USGS - science for a changing world

Scientific Investigations Report 2007–5185

U.S. GEOLOGICAL SURVEY
Scientific Investigations Report 2007–5185

Back to Table of Contents

Abstract

Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations.

Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed “heating signature” for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate to within about 0.005 degrees Celsius (°C).

In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03°C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194°C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources.

Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior to the installation of a selective withdrawal tower at Cougar Dam on the South Fork McKenzie River; construction was completed early in 2005. Model runs were used to evaluate the likely effects of the new tower on downstream water temperatures, which were quantified using the 7-day moving average of the daily maximum. The changes were determined to be largest in the South Fork McKenzie River, with maximum mid-summer warming of 6.0–6.5°C and maximum cooling of more than 5.0°C in October. The effect was diluted in the main-stem McKenzie River, with mid-summer warming of as much as 1.5 or 2.0°C and autumn cooling of more than 1.5°C. The effects were further diminished downstream in the Willamette River, with temperature changes as large as 0.4–0.5°C upstream of the Santiam River confluence (RM 108.5) and no more than 0.3°C downstream of that point.

Back to Table of Contents

AccessibilityFOIAPrivacyPolicies and Notices

Take Pride in America logoUSA.gov logoU.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/sir/2007/5185
Page Contact Information: Publications Team
Page Last Modified: Thursday, 01-Dec-2016 19:50:19 EST