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Conversion Factors, Datums, and Water-Quality Abbreviations

Conversion Factors

Multiply By To obtain
Length
inch (in.) 254 centimeter (cm)
foot (ft) 0.3048 meter (M)
mile (mi) 1.609 kilometer (km)
Area
acre 4,047 sguare meter ()
square mile (mi?) 2.590 square kilometer (knm?)
Volume
gallon (gal) 3.785 liter (L)
Flow rate
acre-foot per year (acre-ft/yr) 1,233 cubic meter per year (m®/yr)
cubic foot per day (ft¥/d) 0.028 cubic meter per day (m®/d)
Mass
pound, avoirdupois (Ib) 0.4536 kilogram (kg)
Hydraulic conductivity
foot per day (ft/d) 0.3048 meter per day (m/d)
Hydraulic gradient
foot per foot (ft/ft) 1 meter per meter (m/m)
foot per mile (ft/mi) 0.1894 meter per kilometer (m/km)
Transmissivity*
foot squared per day (ft*/d) 0.09290 meter squared per day (m?/d)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
°F = (1.8x°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C =(°F-32)/1.8

*Transmissivity: The standard unit for transmissivity is cubic foot per day per square foot times foot of
aquifer thickness [(ft3/d)/ft?]ft. In this report, the mathematically reduced form, foot squared per day
(ft2/d), is used for convenience.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (uS/cm at 25°C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or
micrograms per liter (pg/L).

Datums

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).
Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
Altitude, as used in this report, refers to distance above the vertical datum.

Water-Quality Abbreviations

Abbreviations Definitions

g gram

Ho/g microgram per gram
pg/kg microgram per kilogram
pg/L microgram per liter
mg/L milligram per liter

mL milliliter
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By Jena M. Green, Carl E. Thodal, and Toby L. Welborn

Abstract

Clarity of Lake Tahoe, California and Nevada has been
decreasing due to inflows of sediment and nutrients associated
with stormwater runoff. Detention basins are considered
effective best management practices for mitigation of
suspended sediment and nutrients associated with runoff, but
effects of infiltrated stormwater on shallow ground water are
not known. This report documents 2005-07 hydrogeologic
conditions in a shallow aquifer and associated interactions
between a stormwater-control system with nearby Lake
Tahoe. Selected chemical qualities of stormwater, bottom
sediment from a stormwater detention basin, ground water,
and nearshore lake and interstitial water are characterized and
coupled with results of a three-dimensional, finite-difference,
mathematical model to evaluate responses of ground-water
flow to stormwater-runoff accumulation in the stormwater-
control system.

The results of the ground-water flow model indicate
mean ground-water discharge of 256 acre feet per year,
contributing 27 pounds of phosphorus and 765 pounds
of nitrogen to Lake Tahoe within the modeled area. Only
0.24 percent of this volume and nutrient load is attributed to
stormwater infiltration from the detention basin.

Settling of suspended nutrients and sediment,
biological assimilation of dissolved nutrients, and sorption
and detention of chemicals of potential concern in bottom
sediment are the primary stormwater treatments achieved
by the detention basins. Mean concentrations of unfiltered
nitrogen and phosphorus in inflow stormwater samples
compared to outflow samples show that 55 percent of nitrogen
and 47 percent of phosphorus are trapped by the detention
basin. Organic carbon, cadmium, copper, lead, mercury,
nickel, phosphorus, and zinc in the uppermost 0.2 foot of
bottom sediment from the detention basin were all at least
twice as concentrated compared to sediment collected from
1.5 feet deeper. Similarly, concentrations of 28 polycyclic
aromatic hydrocarbon compounds were all less than

laboratory reporting limits in the deeper sediment sample,
but 15 compounds were detected in the uppermost 0.2 foot
of sediment. Published concentrations determined to affect
benthic aquatic life also were exceeded for copper, zinc,
benz[a]anthracene, phenanthrene, and pyrene in the shallow
sediment sample.

Isotopic composition of water (oxygen 18/16 and
hydrogen 2/1 ratios) for samples of shallow ground water,
lakewater, and interstitial water from Lake Tahoe indicate the
lake was well mixed with a slight ground-water signature in
samples collected near the lakebed. One interstitial sample
from 0.8 foot beneath the lakebed was nearly all ground
water and concentrations of nitrogen and phosphorus were
comparable to concentrations in shallow ground-water
samples. However, ammonium represented 65 percent of
filtered nitrogen in this interstitial sample, but only 10 percent
of the average nitrogen in ground-water samples. Nitrate was
less than reporting limits in interstitial water, compared with
mean nitrate concentration of 750 micrograms per liter in
ground-water samples, indicating either active dissimilative
nitrate reduction to ammonium by micro-organisms or
hydrolysis of organic nitrogen to ammonium with concomitant
nitrate reduction. The other interstitial sample falls along a
mixing line between ground water and lake water and most of
the nitrogen was organic nitrogen.

Introduction

Lake Tahoe, an approximately 191 mi? lake along the
state line between western Nevada and eastern California, is
a natural resource known for its deep, clear water. Protection
of its renowned clarity has become important in the past half
century, as clarity has been decreasing by about 1 ft each
year (Goldman, 2000). Decreased clarity has been attributed
to human activities that increase nutrient and sediment
inputs to the lake (Goldman, 1988). In spite of numerous
projects implemented to mitigate decreasing clarity, including
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exportation of all waste-water effluent and erosion-control
regulations, lake clarity has continued to decline (Goldman,
2000). Nutrients enter the lake from streams, atmospheric
deposition, erosion of shorelines and intervening areas, and
by ground-water inflow (Reuter and others, 1998; Reuter

and Miller, 2000). Estimates of nutrient inputs to Lake Tahoe
by ground water have been made using regionalized values
of hydraulic properties coupled with averaged nutrient
concentrations (Thodal, 1997; U.S. Army Corps of Engineers,
2003). Several nearshore areas of Lake Tahoe have been
identified as having increased turbidity and algal production
that consistently are elevated compared to the midlake.
Although atmospheric deposition of nitrogen is estimated to
contribute most of the nutrient loading to the lake and may be
responsible for overall decline of lake clarity, nearshore clarity
losses may be caused by local influences, including nutrient-
enriched ground-water discharge (Taylor, 2002).

Collection, detention, and infiltration of stormwater
runoff in constructed basins is considered an effective best
management practice (BMP) for achieving water-quality
criteria related to total maximum daily load regulations
(Schuster and Grismer, 2004). However, while this type
of BMP may mitigate surface-water loads of suspended
sediment to the lake, infiltrated stormwater in the detention
basin may contaminate shallow ground water and increase
ground-water gradients and flow to the lake. In addition,
contaminants associated with stormwater runoff often include
organic compounds and metals that potentially are toxic when
consumed. Processes that affect ground-water contamination
from stormwater have only just begun to be considered
(Thomas and others, 2004; Prudic and others, 2005; Green,
2006), but understanding these processes is important because
growing numbers of environmental improvement program
projects are planned to encourage infiltration of stormwater
runoff.

Background

Past detention-basin studies have focused more on
suspended-sediment reductions than nutrient reductions.
Martin (1988) experimented with routing flow through a
detention basin and wetlands in series and found that while
suspended-sediment loads were reduced, nutrient-load
reductions were variable. The efficiency rates were between
0 and 72 percent (Martin, 1988), depending on the type of
nutrient, the detention basin, and wetlands. Similarly, Reuter
and others (1992) routed flow through a wet meadow and
found a reduction in suspended solids but little change in
nutrient concentrations. Ground water underlying detention
basins near Lake Tahoe may have increased water-quality
degradation because much of the stormwater runoff occurs
during snowmelt, when vegetation is dormant and not
assimilating nutrients (Prudic and others, 2005).

Purpose and Scope

This report documents 2005-07 hydrogeologic conditions
in a shallow ground-water flow system adjacent to Lake
Tahoe and the effects of an engineered stormwater-control
system. Descriptions of the basin-fill aquifer and a stormwater
collection and control system; quantification of components
of the ground-water budget; and characteristics of the quality
of stormwater, bottom sediment from a stormwater detention
basin, ground water, and nearshore lake and interstitial water
are included. Results of a three-dimensional, finite-difference,
ground-water flow model also are presented as a tool to
evaluate responses of ground-water flow to stormwater runoff
accumulation in the stormwater-control system.

The city of South Lake Tahoe hired 2NDNATURE, LLC,
in June 2005, to “design and implement a two year data-
collection program to promote a quantitative understanding of
the impacts of urban surface water infiltration via stormwater-
treatment systems on the quality of shallow groundwater
resources” (Maggie Mathias, 2NDNATURE, LLC, written
commun., September 2006), which provided the opportunity
for collaboration and data sharing. Ground-water flow and
seepage across the lake interface was simulated by the U.S.
Geological Survey (USGS).

Location and General Features

The study area is in the Lake Tahoe basin, along the
California—Nevada state line. It coincides with a 2.91 mi?
intervening area, delineated topographically as an area that is
tributary to Lake Tahoe without a perennial stream draining
into the lake (site 69; Jorgensen and others, 1978). The area
is bounded by the drainage basins of Bijou and Heavenly
Valley creeks in California, by Edgewood Creek Basin in
Nevada, and by about 8,000 ft of Lake Tahoe shoreline
(fig. 1). The area’s land surface slopes steeply (0.46 ft/ft)
from the ridge northwest of Heavenly Valley Creek to the
consolidated rock-alluvium contact at 6,350 ft. Land surfaces
slope more gradually (about 0.03 ft/ft) from that contact to
the legally defined minimum lake stage altitude of 6,223 ft
above sea level. The nearshore lakebed slopes more gradually
(0.015 ft/ft) to about 0.75 mi offshore, before plunging steeply
(0.11 ft/ft) to the 600 ft depth contour about 1.5 mi offshore.

Consolidated rocks in the study area are light-gray,
fine- to medium-grained, well foliated granitic type rocks of
Cretaceous age (about 90 million years ago; Armin and John
1983; Bonham and Burnett, 1976; Saucedo, 2005). These
consolidated rocks have little porosity and generally are
impermeable to ground-water flow, except where fractured or
weathered. Unconsolidated basin-fill deposits are weathered
mostly from consolidated granitic rocks and sorted to varying
degrees by fluvial processes. During the Pleistocene Epoch,
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Figure 1. Location of study area, South Lake Tahoe, California and Nevada.
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glaciers dammed outflow from Lake Tahoe resulting in
formation of lacustrine deposits of moderately to poorly
sorted silt, sand, and gravel that accumulated as broad terraces
15-30 ft above current lake levels. Pleistocene beach deposits
are gravelly, coarse arkosic sand that have been moderately
sorted by wave action during higher lake levels. Younger
(Recent Holocene) beach deposits are moderately sorted fine-
to very coarse-grained sand to gravelly arkosic sand coincident
with modern lake levels. A small, manmade deposit of varying
composition was imported for construction of the casinos

and associated development along the state line. Two narrow
bands of alluvium have been poorly to moderately sorted by
intermittent streamflow from the area’s upland areas. The
distribution of these deposits is shown in figure 2.

The area between the lake and the consolidated-rock
alluvium is urbanized (fig. 2). Development prior to about
1940 was limited to logging, agricultural, and fishing
communities, and several roadhouses catering to trans-

Sierra travelers and those attracted to the health and pleasure
attributes of Lake Tahoe. Tourism and recreation became
increasingly important to the economy of the area, especially
following World War 11, and most of the area’s manmade
impervious surfaces were originally constructed between 1940
and 1969 (C.G. Raumann, U.S. Geological Survey, written
commun., 2007). Along the Highway 50 corridor within the
study area are several casinos in Nevada and numerous side
streets with motels, shopping complexes, and residential
developments that result in increased impervious land cover
and stormwater runoff. The mountainous uplands of the area
are forested with residential developments, motels, and shops
catering primarily to Heavenly Valley Ski Resort. The city

of South Lake Tahoe incorporated in November 1965, with

a population of about 14,000 (Crippen and Pavelka, 1970,

p. 26). According to the 2000 U.S. Census, the population

of the city of South Lake Tahoe, California, was 23,609 and
Stateline, Nevada, was 1,215.

Prior to a 1970 mandate to treat and export all domestic
wastewater from the Lake Tahoe Basin, disposal practices had
evolved from privies and wastewater cesspools and lagoons
to septic tank-leachfield systems to land application of treated
municipal effluent. These practices resulted in nitrogen
contamination of the regional ground-water flow system that
was reported in low-flow stream samples (Perkins and others,
1975) and in ground-water monitoring results (Thodal, 1997).

Park Avenue Stormwater Control System

Stormwater-drainage networks in South Lake Tahoe have
developed in a piecemeal fashion since rain and snowmelt
were diverted from unpaved wagon trails in the early 1900s.
By May 2008, an estimated 1,500 drainage inlets collect
stormwater from street and parking lot gutters in the city with
15 stormwater treatment vaults and 100 outfalls to surface
waters that are tributary to Lake Tahoe (City of South Lake
Tahoe, 2008, p. 6-29). The Federal Water Pollution Control

Act (also referred to as the Clean Water Act) was amended in
1987 to include controlling pollutants in stormwater runoff
under the National Pollutant Discharge Elimination System.
The U.S. Environmental Protection Agency promulgated
regulation in 1990 to require separate municipal stormsewer
systems serving a population of 100,000 or more to obtain
stormwater permits. These regulations were amended in

1999 to require permits for stormwater discharges from small
conveyance systems and from construction sites disturbing
between 1 and 5 acres of land. The Lahontan Regional

Water Quality Control Board adopted Order 6-92-02 in 1992
that requires stormwater permits for all municipal separate
stormsewer systems (MS4s) on the California side of the Lake
Tahoe basin. This permitting system provides a mechanism

to work with the local municipalities to improve stormwater-
management and maintenance practices, and requires
permittees to develop comprehensive stormwater-management
programs in the Lake Tahoe area (California Regional Water
Quality Control Board, Lahontan Region, 2005).

Application for a stormwater permit typically requires
one or more BMPs (methods that have been determined to be
the most effective, practical means of preventing or reducing
pollution from stormwater runoff). These practices may
include behavioral BMPs such as education, structural BMPs
such as source and treatment controls to treat runoff before it
discharges to the storm drain or local waterways, and other
practices that prevent or reduce pollutants from reaching the
stormdrain or other waters (California Regional Water Quality
Control Board, Lahontan Region, 2005, attachment A).

The Park Avenue stormwater control system is a BMP
selected for investigation of ground water responses to
infiltration of stormwater runoff. It is a structural treatment
control that includes two detention basins near Park Avenue,
in South Lake Tahoe, north of Highway 50 (fig. 3). The
system is designed to collect runoff from a pre-existing
urban stormwater-drainage network into detention basins
that allow suspended sediment and associated nutrients to
settle or be assimilated by vegetation, or infiltrate through
soil to the shallow ground water. One detention basin (site
PA1; fig. 4A) was constructed in 2000 and a second detention
basin (site PA2; fig. 4B) was constructed in 2002. PAl
normally is a perennial wetland/shallow detention basin, with
cattails, rushes, sedges, and duckweed (genera Typha, Juncus,
Carex, and Scirpus, respectively) and a benthic periphyton
community capable of assimilating biologically available
nutrients. PA2 is a dry basin that receives stormwater only
when inflow to PA1 exceeds the basin’s capacity. Runoff from
upgradient areas serviced by the stormdrain network flows
into PA1 via two culverts (sites PAL_inletA and PA1_inletB;
fig. 4A) and when PAL reaches its capacity, overflows into a
culvert (PA1_out) that conveys water to PA2 and into an open
unlined ditch. A dam in the ditch can be operated manually
to divert flow to a wet meadow in an adjacent neighborhood
during excessive stormwater runoff.



38°58'

38°57

38°56"

Location and General Features

5

119°58' 119°57" 119°56" 119°55'
[ \ | [ |
~

- AN ]
S
3
I~
LAKE TAHOE W

~
~ \
O
~
~
~ \
{50} .
\ \
~ \
. P |
o
0 05 } 15 MILE
0 05 15 KILOMETER
| |

EXPLANATION

I:l Younger beach deposits (Holocene) — Moderately sorted, fine-
to very coarse-grained to gravelly arkosic sand
Flood-plain deposits (Holocene) — Gravelly to silty sand and
sandy to clayey silt. In part may be Pleistocene
:] Alluvium (Holocene and Pleistocene) — Unconsolidated,
moderately to poorly sorted sand, silt and gravel

:] Older beach deposits (Pleistocene) — Moderately sorted gravelly, coarse
arkosic sand
Lacustrine terrace deposits (Pleistocene) — Poorly to moderately sorted silt,
sand, and gravel forming broad low terraces 15-30 feet above lake level
:] Consolidated rocks (Cretaceous) — Composition primarily granodiorite with
adamellite, quartz diorite, quartz monzodiorite, and diorite. Forms the bedrock
basement of the Lake Tahoe Basin

Model boundary — Coincident with 6,350 foot land-surface contour

Figure 2. Generalized geology of study area, South Lake Tahoe, California and Nevada.



6

Hydraulic and Water-Quality Responses in Shallow Ground Water, Lake Tahoe, California and Nevada, 200507

119°57'45" 119°57° 119°56'15"
| N | |
\
ake
Tahoe N Edgewood Golf Course
A (%’(4%0
MW201 NN (50}
Mw2oz | N %Y o NIgS5001
A&B NN
AN
N A Nwiss701
\ —
38° N
57' (— AN N
45 .
\
NWIS3401
\ N

38°
57'
EXPLANATION
[ Detention basins
|:| Wet meadow
Model boundary
NWIS1001 // mmmmmmms Drainage ditch
380 MWB10O / MW19z) Well and No.
56' [T /
15" NWIS1401| , L 7v Lake sampling
@) / site and No.
’
[ I I
Multispectral satellite imagery from lkonos, 0 0.5 1 MILE
acquired 20020719, false-natural-color composite I T I T I
0 0.5 1 KILOMETER

Figure 3.

Location of data collection sites, South Lake Tahoe, California and Nevada.



7

"BlUJOfl|e] ‘80YE] 8YeT YInosg ‘suiseq UOUdIBP aNUBAY YJed ‘Uoiewloul as pue swelbelp AlswAyleq uiseq uonualaq  p ainbiy

‘€80VN ‘0L 8U0Z ‘uondafoid J03eIIB|N 8SIBASURL] |BSIBAIUN
"G00z ‘wesboid Asabew |eanynouby jeuonepy
‘ainynauby jo Juswiuedaq 'S’ wouj aseg

Location and General Features

V86LMIN

vig|ul Tvd

&

SHY3LINOTIMOF 0€ 0 0T
| | 1 ]
T

UL
133408 09 ov 0¢

uoI1e20] BULIo)IUOW/|[3M UOITRAISSHO o

1004 T SI [eAJSU] "886T JO Wnyeq [EJIA
UBOLIBWY YHON 8AOGE 188} Ul—.IN0JU0d d118WAyreg — 9579 —

NOILVNV1dX3 174




Hydraulic and Water-Quality Responses in Shallow Ground Water, Lake Tahoe, California and Nevada, 200507

‘€8N ‘01 8u0Z ‘uonaalold 101898\ 8SIBASURL] |ESIBAIUN
‘600z ‘wesboid Asabew| |eanynouby jeuoney
‘a1nynauby jo Juswiuedaq ‘S’ wolj aseg

"panunuo)—-p ainbig

SY31LANOTUM Oy 0€ 0 0T O
|
|

| 1 1 1

[
1334 08

T 1 T T T 1
09 (014 014 0
uoI1e00| BULIOIIUOWY/|[3M UOITRAISSIO o

100J T SI [eAJSIU] "886T JO WNJEQ [BINISA
UBdLIAWY YHON 8A0GE 188} Ul—JINO0JU09 J1IBWAyIeg — g829 —

NOILVNV1dX3

&
d

aL0zMIN

o)
© V10ZMIN



Methods

Data-collection sites used for this investigation are listed
and described in table 1 and locations are shown in figure 3.
2NDNATURE, LLC, purchased, installed, and maintained
instrumentation used to monitor water-level changes in the
detention basins and selected wells, and to monitor stormwater
inflow. These data are presented courtesy of 2NDNATURE,
LLC.

Surface Water and Park Avenue Basins

2NDNATURE, LLC, installed and maintained two
recording pressure transducers and staff plates to monitor
water stage in basins PA1 and PA2 and two flow-velocity
meters and automated samplers (Sigma®) in two culverts
(sites PA1_inletA and PA1_inletB) that convey stormwater
into PA1. A third pressure transducer was installed to correct
nonvented transducers for changes in barometric pressure.
The transducers recorded average pressure every 30 minutes
that was converted to depth of water below the measuring
point; the staff plates provided a visual check of the altitude
of the water surface in each detention basin. USGS used a
real-time kinematic Global Positioning System to survey
locations and altitudes of each transducer to convert all data
to a common datum and also surveyed the bathymetry of
each detention basin (fig. 4). Elevation of the surface of Lake
Tahoe was obtained from the water-stage recording gage
that is operated by USGS (station number 10337000) on the
U.S. Coast Guard pier on the north shore of Lake Tahoe. The
datum of the gage is 6,220.00 ft above Bureau of Reclamation
datum, which is 6,218.86 ft above the National Geodetic
Vertical Datum of 1929. Lake elevations referred to Bureau of
Reclamation datum because that datum is used as the official
reference point by all Federal, State, and local agencies
(available at http://waterdata.usgs.gov/nwisweb/local/state/ca/
text/10337000-manu.html).

Ground Water

Well Construction

Seven observation wells were installed during October
and November 2005 to characterize local aquifer hydraulic
properties, monitor ground-water levels, and to sample ground
water (fig. 4). The wells also were used to evaluate responses
of local ground water to infiltration of stormwater that
accumulated in detention basins (PA1 and PA2). Boreholes
used for well installation were drilled using a trailer-mounted
hollow-stem auger that produced a borehole diameter of about
6.6 in. Wells were installed in boreholes drilled to depths
of 14-30 ft below land surface and constructed of flush-
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thread, 2-in. nominal diameter ASTM 480-88A, schedule 40
polyvinyl chloride well casing, screens, and end points. Well
screens (5 ft long with 0.020 in. factory slots) were positioned
below the water table and surrounded with clean, coarse (#6)
aquarium gravel. Clean, fine (#12) sand was used to fill the
borehole to about 1 ft above the water table and high-swelling
100 percent pure sodium bentonite (certified by the National
Sanitation Foundation, International, to meet ANSI/NSF
Standard 60; Drinking Water Treatment Chemicals—Health
Effects) was emplaced from the top of the fine sand to 2 ft
beneath land surface to provide a sanitary seal. The top of well
casings extend about 3 ft above land surface to avoid inflow
of surface water and a 0.3 ft by 0.3 ft locking well protector
was cemented into the remaining 2 ft of annulus and the finish
hand-troweled so that surface water drains away.

In addition to the seven wells constructed in 2005,
2NDNATURE had contracted construction of four observation
wells in August 2003 for an earlier project. These wells were
used to monitor water levels and ground-water quality for
this investigation. Domestic wells and wells not included in
the real-time-kinematic survey were located with a hand-held
Global Positioning System and altitudes were determined with
a laser level (table 1).

Aquifer Characteristics

Hydraulic conductivity near the Park Avenue detention
basins ranged from 0.3 to 20 ft/d for sandy clay and medium
sand (table 2). Hydraulic conductivity was estimated from the
results of slug tests in eight wells that were analyzed with the
method described by Bouwer and Rice (1976). Results from
these slug tests constrained ground-water velocity estimates
utilized in the ground-water flow model, which control
transport and travel times of nutrients.

Sub-Littoral Ground-Water Discharge to
Lake Tahoe

Water exchange between Lake Tahoe and the adjacent
aquifer system is controlled by the hydraulic gradient and
permeability of the lakebed and aquifer material. Lakebed
permeability is variable due to fluvial processing of deltaic
sediments and texture of basin-fill deposits, wave sorting of
beach deposits, and the mineralogy of parent rock (which
controls the size and uniformity of sediment grains resulting
from weathering). The hydraulic gradient controls the
direction of ground-water exchange between lake and aquifer,
and the energy available to move water through variably
permeable deposits. Lake Tahoe receives most of its inflow
as snowmelt runoff and is managed as a storage reservoir,
such that the hydraulic gradient may be subject to artificial
variability and possible gradient reversals (Winter and others,
1998, p. 18).


http://waterdata.usgs.gov/nwisweb/local/state/ca/text/10337000-manu.html
http://waterdata.usgs.gov/nwisweb/local/state/ca/text/10337000-manu.html
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Table 1. Information regarding data-collection sites used to investigate responses of shallow ground water receiving stormwater
runoff from Park Avenue stormwater control system, South Lake Tahoe, California, 2005-07.

[Site locations are shown in figure 3 and 4. Site designations: The local identification is based on the rectangular subdivision of the public lands referenced to
the Mount Diablo base line and meridian. Each number consists of three units. The first is the township, preceded by N to indicate location north of the base line.
The second unit is the range, preceded by E to indicated location east of the meridian. The third unit consists of the section number and letter designating which
is a unique number based on grid system of latitude and longitude of the site. For wells MW194-MW202, which are located in California, wells are numbered
according to their location in the rectangular system for subdivision of public lands. Identification consists of the township number, north or south (N or S);

the range number, east or west (E or W); and the section number. Each section is divided into sixteen 40-acre tracts lettered consecutively (except | and O)
beginning with “A” in the northeast corner of the section and progressing in a sinusoidal manner to “R” in the southeast corner. Within the 40-acre tract, wells
are sequentially numbered in the order they are inventoried. The standard identification consists of 15 digits: First six denote degrees, minutes, and seconds of
latitude; next seven denote degrees, minutes, and seconds of longitude; and last two digits (assigned sequentially) identify sites within 1-second grid. If more
precise latitude and longitude subsequently are determined, initial site-identification number is retained. The eight-digit numbers are station numbers that follow
the “downstream-order system”: The first two digits, or part number, refer to the regional drainage basin (Part 10 is Great Basin). The following six digits are
the downstream-order number, which is assigned according to the geographic location of the site in the drainage basin; larger numbers stations are downstream
from the smaller number stations. Land-surface altitude: Vertical accuracy +1.97 inches. Site type: SWI, stormwater inflow; DBG, detention basin gage;
SWO, stormwater outflow; OBS, observation well; DOM, domestic well; LAKE, Lake Tahoe sample site. Abbreviation: NA, not applicable or not available]

Site designations Land-surface
altitude

Site No. (feet above Site type
Local identification Standard identification

Depth of well
(feet below
land surface)

sea level)
Detention basin sites
PA1_inletA NA 385720119565301 6,239.0 Swi NA
PA1 inletB NA 385719119565401 6,233.4 SwWi NA
PA1_ stage NA 385721119565401 6,232.2 DBG NA
PA1 out NA 385721119565501 6,237.1 SwWo NA
PA2_stage NA 385725119565401 6,229.2 DBG NA
Well sites

MW194 13N18E34B-01 385715119562901 6,306.4 OBS 30.4
MW196 13N18E27P-04 385719119565302 6,242.1 OBS 19.5
MwW197 13N18E27P-05 385719119565301 6,243.7 OBS 28.4
MW198A 13N18E34P-07 385719119565601 6,240.6 OBS 14.4
MW198B 13N18E27P-09 385720119565602 6,240.4 OBS 23.9
MW199A 13N18E27P-06 385720119565501 6,240.7 OBS 15.2
MW199B 13N18E27P-08 385720119565603 6,240.9 OBS 24.6
MW200 13N18E27P-10 385720119565502 6,238.1 OBS 18.0
MW201A 13N18E27P-11 385725119565401 6,242.2 OBS 13.0
MW201B 13N18E27P-12 385725119565402 6,242.0 OBS 23.0
MW202 13N18E27P-13 385726119565401 6,241.9 OBS 13.0
MWB1 NA 385709119571801 6,233.2 OBS 24.0
MWB3 NA 385703119571901 6,233.6 OBS 24,5
MWB4 NA 385703119571902 6,233.5 OBS 9.8
MEADOW NA 385733119565401 6,230.6 DOM 26.3
AZURE NA 385704119571901 6,232.5 DOM 18.1
BEACH NA 385717119571501 6,230.4 DOM 95.0
MT JOY NA 385703119572201 6,230.4 DOM NA
NWIS5001 NA 385756119565001 6,230 OBS 6

NWIS5701 N13 E18 27BDA 1 385742119565701 6,245 OBS 23

NWIS3401 NA 385736119563401 6,276.7 DOM 116

NWIS5601 NA 385705119565601 6,250 DOM 58

NWIS1001 NA 385658119571001 6,235 OBS 8

NWIS1401 NA 385654119571401 6,240 DOM 77

Lake Tahoe sites

L1 NA 10337000 NA LAKE NA
L2 NA 10337000 NA LAKE NA
L3 NA 10337000 NA LAKE NA
L4 NA 10337000 NA LAKE NA
L5 NA 10337000 NA LAKE NA
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Table 2. Estimated results of monitoring well slug tests near Park Avenue stormwater control system, South Lake Tahoe,

California.

[Sites are shown in figure 3. Abbreviations: ft, foot; ft/d, foot per day]

Initial ) ) Mean Hydraulic conductivity
site No. Date of test water-level  Aquifer material at displacement Number of (f/d)
altitude screened interval (ft) tests

(ft) Mean Range
MW-194 06-07-06 6,292.2 Sandy clay 1.82 2 0.9 0.9-0.9
MW-196 06-06-06 6,231.7 Medium sand 1.67 2 0.3 0.3-04
MW-197 06-06-06 6,239.0 Medium sand 1.74 3 4 2-5
MW-198A 06-07-06 6,231.1 Medium sand 1.80 2 0.8 0.6-1
MW-198B 06-07-06 6,230.9 Medium sand 155 2 7 2-20
MW-199A 06-07-06 6,230.9 Medium sand 0.90 3 20 20
MW-199B 06-07-06 6,230.9 Medium sand 1.99 2 3 2-3
MW-201B 06-06-06 6,230.2 Medium sand 1.05 4 8 6-10

Estimates of ground-water discharge to Lake Tahoe
have been made using regionalized values of onshore aquifer
hydraulic properties. The mass of nutrients transported to the
lake with ground water was estimated by coupling ground-
water volume with averaged nutrient concentrations (U.S.
Army Corps of Engineers, 2003; Thodal, 1997). Growing
acceptance that ground water is a significant variable to
consider in water and nutrient budgets of surface water
(Winter and others, 1998; Brock and others, 1982) has led to
the development of a variety of novel hydrological tools used
to quantify and corroborate the connection between lakes and
ground-water systems (Schuster and others, 2003).

Water-Quality Sampling Procedures and
Analytical Methods

A total of 95 ground-water and 37 stormwater samples
were collected following procedures described in USGS
National Field Manual for the Collection of Water-Quality
Data (variously dated). The collection of samples were made
prior to and during snowmelt runoff (November 2005-May
2006 and December 2006—April 2007) and sent to High Sierra
Water Laboratory in Truckee, California, for determination of
nutrients (Kjeldahl nitrogen; ammonium; nitrate plus nitrite,
phosphorus and soluble reactive phosphate; American Public
Health Association, 1998; Solorzano, 1969; Liddicoat and
others, 1975; Woodworth and Conner, 2003). Ground-water
samples were collected after well purging by using a bailer
dedicated to each observation well or a portable submersible
pump. Subsamples were filtered through a 0.45-pum mixed
cellulose ester membrane for laboratory analyses. Unfiltered
stormwater samples were collected by the open-mouth bottle
method with subsamples filtered through a 0.45-um mixed
cellulose ester membrane for determination of ammonium,
nitrate plus nitrite, and orthophosphate-phosphorus.
Concentrations of organic nitrogen and hydrolysable

phosphorus were estimated by subtracting laboratory

values of ammonium-nitrogen from Kjeldahl-nitrogen, and
orthophosphate-phosphorus from phosphorus, respectively.

In addition, ground-water samples were collected in February
2006 for field determination of filtered concentrations of
bicarbonate and alkalinity (Rounds, 2006) and laboratory
determination of stable isotope ratios of oxygen and hydrogen
(Epstein and Mayeda, 1953; Coplen and others, 1991; Coplen,
1994) and filtered concentrations of organic carbon (Brenton
and Arnett, 1993), major ions, silica, chromium, copper,

iron, lead, nickel, and zinc (Fishman and Friedman, 1989;
Fishman, 1993). Isotope samples were shipped to the USGS
Reston Stable Isotope Laboratory in Reston, Virginia and other
samples were shipped to the USGS National Water Quality
Laboratory in Lakewood, Colorado.

Ten samples of lake and interstitial water also were
collected from five locations along the shoreline of Lake
Tahoe (fig. 3). A multiparameter meter was used to measure
temperature, pH, specific conductance, and dissolved oxygen
of the lakewater prior to sample collection. Lakewater
samples were collected from 1 ft beneath the water surface
and from the water-lakebed interface using 0.25-in. diameter
polyethylene tubing and a 60 mL syringe at a rate of 30 mL/
min. Interstitial water was collected by pushing a 0.5-in.
diameter minipeizometer 0.8 ft beneath the lakebed and
withdrawing water through 0.25-in. diameter tubing and a
60 mL syringe at 30 mL/min. Unfiltered water was collected
for stable isotope analysis (Epstein and Mayeda, 1953;
Coplen and others, 1991; Coplen, 1994). Subsamples were
passed through 0.45-pum Supor® syringe filters into 125-mL
opaque polyethylene bottles and chilled on ice for overnight
shipment for nutrient analyses by the USGS National Water
Quality Laboratory (Fishman, 1993; Patton and Kryskalla,
2003). Laboratory reporting levels of each analyte are listed in
table 3. All water-quality data are listed in appendix A (at back
of report).
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Table 3. Constituents determined in water and sediment samples and laboratory reporting levels.

[Values are ratios mathematically related to comparable ratios for an international standard. Abbreviations: &, delta; NA, not applicable]

Laboratory Laboratory
Constituent reporting Constituent reporting

level level
Calcium*? %0.02; “0.005 Nitrate-+nitrite! 51
Chloride* 0.2 Arsenic? ¢0.1
Fluoride! 0.1 Bismuth? 1
Magnesium?2 30.008; “0.005 Cerium? 61
Potassium? 2 %0.16; #0.005 Europium? 61
Dissolved solids* 10 Gallium? o1
Sodium*? %0.2; “0.005 Gold? 61
Sulfate? °0.18 Iron? 1
Aluminum? 40.005 Lanthanum? 1
Antimony? ¢0.1 Lithium? o1
Barium? o1 Mercury? 60.02
Beryllium? %0.1 Neodymium? f1
Cadmium? o1 Niobium? °4
Chromium? o1 Scandium? 62
Cobalt? 61 Selenium? ¢0.1
Copper? 1 Strontium? 622
Lead? 1 Sulfur? 60.05
Manganese* 2 o4 Tantalum? o1
Molybdenum? %0.5 Thallium? o1
Nickel? 62 Thorium? 1
Silver? 60.1 Tin? 1
Uranium? 0.1 Titanium? 60.005
Zinc? 62 Vanadium? 62
Organic carbon®? %0.33; “0.01 Ytterbium? 61
Inorganic carbon? 40.01 Yttrium? 62
Phosphorus? 2 52;40.005 & deuterium! NA
Orthophosphate? 51 3 oxygen-18* NA
Kjeldahl nitrogen? 35
Ammonium? 1

Constituent determined in water samples.
2Determined in sediment samples.
3Reporting level in milligrams per liter.
“Reporting level in percent.

Reporting level in micrograms per liter.
Reporting level in micrograms per gram.

Collection of Bottom-Sediment Samples

Two bottom-sediment samples were collected from site
PA1 (fig. 4A) on August 31, 2005, using a 2-ft split-spoon
sampler with polyethylene core liner and soft-fingered core
catcher. The sampler was driven 2 ft into the sediment about
20 ft from the PAL_inletA. The resulting core was extruded
into two glass bowls for processing. One bowl included the
uppermost 0.2 ft (0-0.2 ft) of dark grey sediment and the
other bow! contained 0.2 ft of brown-orange sediment from

1.5-1.7 ft beneath the sediment surface. Each sample was
homogenized thoroughly with a Teflon policeman and about
100 g was transferred into 1-L widemouth glass jars that had
been baked to 450°C. These samples were placed in an ice
chest and shipped overnight to the USGS National Water
Quality Laboratory for determination of selected polycyclic
aromatic hydrocarbon compounds (table 4) following
analytical procedures described by Arbogast (1996), Hageman
(2007), Taggart (2002), and Briggs and Meier (1999).




Table 4. Polycyclic aromatic hydrocarbon compounds
determined in bottom-sediment samples collected from
stormwater control basin, site PA1, South Lake Tahoe, California,
and laboratory reporting levels.

[Laboratory reporting level in micrograms per kilogram]

Laboratory
Compound reporting level
Acenaphthene 10
Acenaphthylene 10
Anthracene 10
Benz[a]anthracene 10
Benz[a]pyrene 10
Benzo[b]fluoranthene 10
Benzo[e]pyrene 10
Benzo[g,h,i]perylene 10
Benzo[k]fluoranthene 10
Chrysene 10
Dibenz[a,h]anthracene 10
1,2-Dimethylnaphthalene 10
1,6-Dimethylnaphthalene 10
2,6-Dimethylnaphthalene 10
2-Ethylnaphthalene 10
Fluoranthene 10
Fluorene 10
Indeno[1,2,3-cd]pyrene 10
2-Methylanthracene 10
1-Methyl-9H-fluorene 10
1-Methylphenanthrene 10
1-Methylpyrene 10
Naphthalene 10
Perylene 10
Phenanthrene 10
Pyrene 10
2,3,6-Trimethylnaphthalene 10

The sediment remaining in each bowl was sieved through
precleaned 62.5-um nylon mesh using a Teflon policeman
and native water. About 10 g of the resulting fine-grained
fraction was placed in 500-mL polypropylene widemouth
jars and shipped to the USGS Branch of Geochemistry
Laboratory in Lakewood, Colorado, for determination of
selected metals, and inorganic and organic carbon (table 4),
following analytical methods describe by Olson and others
(2004). Laboratory reporting levels of each analyte are listed
in tables 3 and 4. All bottom-sediment quality data are listed in
appendix B (at back of report).
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Simulation of Ground-Water Flow

The effects of an engineered stormwater-control system
on shallow ground-water flow adjacent to Lake Tahoe were
simulated using a three-dimensional, finite-difference,
ground-water flow model (hereafter referred to as the
model). Included are descriptions of the basin-fill aquifer and
quantification of components of the ground-water budget.
Model results are presented as a tool to evaluate responses
of ground-water flow to stormwater-runoff accumulation in
the stormwater-control system. The model simulated ground-
water flow and seepage across the lake interface.

Flow Model Description

Ground-water flow through the basin-fill aquifer beneath
the study area was simulated using MODFLOW, a three-
dimensional, numerical (finite-difference) ground-water
flow model (McDonald and Harbaugh, 1988; Harbaugh and
McDonald, 1996). The model area was discretized into a
grid of 23,925 rectangular model cells in 165 rows and 145
columns areally and 6 layers vertically. Each model cell was
about 66 ft wide in the row and column dimensions and had
variable thickness. The model grid was rotated 25 degrees
clockwise about row 83 and column 73 (UTM NAD 1983,
zone 10N 763,855.52, 4,316,204.58 meters) so that the major
axes were parallel to the general direction of ground-water
flow, which generally is toward the lake in the model domain.
Rotation of the grid caused 43 percent of the cells to fall
outside the area of interest; therefore these cells were inactive.
The top of layer 1 represented land surface and covered about
2.1 mi2. The southeast boundary extended upgradient to
where bedrock is quite shallow, generally along the 6,350-ft
topographic line. A sharp dropoff of the lake bottom served as
the submerged northwest boundary (fig. 5).

Aquifer thickness generally is very thin near the
upgradient southeast boundary and thickens toward and under
the lake (fig. 6). Total aquifer thickness along the upgradient
boundary mostly is less than 50 ft, while along the northwest
boundary beneath Lake Tahoe, it is nearly 1,500 ft thick (Eric
LaBolle, University of California, Davis, written commun.,
2006).
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section is shown in figure 5.

The model objective was to understand movement of
shallow ground water; therefore a finer discretization was
used in the upper 50 ft of the model domain (fig. 6). Model
layer thicknesses in layers 1-5 were designed to keep uniform
thickness throughout each individual layer. Layer 1 was a
constant 5 ft thick, while layer 2 was a constant 10 ft thick.
Layers 3-5 were each a constant 15, 10, and 10 ft thick,
respectively. Layer 6 varies in thickness from the bottom
of layer 5 to bedrock. The large and varying thickness of
layer 6 is assumed to have no effect on the simulation of
shallow ground-water movement, although it likely stores
a large quantity of ground water. Discontinuous lacustrine
units typically are less than 20 ft in thickness and likely are
reworked by meandering streams; therefore a continuous
confining unit was not simulated in this model.

Boundary Conditions

Shallow ground-water flow was simulated as a steady-
state flow system. Annual Lake Tahoe stage fluctuations
will have a time-varying effect on nutrient loads discharged
by ground water, although in evaluating the suitability of
a detention basin as a BMP, long term loading is more of
a concern. Therefore, modeling the transient ground-water
system as a steady-state flow system is considered sufficient
for the model objectives.

Various boundary conditions were used across the model
(fig. 5). All interior model cells exposed to Lake Tahoe in the
northwest were simulated using a constant-head boundary of
6,225 ft, which is the average stage of Lake Tahoe over the
study period. The southern Park Avenue detention basin (PA1),
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which contained standing water throughout the study, also was
simulated using a constant-head boundary in six contiguous
cells. A network of stormwater drainage ditches and sewers
scattered across South Lake Tahoe were simulated using drains
(Jim Marino, city of South Lake Tahoe, written commun.,
2006). These drains were placed 5 ft below land surface. In
this way, if the simulated ground-water surface came within

5 ft of land surface, ground water would discharge to the
stormwater ditches and flow directly to Lake Tahoe.

Recharge was applied to the onshore modeled area by
areal recharge and mountain-front recharge from watersheds
upgradient of the study area. Areal recharge, for the purposes
of this model, was defined as precipitation that passes
beneath the root zone and crosses the water table. All layer
1 onshore pervious model cells or those cells simulated as
not being impervious due to urbanization (about 62 percent
of all active layer 1 cells; Raumann, 2007) received areal
recharge. The volume of areal recharge was estimated during
model calibration and constrained by local precipitation and
evapotranspiration estimates.

Mountain-front recharge was defined as surface runoff
from contributing watersheds that flows over bedrock and
infiltrates at the bedrock-alluvium contact. Mountain-front
recharge was applied to all cells along the southeast domain
boundary, as well as to two adjacent zones that extend
northwest from the mountain front (fig. 5). The two larger
zones represent small drainages where coarser grained
material is present (Rogers, 1974); therefore, mountain-front
recharge naturally is greater in these locations (fig. 7). The
volume of annual precipitation averaged 4,400 acre-ft in
the watersheds upgradient of the model area between 1971
and 2000 (Flint and Flint, 2007). Results from Flint and
Flint indicated that of the total precipitation about 2 percent
becomes in-place recharge, 54 percent is consumed by
evapotranspiration, and the remaining 44 percent is attributed
to potential runoff. The percentage of the potential runoff
that actually becomes mountain-front recharge was estimated
during model calibration.

No-flow boundary conditions were used in several
locations in the model (fig. 5). Bedrock underlies all of layer
6 and represents a no-flow boundary. Model boundaries to
the northeast and southwest were aligned along hydrologic
basin boundaries (Cartier and others, 1995) and therefore were
represented as no-flow boundaries.

Model Calibration

Calibration is the attempt to reduce the difference
between model results and measured data by adjusting model
parameters. The improvement of the calibration is based on
minimizing the differences between simulated and measured
ground-water levels. The discrepancy between model results

and measurements (known as the residual) commonly is, in
part, the cumulative result of simplification of the natural
system by the conceptual model, the model grid, and the
scarcity of sufficient data to account for the spatial variation in
hydraulic properties and recharge throughout the study area.

Uniform hydraulic conductivity distributions were
assigned throughout all model layers because of limited
hydraulic information. Calibration was constrained by
assuming the transmissivity of the alluvial aquifer was known
from a pump test completed in wells near the Park Avenue
detention basins. Transmissivity is equal to the hydraulic
conductivity of aquifer materials, multiplied by the aquifer
thickness. The pump test completed by the South Tahoe Public
Utility District yielded transmissivity estimates of 1,800 ft2/d
(fig. 5; Bergsohn, 2000). Horizontal hydraulic conductivity
was 2 ft/d and was not estimated during model calibration.
This resulted in a transmissivity estimate of 2,000 ft?/d near
the Lake Tahoe shoreline, where the aquifer has a thickness
of about 1,000 ft (fig. 6). This is reasonable as it falls into the
0.3-20 ft/d range of values (median value of 3 ft/d) estimated
from slug tests (table 2). Discontinuous lacustrine units
were assumed to be distributed uniformly throughout the
aquifer and were simulated in the average vertical hydraulic
conductivity. Vertical hydraulic conductivity was assumed to
be lower in the six cells between layers 1 and 2 beneath PA1
because of sediment compaction during basin construction.
Vertical hydraulic conductivities were estimated during model
calibration.

The ground-water flow model was calibrated to average
water-level measurements in 18 wells. The following weighted
(w)i, sum-of-squares (SS) objective function was minimized
during calibration,

nwl

SS=2(ﬁi—hi)2wi, ©)
where )
h is simulated water levels, in feet;

h, is measured water levels, in feet; and
nwl is the number of water level measurement

Note: The root-mean-square (RMS) error is reported instead
because RMS error is more directly comparable to actual
values and serves as a composite of the average and the
standard deviation of a set. RMS error is related to SS error by

@
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Model calibration was further facilitated by parameter

estimation. Estimated parameters included (1) the volume of

potential runoff generated in the watersheds adjacent to the
modeled area that becomes mountain-front recharge along
the southeast boundary, (2) the volume of areal recharge
distributed homogeneously to pervious model cells, (3) the
vertical hydraulic conductivity in the area surrounding the
Park Avenue detention basins, (4) the vertical hydraulic
conductivity of the remaining aquifer, and (5) stormdrain
conductance.

Each parameter was changed a small amount and
MODFLOW was used to compute new water levels for each
perturbed parameter. As a secondary calibration procedure,
recharge rates were bracketed within 200 and 450 acre-ft/yr
(Flint and Flint, 2007). Vertical hydraulic conductivity near
Park Avenue detention basins, also was given an upper limit
lower than that of estimates at Cattlemans detention basin
of 0.027 ft/d because PA1 remains wet year round, whereas
Cattlemans is dry for many months per year (Green, 2006).
An iterative process was followed by estimating parameters,
running revised models using the estimated parameters, and
calculating new water levels until the objective function
change was minimize and could not be improved.

Model Results

The final calibrated model was the best fit possible of
the observed water levels given the parameter constraints
described above. Simulated water levels representative of
conditions from 2005 to 2007 approximated the 18 measured
water levels in the modeled area (fig. 8). Fourteen shallow
wells were screened within layers 1 and 2 (within 15 ft below
the water table) and 4 deep wells were screened within layer
3 (between 15 and 30 ft below the water table). However,
simulated water levels did not exactly reproduce all measured
water levels in all wells. Figure 9 shows the simulated water-
level contours and monitoring well residuals. Measured water
levels in a cluster of wells within about 300 ft of each other
in the south-central part of the model (wells B-3, B-4, Beach,
and Azure) ranged about 1.5 ft. The flow model assumes
homogeneous aquifer properties and therefore was not able
to simulate such a span of water levels in close proximity to
each other. Simulated water levels near model boundaries may
be less reliable than simulated water levels that are distant
from boundaries. Boundary effects are most notable when
there are nearby stresses. For instance, detention basin PAL
was simulated with a constant-head boundary of 6,234 ft.
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Observed water levels in wells upgradient and downgradient
of PA1, however, were 4-5 ft lower than this level. Therefore,
the model was not able to simulate accurately such a localized
field condition. During the construction of PA1, sediment
possibly was compacted in the basin, resulting in stormwater
inflow being semiperched above the regional water table.
Small drains discharging water in the south-central part of

the model near wells B-1 and NWIS5601 also affected the
accurate calibration of water-level contours. Average measured
water levels in these wells differed by 10.5 ft, and therefore
had rather large simulated residuals. The final calibrated
model produced a RMS error of 2.55 ft.

The final calibrated values for model parameters are
listed in table 5, and components of the water budget are
shown in figure 10. Total mountain-front recharge was
estimated as 306 acre-ft/yr. This value is comprised of
2 percent of precipitation as in-place recharge as computed
by the Basin Characterization Model of Flint and Flint (2007)
and a calibrated value of 16 percent of runoff becoming
recharge. These values are within the bounds present by Flint
and Flint (2007). Areal recharge was estimated quite low at
about 5 acre-ft/yr and recharge from detention basin PA1 was
about 1 acre-ft/yr. Drains used to simulate storm ditches were
estimated to discharge about 56 acre-ft/yr, allowing ground
water to exit the subsurface and discharge to the lake. Direct
ground water discharge from the study area to Lake Tahoe was
256 acre-ft/yr. About 75 percent of ground-water discharge to
Lake Tahoe occurs from layer 1. The distribution is shown in

figure 10.

Model Sensitivity

To determine how model parameters affected simulation
results, all estimated parameters were varied independently
from 0.2 to 5 times their calibrated value. This range was
greater than the uncertainties associated with the parameters,
but provided a more complete perspective on model
sensitivity. Model sensitivity was described in terms of the
RMS error. The sensitivity of model results to changing one
parameter while all others are held at their calibrated values
is shown in figure 11. Residuals were determined to be more
sensitive to changes in mountain-front recharge, especially
through the course-grained channel to the northeast than
to any other model parameters. Model results were rather
insensitive to storm-drain conductance and vertical hydraulic
conductivity of the detention basin and the rest of the model.

Model sensitivity to specified boundary conditions
and hydraulic properties was further investigated with four
alternative models. Alternative models included increasing
the stage of Lake Tahoe within the constant-head boundary
to 6,229 ft (historical high watermark), lowering it to 6,223 ft
(altitude of lake outlet at Tahoe City Dam), incorporating
a clay layer into the hydrogeology, and increasing the
model horizontal hydraulic conductivity from 2 to 4 ft/d.

The continuous clay layer was simulated in the model by
reducing the horizontal hydraulic conductivity of only layer
310 0.001 ft/d. Each alternative model was calibrated after
changing the selected boundary conditions and hydraulic
properties. Results of these alternative models are listed in
table 5.

Table5. Model parameters and their calibrated values, in order of sensitivity for original model, South Lake Tahoe, California

and Nevada.

[Abbreviations: acre-ft/yr, acre-foot per year; ft/d, foot per day; ft, foot]

Model run parameter estimates

Horizontal
Parameter name Original Lower stage Raised stage Clay layer hydrau_li(_:
present conductivity
(4 ft/d)
Mountain-front recharge (acre-ft/yr) 306 322 205 278 495
Channel recharge (acre-ft/yr) 160 163 177 137 338
Mountain-length recharge (acre-ft/yr) 146 159 28 141 157
Basin vertical hydraulic conductivity (ft/d) 0.0024 0.0024 0.0024 0.0024 0.0024
Avreal recharge (acre-ft/yr) 5 5 5 5 5
Aquifer vertical hydraulic conductivity (ft/d) 0.33 0.32 0.98 0.33 0.36
Storm-drain discharge (acre-ft/yr) 56 39 94 48 80
Discharge to Lake Tahoe (acre-ft/yr) 256 289 116 236 421
Model root mean square error (RMS) (ft) 2.55 2.67 1.31 2.64 2.54
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Figure 10. Estimated ground-water budget for model area, South Lake Tahoe, California and Nevada.

Computed RMS error of the four alternative models
varied by about 1.4 ft. Raising the stage of Lake Tahoe had
the greatest effect on the model error by reducing it by about
1.2 ft. As expected, discharge to Lake Tahoe was reduced
when the stage of Lake Tahoe was increased because it has
a direct effect on the hydraulic gradient within the model.

In response to a shallower gradient, the mountain-front
recharge was decreased within the calibration process to allow
ground-water levels in the aquifer to approach their observed
elevations. Model error was insensitive to simulations of (1)
lowering the stage of Lake Tahoe, (2) layer 3 representing

a continuous clay layer, and (3) increasing the horizontal
hydraulic conductivity to 4 ft/d.

Model and Data Limitations

The flow model reasonably describes local ground-water
flow near the Park Avenue detention basins, but it cannot
mimic exactly the true ground-water flow system. Simulated
values often are similar to, but do not match precisely with
the measured values. The ground-water flow model is a

numerical approximation of the flow system, and is limited by
simplifications in the conceptual model, discretization effects,
and the scarcity of measurements to account for the spatial
variation in hydraulic properties throughout the study area.

Inherent in the conceptual model is the assumption that
all sources of flow and stresses on the natural system are
represented in the numerical model. Because measurements
of water levels used to constrain the model calibration were
made over a short time period, it is not known how completely
or how accurately the numerical model simulates the natural
system, especially under steady-state conditions.

Avreal discretization of the study area into a rectangular
grid of cells and vertical discretization into layers required
averaging of hydraulic properties. Each model cell represents
an averaged block of the aquifer system. Due to this
averaging, the model cannot simulate the local effects on flow
caused by aquifer heterogeneity. Further simplification of the
heterogeneous aquifer system occurred in the methods used
to describe the distribution of the hydraulic conductivity. The
lack of sufficient measurements to account for the spatial
variations in hydraulic properties necessitated the uniform
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assignment of horizontal hydraulic conductivity across the
study area. Simplifying the model to this degree does not
invalidate the model results, but should be considered when
interpreting the results.

The reliability of ground-water flow models is affected
by the choice and accurate representation of the aquifer and
related boundary conditions. For purposes of simplification,
the upper model boundary (land surface) was simulated as
a confined system. The variations in transmissivity with
respect to water-level change were trivial and limited error
was introduced as a result of this simplification. A one-to-
one correlation does exist between uncertainties of assigning
transmissivity and estimating recharge. For example, a lower
hydraulic conductivity, which yields a lower transmissivity,
does not require as much water for simulated heads to
approach measured heads. In turn, a lower recharge is

estimated. Measured water levels in a well cluster in the
southern part of the model varied about 2.9 ft; therefore the
model, assuming homogeneous aquifer properties, was not
able to accommaodate such a span of water levels in close
proximity to each other. Simulated water levels near model
boundaries may be less reliable than simulated water levels
that are distant from boundaries. Boundary effects are most
notable when there are nearby stresses. For instance, PA1
was simulated with a constant-head boundary of 6,234 ft
and observed water levels, upgradient and downgradient,
were 4-5 ft below that of PA1. Therefore, the model was not
able to simulate such a localized field condition. During the
construction of PA1, sediments possibly were compacted and
resulted in stormwater inflow being semiperched on a less
conductive area of aquifer.
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Water Quality in and Near Park Avenue
Stormwater Control System

Median values of pH, specific conductance, dissolved
oxygen, and temperature in ground water were 6.4 standard
pH units, 450 puS/cm, 3.2 mg/L (34 percent saturation), and
9°C, respectively. Concentrations of dissolved solids in water
samples collected from seven observation wells ranged from
150 mg/L for site MW194 to 390 mg/L for site MW197 and
the average concentration was 300 mg/L (figs. 3 and 4A).
Concentrations of major ions indicate that upgradient ground
water tapped by MW194 is mixed cation (dominated by
calcium) bicarbonate type water. Downgradient samples from
wells near detention basin PAL (wells MW196-MW200) have
evolved to mixed cation (sodium and calcium)/mixed anion
(mostly dominated by chloride) type water (Piper and others,
1953). This evolution is most likely due to the chemistry of
recharged stormwater runoff that may be contaminated by
deicing road and sidewalk treatments and residual leachate
from abandoned septic-tank systems mixing with regional
ground water. Decreased concentrations of dissolved oxygen
and sulfate in ground-water samples collected downgradient of
PA1 may be the result of activity of sulfate-reducing bacteria.

Nutrient Chemistry

Concentrations of filtered nitrogen were generally
largest in ground-water samples collected upgradient of the
stormwater control system compared to unfiltered samples
of stormwater and filtered ground-water samples collected
downgradient of the stormwater control system (fig. 12A). In
contrast, concentrations of filtered phosphorus were generally
smallest in ground-water samples collected upgradient of
the stormwater control system and largest in stormwater
(fig. 12B). The maximum concentration of filtered phosphorus
was measured in ground water collected downgradient of the
stormwater control system (site MW199A,; 420 pg/L).

Maximum concentrations of unfiltered nitrogen and
phosphorus (table 6, fig. 13) are highest among the 22 samples
of stormwater inflow to PA1. Maximum values for nitrogen
(7,400 pg/L) and phosphorus (1,500 pg/L) were measured in
a stormwater sample collected on March 2, 2007, after several
inches of snow had accumulated. Air temperature was less
than 0°C during the week prior to March 2, 2007, and only
intermittent snowmelt runoff entered PA1 during this time
(fig. 13A). Minimum values of unfiltered nitrogen (390 pg/L)
and phosphorus (79 pug/L) were measured in a stormwater
sample collected on April 18, 2006, after several inches
of snow had melted for 6 days prior to sample collection

(fig. 13B) and meltwater had flushed the stormwater-collection
system. Although the study area typically receives less
precipitation than Fallen Leaf Lake (fig. 1), data for the snow
pillow at Fallen Leaf Lake, operated by the U.S. Department
of Agriculture Natural Resources Conservation Service offered
the closest representation of daily snowmelt near the shore of
Lake Tahoe (Natural Resources Conservation Service, 2008
[http://www.wcc.nrcs.usda.gov/snow]). Median values of
unfiltered nitrogen (2007: 1,300 pg/L; 2006: 870 pg/L) and
phosphorus (2007: 470 pg/L; 2006: 240 ug/L) in stormwater
samples were 1.5 and 2.0 times as large in 2007 as median
values for 2006. Precipitation in 2006 was about 2.4 times the
precipitation in 2007 (fig. 13C). The correlation between lower
precipitation and higher nutrient concentrations indicates that
increased runoff may dilute nutrient concentrations entering
the detention basins. However, the total mass of nutrients
delivered by stormwater to the Park Avenue detention basins
may be similar from year to year.

Unfiltered concentrations in eight samples of stormwater
outflow (seven from site PA1-out and one from PA2;
table 6) had the smallest statistical-distribution variables
(mean, median, maximum, and minimum) of nitrogen and
phosphorus. Comparison of inflow and outflow concentrations
indicates that about 55 percent of total nitrogen and 47 percent
of total phosphorus may be retained in detention basins
due to settling of suspended nutrients. However, filtered
concentrations of nitrogen and phosphorus are larger in
outflow samples than in detention-basin samples because
outflow was sampled during stormwater-runoff events during
water years 2006 and 2007 and samples of standing detention
basin water were collected only during water year 2007 when
precipitation was much less (fig. 13C). The term “water year”
means a 12-month period beginning on October 1 and ending
on September 30.

The largest mean concentrations of unfiltered
nitrogen (table 6; 1,500 pg/L) and phosphorus (570 pg/L)
in stormwater samples are for seven samples of standing
detention basin water from PAL, but concentrations in filtered
samples collected at the same time had the smallest mean
concentrations of nitrate plus nitrite nitrogen (110 pg/L),
ammonium nitrogen (17 pg/L), and phosphorus (49 pg/L).
Relatively small concentrations of filtered nitrate plus
nitrite, ammonium, and phosphorus indicate that these
more biologically available nutrients are assimilated during
photosynthesis by aquatic plants in PA1.

Ninety-five samples of ground water from 11 observation
wells had the largest statistical-distribution variables (mean,
median, maximum, and minimum) of filtered nitrogen
concentrations and, except for the anomalous maximum
concentration (420 pg/L), had the smallest distribution of
phosphorus concentrations for all filtered water samples.
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Table 6. Statistical summary of nitrogen and phosphorus concentrations in water samples grouped by source, Park
Avenue stormwater collection and detention system, South Lake Tahoe, California, water years 2006-07.

[The term “water year” means a 12-month period beginning October 1 and ending September 30. Sample collection sites described in table 1.
Abbreviation: mg/L, microgram per liter; PA1, Park Avenue basin 1; n, sample count. Symbol: —, data not collected]

Nitrogen Phosphorus
Statistic (mg/L) (mg/L)

Unfiltered Filtered Unfiltered Filtered

Stormwater inflow (PA1_inletA and PA1_inletB [n=22])

Mean 1,500 - 380 94
Minimum 390 - 79 30
Median 1,200 - 270 60
Maximum 7,400 - 1,500 380

Detention-basin water at PA1_stage (n=7)

Mean 1,500 - 570 48
Minimum 530 - 69 17
Median 890 - 380 43
Maximum 3,600 - 1,200 92

Stormwater outflow from PA1_out (n=7)

Mean 720 - 200 99
Minimum 220 - 66 27
Median 780 - 240 80
Maximum 970 - 310 260

Ground water at all 11 observation wells (n=95)

Mean - 1,100 - 39
Minimum - 82 - 3
Median - 580 - 20
Maximum - 7,700 - 420

Ground water upgradient of PA1 (n=28)

Mean - 1,700 - 20
Minimum - 82 - 3
Median - 2,000 - 18
Maximum - 4,600 - 61

Ground water downgradient of PA1 (n=64)

Mean - 740 - 48
Minimum - 82 - 6
Median - 510 - 23
Maximum - 7,700 - 420
All stormwater samples (n=37)
Mean 1,300 - 380 86
Minimum 220 - 66 17
Median 900 - 250 56

Maximum 7,400 - 1,500 380
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Concentrations of filtered nitrogen and phosphorus in ground
water averaged 1,100 and 39 pg/L, respectively. Nitrogen
ranged from 82 to 7,700 pg/L and phosphorus ranged from 3
to 420 pg/L. Nitrogen concentrations measured in individual
wells varied 380 pg/L (410-790 pg/L) for samples from site
MW198A to 4,200 pg/L (200-4,400 pg/L) for samples from
site MW201A (figs. 3 and 14A). The maximum nitrogen
concentration from site MW201A was measured in a sample
collected November 7, 2005. Phosphorus concentrations
measured in individual wells varied 9 pg/L (13-22 pg/L)

for samples from site MW198B to 410 pg/L (7-420 pg/L)
from site MW199A (fig. 14B). The maximum phosphorus
concentration was measured in a sample collected on May 9,
2006, from site MW199A. During well purging of almost

16 gal, the discharge water frothed as if it contained detergent
or other surfactants, such as naturally occurring dissolved
organic carbon. One other filtered sample from site MW199A
had phosphorus concentration greater than 100 pg/L and six of
the nine samples were 20 pg/L or less.

Ratios of Oxygen and Hydrogen Stable Isotopes

The isotopic composition of water, expressed as
oxygen-18 relative to oxygen-16 (*0/*0O) and deuterium
relative to hydrogen-1 (H /*H), of local ground water
was shown to be different from that of Lake Tahoe due to
evaporative fractionation of lakewater that has an estimated
residence time of 700 years (Thodal, 1997). By convention,
each ratio is related mathematically to the comparable ratio
for an international reference standard known as the Vienna
Standard Mean Ocean Water (VSMOW) and expressed as
“delta oxygen-18” (8**0) and “delta deuterium” (82H); the
units of measure are parts per thousand (abbreviated permil).
A negative delta value indicates that the sample water is
lighter isotopically than the standard (depleted). Evaporation
preferentially removes the lighter isotopes (**O and tH) as
water vapor and the heavier isotopes (*¥O and 2H) remain in
the liquid water. Figure 15 shows the relation of stable-isotope
values for samples from Lake Tahoe, shallow ground water
near the Park Avenue stormwater collection system, and two
samples of interstitial water that fall along a linear mixing line
(8%H = 26.19+(5.59 (8*0)) between lakewater and ground
water. The meteoric water line (8*°H = 26.19+(5.59 (3*%0));
Craig, 1961) also is shown.

Eight water samples were collected from five nearshore
locations in Lake Tahoe, July 26 and August 2, 2007, that
averaged -5.2 permil 60 (-5.6 to -5.1 permil $**0) and

-55.9 permil 82H (-59.0 to -54.4 permil 8°H). One water
sample collected from Lake Tahoe in 1980 was -5 permil
80 and -56 permil 3*H. The five samples collected from the
lakebed/lakewater interface averaged -5.2 permil 60 and
-55.9 permil 8°H compared to three samples collected 1 ft
beneath lakewater surface that averaged -5.1 permil 80 and
-54.8 permil 8°H. The isotopic composition of 11 shallow
ground-water samples averaged -13.94 permil $*°0 (-15.05
to -12.70 permil $'®0) and -104.0 permil 8°H (-110.4 to
-97.6 permil 3°H) and are comparable to 32 samples of ground
water collected from wells and a spring in the Lake Tahoe
Basin in 1990 that averaged -14 permil §'*0 and -104 permil
8%H (Thodal, 1997). Isotopic compositions of two samples
of interstitial water, collected 0.8 ft beneath the lakebed
using a 0.5-in. diameter minipeizometer, were -13.85 permil
8%0; -102.5 permil $°H and -9.76 permil 4*°0; -80.8 permil
&%H. Both interstitial-water samples fall on a linear mixing
line between lakewater and ground water, with the isotopic
signature for the interstitial water sample collected from site
L3 (fig. 3) falling in the middle of values measured in well-
water samples (fig. 15).

Chemical Composition of Bottom-Sediment
Samples

One 2 ft core of bottom sediment was collected from PA1
(fig. 4A; site PA1) and divided into two samples for laboratory
analyses to assess pollutant retention by the infiltration
basin (tables B1 and B2). Laboratory determinations of
selected chemicals of potential concern associated with urban
stormwater runoff included chromium, copper, lead, mercury,
nickel, organic carbon, phosphorus, and zinc. Sediment
samples also were analyzed for selected polycyclic aromatic
hydrocarbons (PAHSs). These compounds are found in
petroleum products and tar, and are produced by combustion
of petroleum as well as by forest fires and wood-burning
stoves (Smith and others, 1988, p. 64-67). Comparison of
concentrations in surface sediment to those in sediment
collected from depth provides a qualitative evaluation of the
ability of the detention-basin sediment to retain contaminants,
the potential for adverse environmental effects to wet basin
ecology, and economic and regulatory considerations for
contaminated-sediment disposal. Selected published sediment
toxicity screening values also are provided for comparison
with data from PAL1 (table 7).
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Figure 15. Relation between stable isotopes of hydrogen and oxygen in lake-water and ground-water samples

collected near Park Avenue stormwater collection system, South Lake Tahoe California, 2005-07.
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Table 7. Concentrations of selected chemicals of potential concern in bottom sediment collected on August 31, 2005 from Park
Avenue detention basin 1, South Lake Tahoe, California, and sediment toxicity screening values for protection of benthic aquatic
life.

[Probable effect level: From Smith and others, 1996. Effective range: From Long and Morgan, 1991. Severe effect level: From Persaud and others,
1993. Consensus-based probable effect concentration: From Ingersoll and others, 2000. Abbreviations: pg/g, microgram per gram; ft, foot; <, less
than]

Sediment concentration
(na/g) Probable  Effect range, Severe C;:l::::ll;s:;s;d
Constituent effect level median effect level concentration
0-0.21t 15-171t (ng/g) (wg/g) (wg/g)
depth sample  depth sample (ng/g)
Cadmium 0.62 0.22 3.53 9 10 4.98
Copper 120 38 197 390 110 149
Lead 54 19 91.3 110 250 128
Mercury 0.12 .04 0.486 1.3 2 1.06
Nickel 27 12 36 50 75 48.6
Zinc 480 79 315 270 820 459
Anthracene 0.3 <0.01 - 0.96 3.7 0.845
Benz[a]Anthracene 0.4 <0.01 0.385 1.6 1.48 1.05
Benzo[e]Perylene 0.6 <0.01 - - - -
Benzo[g,h,i]Perylene 0.4 <0.01 - - - -
Chrysene 0.5 <0.01 0.862 2.8 4.6 1.29
1,6-dimethyl Naphthalene 0.2 <0.01 - - - -
2,6-dimethyl Naphthalene 0.2 <0.01 - - - -
2-ethyl Naphthalene 0.1 <0.01 - - - -
Fluoranthene 1.0 <0.01 2.355 3.6 10.2 2.23
4,5-methylene Phenanthrene 0.2 <0.01 - - - -
1-methyl Phenanthrene 0.2 <0.01 - - - -
Perylene 0.4 <0.01 - - - -
Phenanthrene 0.8 <0.01 0.515 1.38 9.5 117
Pyrene 1.0 <0.01 0.875 2.2 8.5 1.52
2,3,6-trimethyl Naphthalene 0.2 <0.01 - - - -
Concentrations of organic carbon, cadmium, copper, lead, No constituents measured in the deeper (1.5-1.7 ft)
mercury, nickel, phosphorus, sulfur, and zinc in the surface bottom-sediment sample exceeded concentrations for
sample are all at least twice as large as concentrations in the chemicals of potential concern for protection of benthic
deeper sample (6.4, 2.8, 3.2, 2.8, 3, 2.2, 3.2, more than 7.2 aquatic life, but concentrations in the surface sample (0-0.2 ft)
and 6.1 times, respectively), but chromium in the surface exceeded the severe effect level for copper and the median
sample was only 1.1 times more than the deeper sample. effect, probable effect, and consensus-based probable effect
Cadmium, copper, lead, nickel, and zinc are metals used in levels for zinc. Probable effect levels also were exceeded for
the fabrication of tires and brake linings (Hjortenkrans and benz[a]anthracene (0.4 pg/g), phenanthrene (0.8 pg/g), and
others, 2007, p. 5224-5225). Other studies in the Lake Tahoe pyrene (1.0 pg/g; table 7) in the surficial bottom sediment
basin also demonstrate increased concentrations of metals sample.

in shallower sediments compared with deeper samples.
Concentrations of lead and mercury in sediment core-samples . .-
collected from Lake Tahoe (Heyvaert and others, 2000) Pmces_ses Aﬂ?c“ng Water Qualltv in and Near
were 6 and 5 times larger, respectively, in samples estimated Detention Basins

to have been deposited in the mid-20" century compared

to sediment deposited prior to 1850, indicating regional Settling of suspended particles, accumulation of
atmospheric sources of these contaminants. Concentrations chemicals of potential concern, and biological assimilation
of 28 PAHSs were all less than laboratory reporting limits in of dissolved nutrients are the primary stormwater treatments

the deeper sample, but 15 compounds were quantified and the achieved by the Park Avenue detention basins. Suspended

concentration of an additional compound, acenaphthalene, was ~ Particulates may include suspended micro-organisms (algae,
estimated in the surficial sample. bacteria, and fungi), organic detritus, and suspended inorganic

sediment particles to which ammonium, phosphate, metals,
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and hydrophobic organic compounds have sorbed. Dissolved
nutrients are available for biological assimilation by algae,
bacteria, fungi, and aquatic vascular plants. Additionally,
bacteria and fungi can decompose particulates to derive energy
from carbon and assimilate nutrients.

Contributions of the species of phosphorus (suspended
phosphorus and filtered orthophosphate and hydrolyzable
phosphorus) relative to total concentrations indicate that
most of the phosphorus is associated with particles that are
larger than 0.45 um (nominal pore size of cartridge filter;
fig. 16). Suspended phosphorus, estimated as the difference
between unfiltered and filtered phosphorus values, had
mean concentrations that averaged 67 percent of the total
phosphorus (range: 26-94 percent). Suspended phosphorus
in samples from detention basin PA1 averaged 86 percent
of total phosphorus (range: 71-96 percent) and outflow
samples averaged 55 percent of total phosphorus (range:
16-74 percent). The phosphorus concentration (1,400 pg/g)
in the surface sample of bottom sediment supports the
observation that about half of unfiltered phosphorus in
stormwater inflow to detention basin PA1 settles out and
is retained by the stormwater-control system. However,
assuming that the phosphorus concentration in one sample
of bottom sediment is representative of sediment throughout
detention basin PAL, about 50 Ib of phosphorus has
accumulated in the top 0.2 ft of sediment in PA1 while almost
200 Ib of phosphorus is estimated to be associated with inflow
to PAL.

Suspended plus organic nitrogen in six samples from
detention basin PAL were 96 percent of total nitrogen (range:
91-99 percent) but suspended plus organic nitrogen in
seven outflow samples averaged 73 percent of total nitrogen
(range: 54-90 percent). However, organic nitrogen was not
determined in filtered stormwater samples. Suspended plus
organic nitrogen, estimated by subtracting mean filtered
concentrations of ammonium and nitrate plus nitrite from total
nitrogen, measured in 22 samples of inflowing stormwater
averaged almost 78 percent of the total nitrogen (range:

8-97 percent). Concentrations of filtered nitrogen and
phosphorus probably are decreased due to photosynthesis and
assimilation by suspended biomass (algae, bacteria, and fungi)
as well as by attached aquatic vegetation. However, because
concentrations of filtered organic nitrogen in stormwater
samples were not determined, it is not known how much of
the total nitrogen was suspended nitrogen and how much was
filterable organic nitrogen.

Concentrations of filtered nitrogen (440 pg/L) and
phosphorus (20 pg/L) in ground-water samples from site
MW194 (upgradient of most development) predominately
are organic nitrogen and hydrolyzable phosphorus (fig. 15).
The mean concentration of nitrogen is larger than values for
samples from three other wells and phosphorus concentration
is larger than values for two other wells. Nutrient-enriched

surface runoff in the Lake Tahoe basin has been attributed to
accumulation of forest litter due to fire suppression (Miller
and others, 2005). Recharge from an intermittent stream near
this site may be the source of nitrogen and phosphorus in
samples from this well.

Sites MW196 and MW197 are upgradient of detention
basin PA1 and have the two largest mean concentrations of
filtered nitrogen (2,000 pg/L and 2,700 pg/L, respectively)
that are more than 90 percent nitrate plus nitrite. This indicates
that nitrate contamination of the regional shallow aquifer,
possibly by past wastewater-disposal practices, continues to
persist since its early recognition in low-flow stream samples
(Perkins and others, 1975) and ground-water monitoring
results (Thodal, 1997). Filtered concentrations of phosphorus
(19 pg/L and 23 pg/L) are comparable to concentrations for
site MW194, with hydrolyzable phosphorus slightly more
dominant.

Filtered nitrogen concentrations in samples from sites
immediately downgradient of detention basin PA1 average
much less than concentrations in the two upgradient sites,
with ammonium and organic nitrogen accounting for
84-99 percent of the average filtered nitrogen concentrations.
This indicates that a recharge mound beneath detention basin
PA1 has displaced the regional ground water with infiltrated
stormwater with a lower mean concentration of nitrate
(44 pg/L) that also has diluted the high nitrate concentrations
and introduced elevated concentrations of ammonium and
organic nitrogen. Mean concentrations of filtered phosphorus
for the four downgradient wells (17-24 pg/L) are comparable
to the concentrations in upgradient wells (19-23 pg/L) with
hydrolyzable phosphorus contributing more than 70 percent
of the filtered phosphorus. However, the mean phosphorus
concentration for site MW199A (fig. 3) was 72 pg/L and
only one sample of the nine collected from site MW199A had
orthophosphate accounting for more than 40 percent of filtered
phosphorus. The anomalous sample collected on May 9,
2006, had 420 pg/L of filtered phosphorus with 90 percent
as orthophosphate. The mean phosphorus concentration for
site MW200 was 39 pg/L, but seven of nine samples were
less than 30 pg/L. The largest concentrations of filtered
phosphorus (260 pg/L) and filtered orthophosphate (240 pg/L)
in the outflow from detention basin PA1 was in a sample
collected on May 10, 2006. The second largest concentration
of filtered phosphorus (84 pg/L) and filtered orthophosphate
(68 pg/L) was measured in samples from site MW200 and
also was collected on May 10, 2006. MW199A has the largest
measurement of hydraulic conductivity (20 ft/d; table 2).
Attempts to slug test at site MW200 were unsuccessful
because the stressed water level recovered too quickly for
quantification. The rapid recovery indicates that the hydraulic
conductivity of the aquifer material tapped at site M\W200 is
greater than 20 ft/d, and may represent localized deposits that
permit preferential flow of stormwater to ground water.



Ammonium
Nitrogen
10 percent

Suspened
Nitrogen
73 percent

PA1_INLETA,
NITROGEN SPECIATION
UNFILTERED NITROGEN:

1,800 MICROGRAMS PER LITER

B Ammonium
. Nitrogen
3 percent

Suspened
Nitrogen
81 percent

PA1_INLET B,
NITROGEN SPECIATION
UNFILTERED NITROGEN:

1,200 MICROGRAMS PER LITER

Ammonium
Nitrogen
2 percent

Nitrate
Nitrogen
2 percent

Suspened
Nitrogen
96 percent

PA1,
NITROGEN SPECIATION
UNFILTERED NITROGEN:
1,700 MICROGRAMS PER LITER

Water Quality in and Near Park Avenue Stormwater Control System 35

Soluble

reactive
Phosphorus
29 percent

Suspened
Phosphorus

67 percent

Hydrolyzable
Phosphorus
4 percent

PA1_INLETA,
PHOSPHORUS SPECIATION
UNFILTERED PHOSPHORUS:

460 MICROGRAMS PER LITER

Soluble

reactive
Phosphorus
25 percent

Suspened
Phosphorus
68 percent

Hydrolyzable
Phosphorus
7 percent

PA1_INLET B,
PHOSPHORUS SPECIATION
UNFILTERED PHOSPHORUS:

300 MICROGRAMS PER LITER

Soluble
reactive
Phosphorus
Hydrolyzable
7percent Phosphorus

7 percent

Suspened
Phosphorus

86 percent

PA1,
PHOSPHORUS SPECIATION
UNFILTERED PHOSPHORUS:

650 MICROGRAMS PER LITER

D. Ammonium
Nitrogen
6 percent

Suspened
Nitrogen
73 percent

PA1_OUTFLOW,
NITROGEN SPECIATION
UNFILTERED NITROGEN:

720 MICROGRAMS PER LITER

E Ammonium
" Nitrogen
8 percent

Suspened
Nitrogen

44 percent

PA2_OUTFLOW,
NITROGEN SPECIATION
UNFILTERED NITROGEN:

320 MICROGRAMS PER LITER

Soluble
reactive
Phosphorus
36 percent

Suspened
Phosphorus

55 percent

Hydrolyzable
Phosphorus
9 percent

PA1_OUTFLOW,
PHOSPHORUS SPECIATION
UNFILTERED PHOSPHORUS:

200 MICROGRAMS PER LITER

Soluble
reactive
Phosphorus
33 percent

Suspened
Phosphorus

62 percent

Hydrolyzable
Phosphorus

PA2 OUTFLOW, °Pereent

PHOSPHORUS SPECIATION
UNFILTERED PHOSPHORUS:
1,800 MICROGRAMS PER LITER

Figure 16. Relative contribution of nutrient species that constitute mean concentrations of nitrogen and phosphorus, South Lake

Tahoe, California and Nevada.
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Concentrations of filtered nitrogen (560-1,300 pg/L)
in samples from sites downgradient of detention basin PA2
(sites MW201A, MW201B, and MW202) are dominated by
nitrate (63-92 percent) because detention basin PA2 only
received stormwater inflow during flooding due to a warm
rain-on-snow events that spanned December 17, 2005, through
January 7, 2006. Therefore, nitrate in the shallow regional
ground water is only diluted and displaced intermittently.
Sites MW201A and MW202 are completed at 13 ft below
land surface and site MW201B was completed at 23 ft.
Samples from the deeper well had a mean filtered nitrogen
concentration of 1,300 pg/L compared to 890 pg/L for site
MW201A and 560 pg/L for site MW202. Mean concentrations
of filtered phosphorus (29-120 pg/L) for these three wells are
all at least 69 percent orthophosphate and are among the five
largest mean concentrations.

Ground-Water Discharge and Nutrient
Loading to Lake Tahoe

In order to estimate the load of nutrients discharged to
Lake Tahoe directly from detention basin PA1, an estimate of
the amount of stormwater infiltrated from the detention basin
was needed. Detention basin PA1 was not instrumented to
record basin outflow; therefore, a calibrated-infiltration rate
from the ground-water flow model of 73 ft®/d was used. Thus,
an estimated 18 ft®/d of stormwater that infiltrated through the
bed of detention basin PA1 discharges to Lake Tahoe based
on particle tracking results of 25 percent direct discharge. The
remaining 55 ft3/d (0.46 acre-ft/yr) of infiltrated stormwater
discharged to stormdrains that discharge into Lake Tahoe by
way of a wet meadow or was evapotranspired by riparian
vegetation. The volume of infiltrated stormwater that
discharges to Lake Tahoe as ground water represents about
0.1 percent (0.15 acre-ft/yr) of the total volume of ground-
water discharge from the study area (256 acre-ft/yr). Assuming
a mean filtered nitrogen concentration in ground water of
1,100 pg/L and filtered phosphorus concentration of 39
Mg/L, it is estimated that ground water within the study area
contributes 765 Ib of nitrogen and 27 1b of phosphorus each
year to Lake Tahoe and infiltrated stormwater from detention
basin PA1 contributes less than 0.45 Ib of the nitrogen load
and less than 0.1 Ib of the phosphorus load to the lake.

The distribution of ground-water discharge across the
lake sediment is important because heterogeneity of aquifer
permeability can “focus” ground-water discharge, such as
ground-water discharge to springs. The calibrated ground-
water flow model was used to calculate zones of discharge
to the lake (fig. 9). About 41 acre-ft/yr (16 percent) of total
ground-water discharge to Lake Tahoe occurs within about
60 ft of the shoreline. Approximately 55 acre-ft/yr also
discharges in a zone between 60 ft and 600 ft offshore.

Particle tracking was used to observe where infiltrated
stormwater into the Park Avenue detention basins would
discharge. Nearly 9,000 particles were placed in model cells
representing detention basin PAL1. The number of particles
placed in each model cell was proportional to the ground-
water flux through that particular cell. Results indicate that
75 percent of infiltrated stormwater discharges to nearby
stormdrains northwest of detention basin PA1 while the
remaining 25 percent discharges to Lake Tahoe within 60 ft
of the shoreline. Ground water discharged to stormdrains is
conveyed to nearby wet meadows and directly to Lake Tahoe
depending on diversion-dam configuration.

Other methods were attempted to determine locations
of ground-water discharge to Lake Tahoe. Differences in
the temperature and electrical conductivity of ground water
compared to the receiving lake water have been used to
locate submerged ground-water discharge for subsequent
measurement of limnologic responses (Lee, 1985). Paired
thermocouples attached to a data logger were dragged behind a
boat along the Lake Tahoe shoreline, but wave action and air-
temperature variations affected the data logger performance,
preventing useful results.

An attempt was made to apply Raman Spectra fiber optic
distributed temperature sensing technology in collaboration
with researchers from the University of Nevada, Reno;
Oregon State University; and others in June 2007. The system
precisely measures temperature (£0.05°C) along a 3,000 ft
length of standard optical communication cable with 3-ft
spatial resolution (Hausner and others, 2007). Unfortunately,
the equipment was available only during early June 2007
when a cold front moved in with wind and snow that again
obscured any differences in lakebed temperatures.

On July 26 and August 2, 2007, a multiparameter
water-quality probe was again dragged along the nearshore
lakebed. However, no variations in temperature or electrical
conductivity were observed. Thick mats of attached algae
were observed in a linear pattern parallel to the lakeshore that
indicated focused ground-water discharge. A seepage meter
and minipiezometer were inserted into the lakebed sediment,
and lake level and intercepted ground-water levels were
compared using transparent tubing. Two samples of interstitial
water and eight samples of lake water were collected for
laboratory determination of stable isotopes of hydrogen
and oxygen and for filtered concentrations of nitrogen and
phosphorus.

Three lake samples were collected 1 ft beneath the lake
surface and five were collected at the lakebed-water contact.
Relations between the two isotopic ratios (fig. 14) indicate
that the lake water was well mixed with a slight ground-
water signature in the samples collected at site L4B, near the
lakebed (table A7). One interstitial water sample was nearly
all ground water (site L3C) and the other (site L1C) falls
along a linear mixing line between ground water and lake
water. Filtered concentrations of nitrogen and phosphorus
were less than laboratory reporting limits for all lake water



samples except for one sample collected near the lakebed

(site L3B) that had 71 pg/L of nitrogen. The sample of
interstitial water indicated a mixture of lake and ground water
(site L1C). This sample had 143 pg/L of nitrogen and 36

pg/L phosphorus comprised mostly of organic nitrogen and
orthophosphate, respectively. The other sample (site L3C)
had 720 pg/L of filtered nitrogen comprised of 65 percent
ammonium, 35 percent organic nitrogen and detectable

nitrite (3 pg/L), and 40 pg/L filtered phosphorus comprised
of 72 percent orthophosphate and 28 percent hydrolyzable
phosphorus. Filtered nitrogen concentrations in ground-water
samples collected from wells averaged 1,000 pg/L with
nitrate representing nearly 70 percent of the concentration and
ammonium only 10 percent. Nitrate was less than reporting
levels in the interstitial water (estimated as 10 pg/L from site
L1C) indicating a dissimilative nitrate reduction to ammonium
by sediment micro-organisms (Sgrensen, 1978).

Summary and Conclusions

Clarity of Lake Tahoe, California and Nevada, has been
decreasing, in part due to inflows of sediment and nutrients
associated with stormwater runoff. Constructed stormwater
detention basins are considered effective best management
practices for mitigation of suspended sediment and nutrients
associated with runoff, but consequences of infiltrated
stormwater to shallow ground water are not known. This
report documents 2005-07 hydrogeologic conditions in a
small part of a shallow aquifer and how it interacts with a
stormwater-control system and with nearby Lake Tahoe.
Descriptions of the basin-fill aquifer and a stormwater-control
system; quantification of components of the ground-water
budget; and characteristics of the quality of stormwater,
bottom sediment from a stormwater detention basin, ground
water, and nearshore lake and interstitial water are included.
Results of a three-dimensional, finite-difference, numerical
model also are presented, coupled with chemical data to
evaluate responses of ground-water flow to stormwater runoff
accumulation in the stormwater-control system.

Ground-water flow in the basin-fill aquifer was modeled
using five layers of constant thickness (5, 10, 15, 10 and 10 ft
thick, respectively), from land surface to 50 ft and a sixth
layer that varied in thickness from the bottom of layer 5 to
bedrock. The large and varying thickness of this deepest layer
is assumed to have no effect on the simulation of shallow
ground-water movement. Information indicates lacustrine
layers may be interspersed within sand and gravel deposits,
but enough evidence was not available to support a continuous
confining layer in this model. Bedrock underlying layer 6
represents a basal no-flow boundary and boundaries to the
northeast and southwest were aligned along hydrographic
basin boundaries and were represented as no-flow boundaries.
Model cells exposed to Lake Tahoe in the northwest were
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simulated using a constant-head boundary of 6,225 ft, which
is the average stage of Lake Tahoe. The southern Park Avenue
detention basin also was simulated using a constant-head
boundary because it was never observed to completely drain.

Model layers 1-5 were assigned hydraulic conductivity
values of 2 ft/d for the simulations. Recharge was applied
to the modeled area as precipitation (areal recharge) and
mountain-front recharge. Areal recharge was estimated during
model calibration and applied to about 62 percent of layer
1 model cells that were determined not to be impervious.
Mountain-front recharge was applied to all cells along
the southeast boundary, as well as two zones that extend
downgradient from the mountain front. Annual precipitation
averaged 4,400 acre-ft in the watersheds upgradient of the
model area between 1971 and 2000, of which 2 percent was
estimated to be in-place recharge, 54 percent is consumed by
evapotranspiration, and the remaining 44 percent is attributed
to potential runoff. The percentage of the potential runoff
that actually becomes recharge was estimated during model
calibration.

A network of stormwater drainage ditches and sewers
scattered across South Lake Tahoe were simulated as drains.
These drains were placed 5 ft below land surface. In this way,
if the simulated ground-water surface came within 5 ft of
land surface, ground water would be able to discharge to the
stormwater ditches, and then directly to Lake Tahoe.

The steady-state model was calibrated to water-level
measurements in 18 wells and a mean ground-water discharge
from the model domain was estimated to be 256 acre-ft/yr to
Lake Tahoe. About 0.61 acre-ft/yr infiltrates from detention
basin PA1 to ground water and particle tracking indicated
25 percent (0.15 acre-ft/yr) of this infiltration ultimately
discharges to Lake Tahoe within 60 ft of the shoreline. The
remaining 0.46 acre-ft/yr discharged to local stormdrains that
convey water to nearby wet meadows and directly to Lake
Tahoe, depending on diversion-dam configuration.

Settling of suspended nutrients and sediment, biological
assimilation of dissolved nutrients, and accumulation of
chemicals of potential concern are the primary stormwater
treatments achieved by the detention basins. Comparison of
mean concentrations of unfiltered nitrogen and phosphorus in
stormwater samples indicate that 55 percent of nitrogen and
47 percent of phosphorus is trapped in the detention basin.
Cadmium, copper, lead, mercury, nickel, organic carbon,
phosphorus, and zinc in the uppermost 0.2 ft of bottom
sediment from the detention basin were all at least twice as
concentrated compared to sediment collected from 1.5 ft
deeper. Similarly, concentrations of 28 polycyclic aromatic
hydrocarbon compounds were all less than laboratory
reporting limits in the deeper sample, but 15 compounds
were measured in the uppermost 0.2 ft of bottom sediment.
Published concentrations determined to affect benthic
aquatic life were exceeded for benz[a]anthracene, copper,
phenanthrene, pyrene, and zinc in the uppermost 0.2 ft of
bottom sediment.
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Concentrations of filtered major ions indicate that
upgradient ground water is a mixed cation-bicarbonate type
with 152 mg/L total solutes that evolves to a mixed cation/
mixed anion, sodium-chloride type and sodium-bicarbonate
type waters with up to 390 mg/L total solutes, possibly due
to residual leachate from abandoned septic-tank systems
and recharged stormwater runoff. Concentrations of filtered
nitrogen ranged from 82 to 4,600 pg/L and phosphorus
ranged from 4 to 420 pg/L. Coupling mean concentrations
of phosphorus (39 pg/L) and nitrogen (1,100 pg/L) with the
steady-state ground-water flow model yields annual estimates
of 26 Ib of phosphorus and 770 Ib of nitrogen that may
be transported with ground water to Lake Tahoe from the
modeled area (1.5 percent of the total area that is tributary to
the lake).

The isotopic composition of water, expressed as ratios
of oxygen-18 relative to oxygen-16 (delta oxygen-18) and
deuterium relative to hydrogen-1 (delta deuterium), of local
ground water is different from that of Lake Tahoe due to
evaporative fractionation of lake water that has an estimated
residence time of 700 years. Comparison of delta oxygen-18
and delta deuterium ratios for samples of shallow ground
water, lake water, and interstitial water from Lake Tahoe
indicates the lake water was well mixed with a slight ground-
water signature in two of five lake-water samples collected
near the lakebed. One of two interstitial water samples from
0.8 ft beneath the lakebed was nearly all ground water and
concentrations of nitrogen and phosphorus were comparable
to concentrations in shallow ground-water samples. The
other interstitial sample fell along a mixing line between
ground water and lake water, and nutrient concentrations
appeared diluted with lake water. Nitrate was less than
laboratory reporting levels in both interstitial samples,
indicating a dissimilative nitrate reduction to ammonium by
micro-organisms. Based on average nitrogen and phosphorus
concentrations of interstitial-water samples and ground-water
discharge to Lake Tahoe directly from detention basin PAL, it
is estimated that PA1 contributes loads of less than 0.3 Ib of
nitrogen and less than 0.1 Ib of phosphorus per year.
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Appendix B. Bottom-Sediment Quality Data
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For more information concerning the research in this report, contact the
Director, Nevada Water Science Center
U.S. Geological Survey
2730 N. Deer Run Road
Carson City, Nevada 89701
http://nv.water.usgs.gov
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