Pacific Islands Water Science Center

Prepared in cooperation with the American Samoa Environmental Protection Agency

U.S. Geological Survey
Scientific Investigations Report 2007-5167
version 1.0

Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa

By Scot K. Izuka, Jeff A. Perreault, and Todd K. Presley

2007

This report is available as a pdf.

block diagram with bay in foreground
Block diagram showing the geology of the eastern Tafuna-Leone Plain and the mountains to the north, Tutuila, American Samoa

Abstract

To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple lines of evidence indicate that in the eastern Tafuna-Leone Plain, surface water recharges the highly permeable underlying aquifer.

Steady-state model simulations representing current ground-water production conditions in the Tafuna-Leone Plain indicate that most ACRWs extend less than a mile from the production wells; thus, travel distance between any point within an ACRW and its well is short. A simulation representing a condition in which all wells are operating at maximum capacity resulted in larger ACRWs, which demonstrates that increasing ground-water withdrawal from existing wells, or building and developing new wells, increases the surface area that could potentially contribute contaminants. In some places, such as in Malaeimi Valley, water can travel quickly via surface-water routes to an area where the water can infiltrate within the ACRWs of a well field.


Download this report as an 62-page PDF file (sir2007-5167.pdf; 5 MB)

For questions about the content of this report, contact Scot Izuka

Suggested citation and version history


Download a free copy of the current version of Adobe Reader.

| Help | PDF help | Publications main page | Western Scientific Investigations Reports |
| Water Resources | Pacific Islands Water Science Center |


This report is also available in print from:

USGS Information Services, Box 25286,
Federal Center, Denver, CO 80225
telephone: 888 ASK-USGS; e-mail: infoservices@usgs.gov


Accessibility FOIA Privacy Policies and Notices

Take Pride in America home page. USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/sir/2007/5167/
Page Contact Information: Michael Diggles
Page Last Modified: November 1, 2007