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Abstract
This paper summarizes the results of field and labora-

tory investigations, including whole-rock geochemistry and 
radiogenic isotopes, of outcrop and drill core samples from 
volcanogenic massive sulfide (VMS) deposits and associated 
metaigneous rocks in the Wood River area of the Bonnifield 
mining district, northern Alaska Range (see fig. 1 of Editors’ 
Preface and Overview). U-Pb zircon igneous crystallization 
ages from felsic rocks indicate a prolonged period of Late 
Devonian to Early Mississippian (373±3 to 357±4 million 
years before present, or Ma) magmatism. This magmatism 
occurred in a basinal setting along the ancient Pacific margin 
of North America. The siliceous and carbonaceous composi-
tions of metasedimentary rocks, Precambrian model ages 
based on U-Pb dating of zircon and neodymium ages, and 
for some units, radiogenic neodymium isotopic composi-
tions and whole-rock trace-element ratios similar to those of 
continental crust are evidence for this setting. Red Mountain 
(also known as Dry Creek) and WTF, two of the largest 
VMS deposits, are hosted in peralkaline metarhyolite of the 
Mystic Creek Member of the Totatlanika Schist. The Mystic 
Creek Member is distinctive in having high concentrations of 
high-field-strength elements (HFSE) and rare-earth elements 
(REE), indicative of formation in a within-plate (extensional) 
setting. Mystic Creek metarhyolite is associated with alkalic, 
within-plate basalt of the Chute Creek Member; neodymium 
isotopic data indicate an enriched mantle component for both 
members of this bimodal (rhyolite-basalt) suite. Anderson 
Mountain, the other significant VMS deposit, is hosted by 
the Wood River assemblage. Metaigneous rocks in the Wood 
River assemblage span a wide compositional range, including 
andesitic rocks, which are characteristic of arc volcanism. Our 
data suggest that the Mystic Creek Member likely formed in 
an extensional, back-arc basin that was associated with an out-
board continental-margin volcanic arc that included rocks of 

the Wood River assemblage. We suggest that elevated HFSE 
and REE trace-element contents of metavolcanic rocks, whose 
major-element composition may have been altered, are an 
important prospecting tool for rocks of VMS deposit potential 
in east-central Alaska. 

Introduction
Devonian to Mississippian magmatism was widespread 

along the ancient Pacific margin of North America. Many 
of the volcano-plutonic complexes and associated sedimen-
tary rocks contain volcanogenic massive sulfide (VMS) or 
sedimentary exhalative massive sulfide (SEDEX) syngenetic 
base-metal (zinc-lead-copper) mineral deposits, including 
several deposits in east-central Alaska (Newberry and others, 
1997; Dusel-Bacon and others, 2006). (Syngenetic means 
that the deposit formed contemporaneously with the enclos-
ing rocks.) The discovery in the mid-1990s of zinc-lead-
silver massive sulfide deposits in the Finlayson Lake area 
of southeastern Yukon, Canada, prompted renewed interest 
in known and potential base-metal sulfide occurrences in 
similar rocks in Alaska. The potential for economic depos-
its provided the impetus for our investigations of the major 
known VMS deposits of the Bonnifield mining district and 
their host rocks. We summarize herein the results of our study 
to characterize the regional tectonic setting of the host rocks 
to the VMS deposits, the mineralogy and isotopic character-
istics of the deposits, and the controls of mineralization in a 
submarine hydrothermal environment. The reader is referred 
to Dusel-Bacon and others (2004, 2005, 2006) for com-
plete scientific referencing and more detailed results of our 
investigations. 

Regional Geology
Greenschist-facies metavolcanic and metasedimentary 

rocks in the Bonnifield district form range-parallel, east-
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trending belts (Wahrhaftig, 1968; Gilbert and Bundtzen, 
1979). Protoliths (premetamorphic rock types) consist of 
varying amounts of predominantly felsic and mafic volcanic 
and shallow intrusive rocks that are interlayered with carbona-
ceous and siliciclastic sedimentary rocks indicating deposition 
in a submarine, basinal setting. U-Pb zircon ages from felsic 
rocks indicate a prolonged period of Late Devonian to Early 
Mississippian (373±3 to 357±4 Ma) magmatism (Dusel-
Bacon and others, 2004, 2005, 2006; C. Dusel-Bacon and J.N. 
Aleinikoff, unpub. data, 2007).

Quartz-rich schists and subordinate carbonaceous schist 
and marble of the informally named Healy schist form the core 
of a regional anticline (fig. B1). Carbonaceous metasedimen-
tary rocks and minor conglomerate and rhyolite of the Keevy 
Peak Formation crop out north of, and stratigraphically above, 
the Healy schist (fig. B1). Bimodal — having both silica-poor 
(mafic) and silica-rich (felsic) compositions — metaigneous 
rocks, and carbonaceous and siliceous metasedimentary rocks 
of the Totatlanika Schist overlie the Keevy Peak Formation. 
Totatlanika Schist is subdivided into the following five 
members (Wahrhaftig 1968), from bottom to top: (1) Moose 
Creek (felsic and minor mafic schist); (2) California Creek 
(augen gneiss, grading to metarhyolite porphyry); (3) Chute 
Creek (metabasalt, which interfingers with both California 
Creek and Mystic Creek Members); (4) Mystic Creek (metar-
hyolite—mostly metamorphosed crystal tuff); and (5) Sheep 
Creek (quartzofeldspathic schist derived from near-source, 
reworked volcanic deposits; metasiltstone, metatuff, and 
marble). Carbonaceous phyllite, indistinguishable from that 
in the Keevy Peak Formation, is found within all members of 
the Totatlanika Schist. These rocks form a syncline, with the 
Sheep Creek Member occupying its core (fig. B1).

The Wood River assemblage comprises a package of 
metavolcanic and metasedimentary rocks on the south flank 
of the anticline cored by Healy schist (fig. B1). This assem-
blage has gross lithologic similarities to the metavolcanic and 
carbonaceous sedimentary assemblages in the Totatlanika 
Schist and was proposed by Gilbert and Bundtzen (1979) to be 
equivalent to it. One of the goals of our study was to evaluate 
this hypothesis, and our conclusions regarding this correlation 
are given below.

Deposits
Two of the largest VMS deposits in the Bonnifield 

district, the Red Mountain (Dry Creek) deposit and the WTF 
deposit, are located approximately 90 kilometers (km) south 
of Fairbanks in the northeastern part of the Wood River 
area (fig. B1). Both deposits are hosted by the Mystic Creek 
Member of the Totatlanika Schist and occur near the contact 
between phyllitic felsic metavolcanic and subordinate carbo-
naceous rocks of the Mystic Creek Member and the overlying, 
predominantly metasedimentary rocks of the Sheep Creek 
Member (Newberry and others, 1997; Smit, 1999). Drilling 

of one of the massive sulfide horizons just north of Red 
Mountain, named for its distinctive 1,800-meter (m)-thick 
zone of quartz-sericite-pyrite footwall alteration (fig. B2), 
identified an estimated resource of 3.2 million tons averaging 
4.4 percent zinc, 1.9 percent lead, 0.2 percent copper, 3.01 
ounces per ton (oz/t) silver, and 0.018 oz/t gold (Szumigala 
and Swainbank, 1998).

The WTF deposit (fig. B1) is located about 3 km 
northeast of Red Mountain. The structural and stratigraphic 
relationship between the WTF and Red Mountain deposits is 
disputed. Smit (1999) placed the shallowly dipping host rocks 
of the WTF deposit and the steeply north-dipping host rocks of 
the Red Mountain deposit on the northern and southern limbs, 
respectively, of an east-west-trending syncline (within the 
broader syncline cored by the Sheep Creek Member; fig. B1). 
Newberry and others (1997), on the other hand, placed the 
Red Mountain deposit in a separate and lower stratigraphic 
interval. As discussed below, our geochemical and U-Pb 
zircon sampling addressed these two possibilities. WTF has 
an estimated resource of 3.09 million tons averaging 6 percent 
zinc, 2.5 percent lead, 0.1 percent copper, 5.73 oz/t silver, and 
0.029 oz/t gold (Szumigala and Swainbank, 1998).

The Anderson Mountain VMS prospect, located 32 km 
southwest of the Mystic Creek deposits, is exposed on the 
south limb of the antiform cored by the Healy schist. This 
prospect occurs within felsic to mafic metavolcanic rocks and 
associated carbonaceous metasedimentary rocks of the Wood 
River assemblage (fig. B1).

Methods
We collected outcrop and drill core samples of sulfide-

bearing and unmineralized rocks from the Wood River area 
(figs. B1, B3) of the Bonnifield district. We utilized sensitive 
high-resolution ion microprobe (SHRIMP) U-Pb dating of 
zircon crystals separated from felsic igneous rocks to deter-
mine the crystallization ages of volcanic and plutonic units 
in the Wood River area (fig. B1). This dating technique 
has the advantage of being able to analyze minute (about 
30-micrometer-diameter) areas, allowing age determination 
and analysis of both inherited zircon cores (from incorporated 
crustal material) and magmatic rims of zircons. Whole-rock 
neodymium isotopic compositions helped us identify the rela-
tive abundance of mantle versus continental crust components 
in the parent magmas of the metaigneous rocks.

A major part of our study employed whole-rock trace-
element geochemistry of metaigneous rocks to determine their 
origin and tectonic setting, particularly of those that are associ-
ated with the VMS deposits. Considerable care was taken to 
sample only the freshest, least altered material. Our conclu-
sions are based on trace elements that have been shown to be 
immobile, except during high-temperature metamorphism or 
because of pronounced hydrothermal alteration, neither of 
which has affected the rocks of the Wood River area. Because 
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Figure B1.  Generalized geologic map of the Wood River area, northeastern Healy quadrangle, showing the location of the three 
main volcanogenic massive sulfide targets and U-Pb zircon ages. Abbreviations are as follows: SHRIMP, sensitive high-resolution ion 
microprobe; Ma, millions of years. Geology modified from Wahrhaftig (1968) and Gilbert and Bundtzen (1979); SHRIMP U-Pb zircon 
crystallization ages from Dusel-Bacon and others (2004, 2005) and C. Dusel-Bacon and J.N. Aleinikoff (unpub. data, 2007).
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of major-element mobility, especially of alkalis and silica, 
magma compositions are identified utilizing a Zr/TiO2 versus 
Nb/Y diagram (fig. B4).

Figure B2.  View of Red Mountain, looking west, showing quartz-
sericite-pyrite alteration and north-dipping metarhyolite of the 
Mystic Creek Member. Cynthia Dusel-Bacon and Melanie Hopkins 
(U.S. Geological Survey (USGS)) in foreground. Photograph by 
Charlie Bacon (USGS).

Results 
U-Pb zircon crystallization ages indicate a prolonged 

period of felsic magmatism from 373±3 to 357±4 Ma 
(fig. B1). Ages determined on felsic samples from the vari-
ous map units overlap one another. Crystallization ages from 
throughout the Mystic Creek Member of the Totatlanika Schist 
overlap within the range of 363±3 to 357±4 Ma. Metarhyolites 
hosting both the WTF and Anderson Mountain deposits 
include SHRIMP U-Pb zircon ages of about 363 Ma, but 
their whole-rock compositions, trace-element signatures, and 
neodymium isotope compositions differ, as discussed below. 
U-Pb analyses of zircon cores from Totatlanika Schist and 
Healy schist felsic rocks yield Archean and Proterozoic ages 
(ranging from 2,681±16 to 981±31 Ma; Dusel-Bacon and 
others, 2004).

Epsilon neodymium isotope values (εNdt; time-corrected 
to 360 Ma) are relatively elevated for the Mystic Creek 
Member metarhyolites (-1.0, -1.5, -1.6) and Chute Creek 
metabasalts (+1.7 and +5.3), indicating an enriched mantle 
component for both members of the bimodal suite. In contrast, 
metarhyolite from the Wood River assemblage and the Healy 
schist have lower εNdt values (-4.5 and -13.5, respectively), 
reflecting a large continental crustal component. Proterozoic 
neodymium model ages of 1,030 to 2,010 Ma for metarhyo-
lites (including samples from the Mystic Creek Member, 
Wood River assemblage, and Healy schist) and 570 to 910 

Ma for Chute Creek Member metabasalt are consistent with a 
continental margin setting.

Trace-element analyses indicate that the metarhyolites of 
the Mystic Creek Member and the metabasalts of the Chute 
Creek, Sheep Creek, and Mystic Creek Members have high 
concentrations of high-field-strength and rare-earth elements, 
and yttrium and gadolinium, relative to average continental 
crust (for the metarhyolites) and primitive mantle (for the 
metabasalts). High-field-strength elements (HFSE) are those 
elements with a high charge to ionic radius ratio and include 
Zr, Hf, Nb, Ta, and Ti; rare-earth elements (REE) include La, 
Ce, Nd, Sm, Eu, Gd, Yb, and Lu. Rare-earth elements, not 
surprisingly, also are anomalously high in surface and water 
samples collected in the vicinity of Red Mountain, which is 
underlain by Mystic Creek metarhyolite (Eppinger and others, 
this volume, chap. I). The Zr/TiO2–Nb/Y diagram (fig. B4) 
reveals the distinctive, highly alkaline (“peralkaline”) com-
position of the Mystic Creek metarhyolites, which plot as 
comendites. In contrast, felsic rocks from the California and 
Moose Creek Members of the Totatlanika Schist have lower 
Nb/Y and Zr/TiO2 ratios and plot as rhyodacite and dacite. 
Metabasalt from the Mystic Creek, Sheep Creek, and Chute 
Creek Members of the Totatlanika Schist also have high Nb/Y 
ratios and plot as alkali basalt. Compositions of the Wood 
River assemblage metavolcanic rocks differ from those of 
the Totatlanika Schist in that the former do not have alkaline 
compositions (that is, they do not fall within the alkali basalt, 
trachyandesite, trachyte, or comendite-pantellerite fields), with 
the exception of one sample that plots as a trachyte, and their 
compositions span a broad range that includes intermediate-
composition andesite.

 

Figure B3.  Sampling drill core from the Dry Creek VMS deposit, 
stored at the Ester core facility, Alaska. Geologists from left to 
right: Rainer Newberry (University of Alaska), Curt Freeman 
(Avalon Development Corp.), Cameron Rombach (U.S. Geological 
Survey (USGS)), and Melanie Hopkins (USGS). Photograph by 
Charlie Bacon (USGS).
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Information about the tectonic setting in which magmas 
were generated can be attained from discrimination diagrams 
that utilize the immobile trace elements. The tantalum-
ytterbium diagram (fig. B5) shows such information for our 
felsic igneous rocks (SiO2 is 68–86 weight percent). The high 
tantalum and ytterbium contents of Mystic Creek peralkaline 
metarhyolites cause them to plot in the within-plate-granite 
field on the tantalum-ytterbium discrimination diagram 
(fig. B5). Within-plate rhyolites commonly are associated 
with rifting, an example being within-plate rhyolites from 
the Yellowstone Plateau volcanic field. Metarhyolites from 
the other members of the Totatlanika Schist and the Keevy 
Peak Formation plot in the field for volcanic-arc granites; 
however, the fact that their tantalum and ytterbium values are 
similar to the values for average upper continental crust (UCC, 
fig. B5) allows the possibility that the their chemical signa-
tures could reflect involvement of continental crust during 
magma generation and ascent rather than being an indication 
of an arc (as opposed to a within-plate) setting. Wood River 
assemblage metarhyolites form a linear cluster that extends 
from the volcanic arc field into the transitional field between 
within-plate and anomalous ocean-ridge granites, in addition 

to having two samples that plot just inside the within-plate 
granite field.

The hafnium-thorium-tantalum diagram (fig. B6) 
shows the empirically determined magma types applicable 
to Bonnifield metabasalts (SiO2 is 47–53 weight percent). 
Metabasalts from the Sheep Creek and Chute Creek Members 
of the Totatlanika Schist plot as ocean-island basalt (OIB), a 
magma type that is commonly associated with rifting and also 
is referred to as “within-plate basalt.” Metabasalts from the 
Wood River assemblage plot in the calc-alkalic arc basalt and 
the enriched mid-ocean-ridge fields.
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Figure B4. Metaigneous samples from the Wood River area 
plotted on the Zr/ TiO2 versus Nb/Y discrimination diagram of 
Winchester and Floyd (1977).

Conclusions 
A continental margin setting and original proximity to 

the North American craton for the Late Devonian and Early 
Mississippian VMS host rocks of the Bonnifield district 
is indicated by (1) the quartz-rich compositions of many 
metasedimentary rocks; (2) the presence of Archean and 
Proterozoic inherited zircon cores and detrital zircons; (3) 
radiogenic neodymium isotopic compositions for the Healy 
schist and, to a lesser degree, the Wood River assemblage; 
(4) Proterozoic neodymium model ages for the Totatlanika 
Schist, Healy schist, and Wood River assemblage; and (5) the 
similarity in trace-element ratios between some of the felsic 
metaigneous samples and average upper continental crust.

Evidence for an extensional setting for the submarine 
eruption of the Mystic Creek Member metarhyolite consists 
of (1) its peralkaline composition and inferred within-plate 
tectonic setting; (2) its association with Chute Creek Member 
basalt, which also has alkalic, within-plate trace-element 
characteristics; and (3) elevated εNdt values for Mystic Creek 
metarhyolite and Chute Creek metabasalts that indicate an 
enriched mantle component for both members of the bimodal 
suite. Dusel-Bacon and others (2004) speculated that the 
distinctly peralkaline, within-plate metarhyolites of the Mystic 
Creek Member may have been partial melts of underplated, 
deep crustal alkalic gabbros that also were the source of the 
alkalic, within-plate metabasite of the Chute Creek Member. 
Dark-gray shales interstratified with metarhyolite and massive 
sulfide horizons at WTF and Red Mountain show HFSE and 
light-REE enrichment similar to that in Mystic Creek metar-
hyolite, suggesting a significant peralkaline rhyolitic tuff 
component in the seafloor sediments that is consistent with 
their deposition in a synvolcanic, extensional basin. Similar 
U-Pb ages and geochemical characteristics for the WTF and 
Red Mountain deposits suggest that they occur in the same 
host-rock stratigraphic interval and support the syncline model 
of Smit (1999).

Mid-Paleozoic bimodal magmatic rocks, including mafic 
rocks that have within-plate geochemical characteristics, occur 
throughout much of the Yukon-Tanana Upland and northern 
Alaska Range. Dusel-Bacon and others (2004, 2006) proposed 
that this magmatism resulted from attenuation of the continen-
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tal margin behind an east-dipping subduction zone. Evidence 
suggesting that the Wood River assemblage originated as an 
arc developed within continental crust above this subduction 
zone includes (1) metaigneous rocks that span a wide range of 
compositions, including andesitic rocks that are characteristic 
of arc magmatism; (2) some basalts that have trace-element 
arc signatures; and (3) an εNdt value of -4.5 indicating a 
crustal component in the melt. This interpretation implies that 
the coeval Mystic Creek Member of the Totatlanika Schist 
formed an extensional (back-arc) basin that was associated 
with an outboard volcanic arc that included rocks of the Wood 
River assemblage (Dusel-Bacon and others, 2005).

Peralkaline metarhyolites of the Mystic Creek Member 
of the Totatlanika Schist that exhibit extreme within-plate 
geochemical characteristics host, or are associated with, the 
largest VMS deposits in the Bonnifield mining district. This 
association suggests that the presence of highly elevated 
HFSE and REE trace-element contents in metarhyolites, 
whose major-element compositions may have been altered, is 

an important prospecting tool for VMS deposits that formed in 
an extensional setting. Our trace-element data for Wood River 
assemblage metarhyolites that host the Anderson Mountain 
deposit further indicate that even slightly elevated HFSE and 
REE contents (for example, tantalum and ytterbium; fig. B5) 
can be prospective for VMS deposits formed in an arc setting.
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Figure B6.  Mafic metavolcanic samples from the Wood River 
area plotted on the hafnium-thorium-tantalum (Hf-Th-Ta) diagram 
of Wood (1980). Abbreviations are as follows: E-MORB, enriched 
mid-ocean ridge basalt; N-MORB, normal mid-ocean ridge basalt; 
OIB, ocean-island basalt.
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