline 
marsh conditions. 
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Figure 50.  Hourly salinity response at U.S. Fish and Wildlife Service Dock (station 021989791) for calendar year 
2002 streamflows and the 25th percentile duration hydrograph. Percentile flows based on streamflows from 1929 
to 2003. Tidal range for Savannah River at Fort Pulaski (station 02198980) also are shown.

User-Defined Streamflow Hydrograph 
The fourth option for user-defined streamflow input 

M2M is a user-defined hydrograph. With this option, a half-
hourly flow hydrograph is created outside of the M2M DSS. 
A simulation period is selected and the M2M uses the user-
defined hydrograph and tidal conditions for the simulation 
period as inputs. Two scenarios were simulated using this 
option. In the first scenario, a hydrograph for the 2002 calen-
dar year was created with the minimum flow set to 5,000 ft3/s. 
The actual and user-defined hydrographs for 2002 and the 
salinity response at USFW Dock on the Little Back River (sta-
tion 021989791) are shown in figure 52. During 2002, flows 
did not drop below 5,000 ft3/s until May. From May to Sep-
tember, the minimum 5,000 ft3/s streamflow usually is greater 
than the actual flow. The minimum streamflows decreased 
the salinity level but not as much as the constant 6,000 ft3/s 
shown in figure 45. The large salinity intrusion in August was 
decreased by less than 1.5 psu. The apparent difference in 
actual and user-defined streamflow salinity responses in early 
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Figure 52.  Hourly salinity response at U.S. Fish and Wildlife Service Dock (station 021989791) for calendar  
year 2002 streamflows and minimum flows set at 5,000 ft3/s. Tidal range for Savannah River at Fort Pulaski  
(station 02198980) also are shown.
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along the Little Back River for 5th, 15th, and  
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January are an artifact of missing 2001 values in the user-
defined hydrograph for computing model inputs such as long-
term time derivatives and moving window averages.

In the second user-defined hydrograph scenario (fig. 53), 
a hydrograph was created that shifted the higher streamflow 
pulses that occurred during the first 4 months of 2002 to 
coincide with the spring tides to evaluate whether the salinity 
intrusion would be substantially reduced. In addition to shift-
ing the three pulses early in the year, a pulse of approximately 
8,500 ft3/s was inserted to coincide with the August spring tide 
and the coincident large salinity intrusion. The results of the 
simulation are shown in figure 54. The shifting of the pulses 
did decrease the salinity intrusions at the end of January, 
February, and March. The intrusion in January had the largest 
reduction and may be due to the larger magnitude and dura-
tion of this streamflow pulse compared to the subsequent two 
pulses. The timed flow pulse inserted to reduce the August 
salinity intrusion reduced the magnitude of the salinity intru-
sion by more than 4 psu.

Inputs to Model-to-Marsh from 
Three‑Dimensional Model Output

The fifth option for user-defined inputs to the M2M DSS 
is output from the 3D hydrodynamic EFDC model of the 
Savannah River Estuary. Using this option, the differences 
between a historical baseline simulation and alternative harbor 
geometry are used for input to the M2M simulator. Inputs 
for the USGS marsh models include the differences from the 
EFDC simulations generated at the USGS river stations and 
at the decorrelated GPA river stations (GPA11, GPA11R, 
and GPA12). 

One scenario was run using the historical streamflow 
and tidal conditions of the 1999 calendar year and a hypo-
thetical deepening of the harbor. Two simulations were 
generated with the EFDC model. The first was the actual 
historical conditions from 1999. The second simulation was 
using the same boundary input conditions but a different 
channel geometry file representing a 4-ft deepening of the 
harbor. The difference between the two EFDC simulations 
are post-processed for the specified USGS and GPA river 
stations for input to the M2M simulator.

The two-dimensional color-gradient visualization pro-
gram was used to display the results from the scenario. Four 
visualization files are generated by the M2M simulator as 
input to the marsh visualization program: actual conditions, 
simulated actual conditions, user-defined conditions, and the 
difference between simulated actual conditions and user-
defined conditions. The user-defined conditions represent 
the simulated salinity values resulting from the EFDC deep-
ening scenario. The difference between the simulated actual 
conditions and user-defined conditions show the effects of 
the scenario. Figure 55 shows the baseline simulation on the 
left and the user-defined condition on the right. The darker 
shades of green on the right panel (fig. 55B) indicate the 
increased marsh salinity concentrations resulting from a 
deepening of the harbor for a 2-month period in 1999.

	 The same deepening scenario is displayed in fig-
ure 56 as the difference between the historical condition and 
the deepened condition. The marsh salinity concentrations 
show the effect of a deepening. Figures 55 and 56 do not 
use the same color gradient. As expected, the effect is more 
evident closer to the harbor and diminishes farther upstream.
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Figure 54.  Hourly salinity response at U.S. Fish and Wildlife Service Dock (station 021989791) for calendar year 
2002 streamflows and user-defined hydrograph with streamflow pulses inserted to occur during spring tides to 
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application. Hydrograph generated to time streamflow pulses to occur during spring tides and reduce  
salinity intrusion.
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Figure 55.  Two-dimensional color-gradient visualization of marsh salinity predictions for actual conditions (A, left panel) and 
a deepened condition (B, right panel) for the period July 1 to August 31, 1999. Both panels use the same green color gradient 
(values from 0.0–12 psu) to represent average marsh pore-water salinity concentrations. The panel on the right shows slightly 
higher (darker green) marsh pore-water salinity concentrations due to the deepening of the harbor.
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Figure 56.  Two-dimensional color-gradient visualization of 
differences in average marsh salinity prediction for actual 
conditions and a deepened condition for the period July 1 to 
August 31, 1999. The panel uses a green color gradient (values 
from –3.0 to 0 psu). Lighter green color shades indicate greater 
differences between the two simulations.
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Summary
To evaluate potential effects of a proposed deepening of 

the Savannah Harbor, the Georgia Ports Authority (GPA) has 
undertaken hydrodynamic and ecological studies of the river 
and marshes in the vicinity of the SNWR. The freshwater tidal 
marshes support a diversity of plants and wildlife and were 
formerly one of the largest freshwater tidal marshes along the 
East Coast. The potential deepening of the harbor will alter the 
salinity dynamics of the system and could adversely affect the 
freshwater tidal marshes. Two models have been developed 
to evaluate effects and simulate possible mitigation scenarios 
to minimize potential deepening effects. The GPA and the 
U.S. Army Corps of Engineers funded the development of 
hydrodynamic and ecological models to evaluate the potential 
effects of a proposed deepening of Savannah Harbor. A three-
dimensional (3D) hydrodynamic and water-quality model was 
developed that simulates water levels and salinity throughout 
the riverine network for anticipated changes in shipping chan-
nel geometry. The other models are marsh succession models 
that predict the changes in marsh plant communities as a result 
of changes in marsh pore-water salinity. To link the predictive 
capacity of the two modeling efforts, artificial neural network 
(ANN) models were developed using data-mining techniques to 
simulate riverine and marsh water-level and salinity dynamics. 

The river and marsh ANN models, historical database, 
model simulation controls, streaming graphics, and model 
output were integrated into a decision support system (DSS) 
named the Model-to-Marsh (M2M). The M2M can be run 
under two different modes. One mode allows the user to 
manipulate the streamflow inputs to the system. Four options 
are available: constant streamflows, percent of historical 
streamflows, percentile streamflow hydrographs, and user-
defined hydrograph. The other mode allows users to input the 
simulated change in riverine conditions from the 3D hydro-
dynamic model. Output from the M2M includes tabular time 
series of measured data, predictions of the measured data, 
predictions of the user-specified conditions, and differences 
in simulated and user-specified values. A two-dimensional 
(2D) plan view visualization routine was also developed that 
displays marsh salinity conditions. The visualization routine 
uses marsh predictions at seven locations and interpolates 
and extrapolates values across the marsh on either a 10- or 
100‑meter grid. The 2D grid is formatted to be compatible 
with geographic information system (GIS) applications. The 
M2M is a spreadsheet application that facilitates the dissemi-
nation and utility of the DSS.

The empirical ANN models were developed using 
data-mining techniques. Data mining is a powerful tool for 
converting large databases into knowledge to solve problems 
that are otherwise imponderable because of the large numbers 
of explanatory variables or poorly understood process phys-
ics. Since the last harbor modification in 1994, there are four 
databases of time series of river and marsh water level and 
specific conductance (field measurement for salinity). The 

USGS has maintained a network of continuous streamflow, 
water-level, and specific-conductance river gages since the 
1980s and a network of continuous tidal marsh water-level and 
salinity gages since 1999. To support the 3D hydrodynamic 
model development, the GPA collected continuous water-level 
and water-quality data during the summers of 1997 and 1999. 
The GPA also collected continuous tidal marsh water-level and 
specific-conductance data from 1999 to 2002. 

Development of models with good predictive ability 
through the full range of historical conditions is dependent 
on the availability of measured data covering the full range 
of conditions in the system. Depending on the period of time 
when these data collection networks were active, each data 
set covered different ranges of Savannah River streamflow 
conditions. For the river networks, the USGS stations recorded 
water level and specific conductance for the full range of 
historical streamflow conditions from 4,320 to 52,600 ft3/s. 
The GPA network measured conditions for a flow range of 
5,440 to 11,600 ft3/s, which represents median flow conditions 
(the 25th and 75th percentiles for the period of record). For 
the tidal marsh networks, the USGS gaging network mea-
sured hydrologic conditions of 4,320 to 39,600 ft3/s, which 
represents a low- to high-flow condition (from minimum 
flow to greater than 95th percentile flows for the period of 
record). The GPA network measured conditions from 4,320 
to 14,100 ft3/s, which like the GPA river network, represents 
median flow conditions. 

For the application of the ANN models to the Savan-
nah River, data-mining methods are applied to maximize the 
information content in raw data. Signal processing techniques 
included signal decomposition, digital filtering, time deriva-
tives, time delays, running averages, and differences between 
stations. Signal inputs to the ANN model used “state space 
reconstruction” (SSR) for representing dynamic relations of 
the system. The development of ANN models to simulate 
the water level and pore-water salinity of the tidal marsh was 
undertaken in two phases. The first phase was to train ANN 
models to simulate the water level and specific conductance 
at the USGS and the GPA riverine sites. Inputs to the ANN 
models of the USGS river network include time series, or 
signals, of streamflow, tidal water level, and tidal range. The 
second phase was to train ANN models to simulate water level 
and pore-water specific conductance at the USGS and the 
GPA marsh sites. Inputs for these models include the water-
level and specific-conductance signals from the USGS river 
network at the marsh gaging sites.

For a complex system like the Savannah River Estuary 
and tidal marshes, the statistical accuracy of the models and 
predictive capability are satisfactory. The salinity models are 
able to simulate the 14- and 28-day salinity intrusion cycles in 
the rivers and capture the salinity dynamics responses in the 
marshes. The models of the USGS river and marsh networks 
have the greatest range of the output variables. Generally, the 
river water-level models have coefficient of determination (R2) 
values ranging from 0.88 to 0.99 and the specific-conductance 

Summary  57 



models have R2 values ranging from 0.57 to 0.87. The marsh 
water-level models have R2 values ranging from 0.72 to 0.87 
and the specific-conductance models have R2 values ranging 
from 0.53 to 0.85.

The M2M application was used to simulate four user-
specified flow options in the applications. The first scenario 
simulated the 2002 conditions using a constant streamflow 
of 6,000 ft3/s. During the low-flow conditions in the summer 
when the actual flows were less than 6,000 ft3/s, there was a 
reduction in the salinity intrusion into the Little Back River. 
The constant 6,000 ft3/s reduced the amount of streamflow 
for three higher streamflow pulses that occurred in the spring 
of 2002. The reductions in the streamflow did not cause an 
increase in the salinity intrusion for these three events related 
to the timing with the 28-day spring tidal cycle. For the Little 
Back River, salinity intrusion is greatest during spring tides, 
and the three higher streamflow pulses did not occur during 
the optimal tidal phase. The constant streamflow also had a 
significant effect on the pore-water salinity response in the 
tidal marshes. The response to the increased streamflow during 
the low-flow conditions of the summer essentially changed 
Site B1 from an oligohaline marsh to a tidal freshwater marsh.

A second option for user-specified inflows for the M2M 
application is percent of historical streamflows. A 25-percent 
increase in streamflow for 2002 was simulated, and there was 
an overall decrease in the salinity with the increase in flow. 
With the 25-percent increase in streamflows, salinity intrusion 
is reduced during these periods due to the increase in stream-
flow with the largest percentage reductions occurring during 
spring tides. 

Percentile hydrographs can be used as a third option as 
inputs to the M2M to estimate riverine and marsh water-level 
and salinity response for these streamflow conditions. Using 
the percentile flow hydrograph option, “normalized” water-
level and salinity conditions can be determined for a particular 
time period. Three percentile streamflow conditions, the 5th, 
15th, and 25th percentile hydrographs, were simulated with 
the M2M application for the 2002 calendar year. The marsh 
response for these conditions showed Sites B1 and B2 shifting 
from freshwater tidal marsh conditions to oligohaline marsh 
conditions as flow conditions were reduced from the 25th to 
the 5th percentile. 

The fourth option for streamflow inputs to the M2M 
application is a user-defined hydrograph. For this scenario, 
a hydrograph was created that shifted the higher streamflow 
pulses that occurred during the first 4 months of 2002 to coin-
cide with the spring tides to evaluate whether the salinity intru-
sion would be significantly reduced. The shifting of the three 
pulses to coincide with the spring tides did decrease the salinity 
intrusions at the end of January, February, and March 2002.

The final option for inputs to the M2M application is 
output from the 3D EFDC model. For this scenario, the EFDC 
model was used to simulate the effects of a hypothetical 4-ft 
deepening of the harbor based on the historical hydrologic 
and tidal conditions for calendar year 1999. The differences at 
selected USGS and GPA river gages were post-processed and 
used as input to the M2M. The 2-month average marsh salini-
ties for the period July through August 1999 showed the high-
est effects in the marshes closest to the harbor and proximal to 
the Front River with diminishing increases farther upstream.
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