USGS - science for a changing world

Scientific Investigations Report 2007–5237

U.S. GEOLOGICAL SURVEY
Scientific Investigations Report 2007–5237

Back to Table of Contents

Abstract

This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Oregon Department of Environmental Quality and Deschutes County, to develop a better understanding of the effects of nitrogen from on-site wastewater disposal systems on the quality of ground water near La Pine in southern Deschutes County and northern Klamath County, Oregon. Simulation models were used to test the conceptual understanding of the system and were coupled with optimization methods to develop the Nitrate Loading Management Model, a decision-support tool that can be used to efficiently evaluate alternative approaches for managing nitrate loading from on-site wastewater systems. The conceptual model of the system is based on geologic, hydrologic, and geochemical data collected for this study, as well as previous hydrogeologic and water quality studies and field testing of on-site wastewater systems in the area by other agencies.

On-site wastewater systems are the only significant source of anthropogenic nitrogen to shallow ground water in the study area. Between 1960 and 2005 estimated nitrate loading from on-site wastewater systems increased from 3,900 to 91,000 pounds of nitrogen per year. When all remaining lots are developed (in 2019 at current building rates), nitrate loading is projected to reach nearly 150,000 pounds of nitrogen per year. Low recharge rates (2–3 inches per year) and ground-water flow velocities generally have limited the extent of nitrate occurrence to discrete plumes within 20–30 feet of the water table; however, hydraulic-gradient and age data indicate that, given sufficient time and additional loading, nitrate will migrate to depths where many domestic wells currently obtain water. In 2000, nitrate concentrations greater than 4 milligrams nitrogen per liter (mg N/L) were detected in 10 percent of domestic wells sampled by Oregon Department of Environmental Quality.

Numerical simulation models were constructed at transect (2.4 square miles) and study-area (247 square miles) scales to test the conceptual model and evaluate processes controlling nitrate concentrations in ground water and potential ground‑water discharge of nitrate to streams. Simulation of water-quality conditions for a projected future build-out (base) scenario in which all existing lots are developed using conventional on-site wastewater systems indicates that, at equilibrium, average nitrate concentrations near the water table will exceed 10 mg N/L over areas totaling 9,400 acres. Other scenarios were simulated where future nitrate loading was reduced using advanced treatment on-site systems and a development transfer program. Seven other scenarios were simulated with total nitrate loading reductions ranging from 15 to 94 percent; simulated reductions in the area where average nitrate concentrations near the water table exceed 10 mg N/L range from 22 to 99 percent at equilibrium. Simulations also show that the ground-water system responds slowly to changes in nitrate loading due to low recharge rates and ground-water flow velocity. Consequently, reductions in nitrate loading will not immediately reduce average nitrate concentrations and the average concentration in the aquifer will continue to increase for 25–50 years depending on the level and timing of loading reduction. The capacity of the ground-water system to receive on-site wastewater system effluent, which is related to the density of homes, presence of upgradient residential development, ground-water recharge rate, ground-water flow velocity, and thickness of the oxic part of the aquifer, varies within the study area.

Optimization capability was added to the study-area simulation model and the combined simulation-optimization model was used to evaluate alternative approaches to management of nitrate loading from on-site wastewater systems to the shallow alluvial aquifer. The Nitrate Loading Management Model (NLMM) was formulated to find the minimum reductions from projected future loading required to maintain or restore ground-water nitrate concentrations or ground-water discharge of nitrate to streams below user-specified levels. Sensitivity analysis of the NLMM showed that loading primarily is constrained by nitrate concentration in the shallow part of the oxic ground-water system, within 5–10 feet of the water table.

Back to Table of Contents

AccessibilityFOIAPrivacyPolicies and Notices

Take Pride in America logoUSA.gov logoU.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/sir/2007/5237
Page Contact Information: Publications Team
Page Last Modified: Thursday, 01-Dec-2016 19:54:20 EST