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Assessment of Ground-Water Resources in the
Seacoast Region of New Hampshire

By Thomas J. Mack

Abstract

Numerical ground-water-flow models were developed for
a 160-square-mile area of coastal New Hampshire to provide
insight into the recharge, discharge, and availability of ground
water. Population growth and increasing water use prompted
concern for the sustainability of the region’s ground-water
resources. Previously, the regional hydraulic characteristics of
the fractured bedrock aquifer in the Seacoast region of New
Hampshire were not well known. In the current study, the
ground-water-flow system was assessed by using two different
models developed and calibrated under steady-state seasonal
low-flow and transient monthly conditions to ground-water
heads and base-flow discharges. The models were, (1) a
steady-state model representing current (2003—04) seasonal
low-flow conditions used to simulate current and future
projected water use during low-flow conditions; and (2) a tran-
sient model representing current average and estimated future
monthly conditions over a 2-year period used to simulate cur-
rent and future projected climate-change conditions.

The analysis by the ground-water-flow models indicates
that the Seacoast aquifer system is a transient flow system
with seasonal variations in ground-water flow. A pseudo-
steady-state condition exists in the fall when the steady-state
model was calibrated. The average annual recharge during the
period analyzed, 2000-04, was approximately 51 percent of
the annual precipitation. The average net monthly recharge
rate between 2003 and 2004 varied from 5.5 inches per month
in March, to zero in July, and to about 0.3 inches per month in
August and September. Recharge normally increases to about
2 inches per month in late fall and early winter (November
through December) and declines to about 1.5 inches per month
in late winter (January and February). About 50 percent of the
annual recharge coincides with snowmelt in the spring (March
and April), and 20 percent occurs in the late fall and early
winter (November through February). Net recharge, calculated
as infiltration of precipitation minus evapotranspiration, can
be negative during summer months (particularly July).

Regional bulk hydraulic conductivities of the bedrock
aquifer were estimated to be about 0.1 to 1.0 feet per day. Esti-
mated hydraulic conductivities in model areas representing the
Rye Complex and the Kittery Formation were higher (0.5 to

1 foot per day) than in areas representing the Eliot Formation,
the Exeter Diorite, and the Newburyport Complex, which have
estimated hydraulic conductivities of 0.1 to 0.2 foot per day.
A northeast-southwest regional anisotropy of about 5:1 was
estimated in some areas of the model; this pattern is parallel to
the regional structural trend and predominant fracture orienta-
tion. In areas of the model with more observation data, the
upper and lower 95-percent confidence intervals for the esti-
mated bedrock hydraulic conductivity were about half an order
of magnitude above and below the parameter, respectively,
and the estimated confidence intervals for estimated specific
storage were within an order of magnitude of the parameter. In
areas of the model with few data points, or few stresses, con-
fidence intervals were several orders of magnitude. Estimated
model parameters and their confidence intervals are a func-
tion of the conceptual model design, observation data, and the
weights placed on the data.

The amount of recharge that enters the bedrock aquifer
at a specific point depends on (1) the location of the point in
the flow field; (2) the hydraulic conductivity of the bedrock
(or the connectivity of fractures); and (3) the stresses within
the bedrock aquifer. In addition, ground water stored in
unconsolidated overburden sediments, including till and other
fine-grained sediments, may constitute a large percentage
of the water available from storage to the bedrock aquifer.
Recharge into the bedrock aquifer at a point can range from
zero to nearly all the recharge at the surface depending on
regional hydrogeologic and anthropogenic factors. In a setting
with few ground-water withdrawals, a larger portion of the
recharge in the ground-water-flow system remains in the
unconsolidated aquifers or upper bedrock than moves through
the deeper bedrock aquifer, even in a setting with conductive
bedrock, at any given time. With increased withdrawals in
the bedrock aquifer, a larger proportion of the recharge in the
aquifer system will move into the deeper areas of the aquifer
system at any given time.

Ground-water residence time estimated by chlorofluo-
rocarbon age-dating methods ranged from near zero (recently
recharged) to more than 50 years. Ground water was oldest in
areas with little water use, a low head gradient above the point
of interest, and at a point of discharge in the flow system. At
such locations, ground water may have flowed a considerable
distance in the watershed. Where water use was high, or at an
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area of recharge, the ground-water age may be younger. At
large ground-water withdrawal points, ground water with-
drawn includes a mix of water from recently recharged to that
with residence times 30 years or more. The ground-water flow
to large withdrawals includes ground water in the immediate
area of the well and older water from greater distances. The
age of water captured by recently installed large ground-water-
withdrawal wells may become younger with time as the effects
of the withdrawal on the flow system become established and
the flow system reaches a new equilibrium.

Simulated effects to the Seacoast hydrologic system
caused by increasing future water use include stream base
flows declining by about 7 percent; fresh ground-water
discharges to tidal bays, estuaries, and the ocean declining by
about 2 percent; and lowered ground-water levels. Changes in
ground-water levels were subtle but were greatest near large
ground-water withdrawals with increasing demands and in
developing rural areas. On the basis of the simulations, the
hydrologic system will be most affected during periods of low
flow, which may result in longer annual low-streamflow peri-
ods. Simulations show that the effects of increased demand
will likely become apparent within the next 10 years (before
2017). Simulations of a hypothetical increase in sewering
result in further declines in base flow (13 percent) and dis-
charge to bays, estuaries, and the ocean (5 percent).

Climate change in New England is forecast to include
more frequent and intense precipitation events, with a slight
decrease to little change in total precipitation, and increas-
ing temperatures. The effects of this potential future climate
change on the Seacoast hydrologic system would likely
include reduced base flows and fresh ground-water discharges
to tidal areas and lowered ground-water levels. The effects of
these climate changes by 2025 were estimated to be greater
than the potential effects of increased water demands. The
analyses indicated that there are potential issues of concern for
future use of water resources in the Seacoast region. The mod-
els developed and demonstrated in this investigation can pro-
vide water-resource managers and planners tools with which
to assess future water resources in this region. The findings
regarding the effects of increasing water demand and potential
climate change on ground-water availability may be transfer-
rable to other regions of the Nation with similar hydrogeologic
and climatic characteristics.

Introduction

The Seacoast region encompasses an area of southeastern
New Hampshire bordering the Atlantic Ocean from Maine to
Massachusetts (fig. 1). In 2004, the twelve towns that make
up the Seacoast region (fig. 1) had a population of 80,000
that relied primarily on local ground-water resources for its
water needs. The proximity of this region to the expanding
area of metropolitan Boston has led to a 36-percent population
increase over the past 20 years. This development has been

accompanied by an increase in the use of ground water from
both domestic and supply wells, nearly all of which are
completed in the fractured-bedrock aquifer. Historically, the
fractured-bedrock aquifer had not been considered a principal
aquifer, and water-resource investigations of the 1970s
(Anderson-Nichols, 1980; Cotton, 1977) and 1980s (Moore,
1990; Stekl and Flanagan, 1992) focused on stratified-drift
aquifers to meet the increasing water demand. Currently
(2003—-04), the stratified-drift aquifers of the region are
essentially fully utilized, and water levels have declined in
some stratified-drift aquifers in southeastern New Hampshire
over recent years. Consequently, the fractured-bedrock
aquifers in the Seacoast and elsewhere in New Hampshire
have become increasingly important for providing future
ground-water resources.

In addition to use by a greater population in the region,
individual usage has been increasing to meet the needs of
modern appliances and landscaping. In addition, water may be
distributed outside the source area or removed through sewer-
ing. In the Seacoast region, sewers eventually discharge to
tidal water bodies, including local bays and the ocean,
and sewering, therefore, removes freshwater from local
aquifer systems.

These pressures on the Seacoast water resources became
more apparent in 2001 and 2002 when an extensive drought
affected the entire northeastern United States. In response to
this drought, many Seacoast communities implemented water-
use restrictions, and concern increased about the availability
and sustainability of ground-water resources in the region.

At the time of this drought, the potential effects of increasing
demands, changes in water usages, and increased reliance on
the fractured-bedrock aquifer on ground-water resources in the
Seacoast region had not yet been quantified.

To address these concerns, cooperative investigations
involving the New Hampshire Department of Environmental
Services (NHDES) Coastal Program (NHCP) and Geological
Survey (NHGS), the Seacoast communities, and the
U.S. Geological Survey (USGS) were initiated in 2003 to
assess water resources and needs for the Piscataqua River
drainage basin and the coastal drainages of southeastern
New Hampshire (fig. 1, inset map). Companion investigations
by the NHGS provided geologic and well data for this
investigation, and a companion investigation of water
use in 44 towns within the Piscataqua River watershed in
New Hampshire (Horn and others, 2007) provided water-
use information. The current investigation developed a
regional ground-water-flow model to evaluate ground-water
availability in an approximately 160 mi? area of coastal
New Hampshire, which includes 12 towns and is termed
the Seacoast region (fig. 1). Although considerable data are
collected on an on-going basis at sites of proposed large
ground-water withdrawals, there was no comprehensive
means for State, regional, and local interests to evaluate the
cumulative hydrologic effects of additional withdrawals, in
conjunction with existing water uses, on the water resources
of the region. In this investigation, regional ground-water-
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flow models were developed to provide an evaluation and a
framework for understanding the present ground-water-flow
system and a tool for evaluating the cumulative effects of
increasing water demand on ground-water resources in the
Seacoast region. The effects of increasing water demand and
potential climate change are a National concern and many of
the findings from the Seacoast region are transferrable to other
regions, particularly in the glaciated northern United States,
with similar hydrogeologic and climatic characteristics.

Purpose and Scope

This report describes an assessment of ground-water
resources in the Seacoast region of coastal southeastern New
Hampshire. The report includes documentation of the design
and calibration of numerical ground-water-flow models and
their use and limitations for evaluation of current and future
ground-water availability. Current (2003—04) and projected
(for 2017 and 2025) ground-water-resource conditions are
described in the report.

The scope of this investigation is regional. The ground-
water-flow models are designed for use in watershed- to sub-
watershed-level planning and management of ground-water
resources, not for site-specific hydrologic analyses. Evalua-
tions of potential or future scenarios presented in this report
are based on information available at the time of the study.

Description of the Study Area

The study area includes 160 mi* comprising all or parts
of 12 towns in New Hampshire and a 30-mi? area comprising
parts of 2 towns in northeastern Massachusetts. The two
towns in Massachusetts were in the ground-water-flow model
area but were not included in the ground-water-availability
investigation. Study-area boundaries coincide with the
boundaries of major hydrologic features, including tidal
water bodies (Squamscott River, Great Bay, Atlantic Ocean,
Piscataqua River, Merrimack River), the Powwow River
(fig. 1), and Great Brook drainage divide (fig. 2) along the
southwestern model-domain boundary. Altitudes range from
0 to about 300 ft, with most of the study area gently sloping
and at altitudes less than 100 ft above North American Vertical
Datum of 1988 (NAVD 88). All streams originate in and flow
out of the study area (fig. 2). The exceptions are discharge
areas in the Seacoast hydrologic system, and include the
Powwow, Piscataqua, and Merrimack Rivers; the latter two
are tidal water bodies in the study area. The climate of the
Seacoast study area, including long-term precipitation data and
trends, is described in appendix 1.

Geologic and Geographic Setting

The geographic setting of the study area was described
by Bradley (1964) as part of the Seaboard Lowland section of
the New England Physiographic Province. The area is covered
by thin glacial and marine sediments (fig. 3) and the topog-
raphy is generally low and reflects the shape of the bedrock
surface. In the Seacoast area, ground water occurs in three
major geologic units: glacial till, stratified-drift deposits, and
bedrock. Glacial till is an unsorted mixture of clay, silt, sand,
gravel, and cobbles deposited directly under glacial ice. Till
is generally about 20 ft thick or less throughout the Seacoast.
Stratified deposits consist of sorted and layered sand, gravel,
silt, and clay of glacial or marine origin. Crystalline metasedi-
mentary or intrusive bedrock underlies the surficial sediments,
and is exposed at the surface in some areas.

Other geologic units in the Seacoast, which are less
important with respect to ground-water resources, include
beach alluvium, which forms the coastal shoreline in the
southern half of the study area (Hampton, N.H., to Salisbury,
Mass.); freshwater wetland deposits that dominate the central
part of the study area, including some areas of the [-95 corri-
dor; and marine wetland deposits, which particularly dominate
the nearshore areas from Hampton, N.H., to Salisbury, Mass.

The bedrock in the study area consists of crystalline
igneous rocks and metamorphic rocks of sedimentary origin
(fig. 4). Crystalline bedrock is generally not considered a
high-yielding ground-water resource; however, some of the
highest-yielding bedrock wells in New Hampshire are in the
Seacoast region (Moore and others, 2002). The geology of the
Seacoast area has been the subject of numerous investigations
including the work of Novotny (1969) and, more recently,
Escamilla-Casas (2003), and mapping by Dr. Wallace Bothner
(University of New Hampshire, oral commun., 2006). Bedrock
structures of the Seacoast study area include the Rye anticline
east of Great Bay; the Great Bay syncline, which coincides
with the location of Great Bay; and the Portsmouth Fault
(Lyons and others, 1997; Novotny, 1969, p. 4). These struc-
tures produce a northeast-southwest regional structural trend
(approximately north 22 degrees east). The dominant rock
types are metasedimentary rocks of the Rye Complex (fig. 4),
which commonly consists of coarse-grained gneiss, quartzite,
and schist; the Kittery Formation (fig. 4), primarily a phyl-
lite, and schist; and the Eliot Formation, which is primarily
slate, phyllite, and schist. The igneous rocks of the Breakfast
Hill granite; the Exeter Diorite; and the Newburyport Com-
plex, a quartz diorite, form lesser amounts of the bedrock in
the study area (fig. 4). The geology of West Newbury, Mass.,
immediately adjacent and south of the study area, has been
investigated by Walsh (2001) and includes bedrock of the
Eliot Formation and Newburyport Complex. In terms of water
resources, properties of the bedrock aquifer of the study area
remain less well known than those of the surficial hydrogeo-
logic units.
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Background and Previous Studies

The first comprehensive assessment of the geology and
ground-water resources of the study area was completed by
Bradley (1964). In the 1980s, regional stratified-drift-aquifer
assessments were completed in the study area in cooperation
with the NHDES, and covered the coastal river basins (Stekl
and Flanagan, 1992) and the Exeter River basin (Moore,
1990). These USGS investigations mapped the boundaries,
saturated thickness, and transmissivity of stratified-drift
aquifers, which were the aquifer resource with the greatest
transmissivity and capacity for additional water supplies.
Prior to the 1950s, many residents of the Seacoast relied on
dug wells in glacial deposits. Although dug wells provide
very little storage capacity, they generally were sufficient
for domestic water needs at the time. Advances in drilling
techniques and well pumps, after the 1950s, made bedrock
wells easier to install and use. Bedrock wells have gained
favor over time because of their storage capacity. The volume
of water stored in a borehole can be a few times larger than
that of a dug well during dry periods when water levels may
be near the bottom of a dug well. Bedrock wells are also
regarded as providing security against shallow contaminants
such as septic inflows.

By the 1990s, stratified-drift aquifers in the Seacoast
were either fully utilized, unavailable because of development,
or in some localized areas contaminated by anthropogenic
activities. Some water suppliers began installing supply
wells in the bedrock aquifer in areas of the Seacoast to meet
increasing demand. In response to an increasing demand
for water resources and an interest in the State’s bedrock
aquifers, an assessment of factors related to well yield in the
fractured-bedrock aquifer of New Hampshire was conducted
by the USGS in cooperation with NHDES (Moore and
others, 2002). A digital coverage of the bedrock geology of
New Hampshire was provided by Lyons and others (1997)
at a scale of 1:125,000. Detailed information about the
geology of the Seacoast is provided by Novotny (1969),
Escamilla-Casas (2003), and Dr. Wallace Bothner (University
of New Hampshire, oral commun., 2005). Numerous site-
specific water-supply investigations have been conducted by
hydrogeologic consulting and engineering firms throughout
the Seacoast area to identify new sources of ground water or
describe aquifer characteristics.

Only within the past decade have ground-water-flow
simulations been more widely used in the investigation
of bedrock aquifers in the eastern United States. Two
investigations of note were among the first regional ground-
water-flow simulations in crystalline bedrock aquifers. Daniel
and others (1997) used ground-water-flow simulation and
flow-path analysis to investigate a 146-mi® hydrogeologic
system in North Carolina’s piedmont crystalline-bedrock
aquifer. Tiedeman and others (1997) used ground-water-flow
simulation and flow-path analysis to investigate the 4-mi?
Mirror Lake watershed in northern New Hampshire.

Ground water in the crystalline-bedrock aquifer flows
through discrete fractures and partings. At site-specific scales
of tens to hundreds of feet, the location, orientation, and
nature of individual fractures dominate the characteristics of
ground-water flow; however, at larger scales—hundreds of
feet or greater—the nature and location of individual fractures
are not nearly as important in understanding the movement of
ground water and fluxes (flow into or out of an aquifer) in the
regional system. More important is understanding the large-
scale properties of the rock, such as the regional connectivity
of the individual fractures. This regional connectivity will
determine the hydraulic conductivity of the rock at greater
scales, or what can be termed “bulk hydraulic conductivity.”
This concept is analogous to ground-water flow in porous
media; understanding the nature of individual pores, or the
movement of ground water between pores, is not necessary
for understanding and simulating ground-water flow in porous
media. The bedrock aquifer can be treated as an equivalent
porous medium (EPM) in some circumstances using a
continuum approach, which is discussed with application
to fractured bedrock by Hsieh (2002) and Hsieh and others
(1999). The EPM approach has been used in an investigation
of a limestone aquifer (Langevin, 2003a) in which solution
fracture zones within the consolidated rock were not explicitly
simulated but were represented as part of a continuum.

The scale of investigation is very important in the
application of the EPM approach. It is assumed that bedrock
at the scale of interest can be represented by zones of similar
hydrologic characteristics. At larger scales, such as the
watershed scale, the area of interest will be more homogenous.
In the case of fractured-crystalline bedrock, zones of the
bedrock aquifer with similar hydraulic properties, such as
bulk hydraulic conductivity, are assumed to be identified by
mapped geologic units. The EPM approach makes use of
contrasts in fracture density, connectivity, yield, and possibly
other properties between one rock formation and another.

At small scales—for example, at the well-field scale—this
approach may not be valid because the heterogeneity imposed
by individual fractures, or a fracture zone, may dominate the
flow system.

The EPM approach has been applied at the watershed
scale to crystalline-bedrock aquifer systems in the eastern
United States that are similar to that in the Seacoast study
area. Examples include investigations by Lyford and others
(2003) in Massachusetts; Harte (1992) and Tiedeman and
others (1997, 1998) in northern New Hampshire; Daniel and
others (1997) in North Carolina; and Starn and Stone (2005)
in Connecticut. A preliminary simulation of regional ground-
water flow in the Seacoast area was done by Mack and others
(2002) and Mack (2003) for this investigation. Ground-water
availability and use in fractured-rock settings elsewhere were
investigated by Hunt and others (2001), Willey and Achmad
(1986), and Vogel and Reif (1993). A helpful synthesis of
fractured-bedrock investigations including ground-water-
flow simulations and well yield is provided by Starn and
Stone (2005).



Methods

This investigation provides a model of Seacoast
ground-water resources through an integrated analysis of
geohydrologic data including geologic information, water
levels, streamflows, and water-use data. An assessment of
ground-water sustainability requires an understanding and
approximation of the complete hydrologic system and of the
interaction of its components. These components depend
upon the hydraulic properties of the surficial sediments and
bedrock and upon the climate and topography of the area.
Quantification of the hydrologic components also depends on
the scale of investigation; these components were evaluated
with respect to the regional ground-water-flow system.

Numerical ground-water-flow simulations were used
to assess aquifer properties and surface- and ground-water
interactions. A numerical model is a representation that
describes the geometry, composition, and hydraulic properties
of a ground-water-flow system and accounts for all known
or estimated (conceptual) hydrologic processes included in
ground-water flow. For calculating the availability of water
over a watershed or regional setting, regionally varying bulk
hydraulic properties that characterize different lithologic
settings, as used in this investigation, are usually sufficient
(Shapiro, 2002) to describe regional ground-water recharge,
discharge, and storage. By constructing the numerical model
and assigning known, estimated, or hypothetical properties to
the flow components, it is possible to assess the conceptual
understanding of the ground-water-flow system and its various
components. The USGS modular finite-difference ground-
water-flow model, MODFLOW-2000 (Harbaugh and others,
2000), was used as the computer code for this investigation.
Digital coverages of topography, bathymetry, hydrography,
and aquifer properties were used with preprocessing software
(Winston, 2000) to construct MODFLOW-2000 data sets. The
conceptual and numerical characteristics of these software
packages are described later in this report. The model was
designed and calibrated according to guidelines and methods
described by Hill (1998) and the analysis techniques of Hill
and others (2001).

Hydrogeologic Characteristics of the
Seacoast Region

Hydraulic Properties

Hydraulic properties of aquifer materials include the
horizontal and vertical hydraulic conductivity, specific yield,
and specific storage. Surficial sediments and bedrock aquifers
have contrasting hydraulic properties because of differences in
the amount of consolidation that has occurred.
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Surficial Deposits

The surficial geology of the Seacoast area (Bennett
and others, 2004) was divided into four general groups of
sediments with different origins and characteristics for the
ground-water-flow simulation in this investigation. The
hydraulic conductivites of the overburden aquifers, which
affect ground-water-flow paths and residence times, differ
considerably with the type of overburden deposit. The 4
groups are shown in figure 3; till; coarse-grained sediments,
including sand and gravel, alluvium, and fill; fine-grained
marine sediments, including fine-grained sand, silt, and clay;
and wetland deposits, including freshwater and saltwater
wetland deposits. The percentages of the study area and
selected subwatersheds (fig. 2) covered by each of the four
surficial sediment categories, surface water, and bedrock
(fig. 3) are provided in table 1.

The most extensive surficial sediment is till, which
covers about 39 percent of the study area. Till is generally a
few feet to less than 20 feet thick and underlies most other
sediments in the study area; the thickness generally can be
inferred to be thin near large boulders or bedrock exposures.
The hydraulic conductivity of till in New England has been
measured at about 1 ft/d (Harte, 1997; Mack, 1995; Melvin
and others, 1992). Till generally has similar horizontal and
vertical hydraulic conductivities (Melvin and others, 1992)
likely because it is an unsorted mixture of sediments. Before
the mid-1900s, wells dug in till were typically about 20 ft deep
and were adequate for domestic supply. Shallow till wells,
which can still be found at many older homes in the Seacoast,
generally do not meet the current water-supply needs of
domestic users, particularly during dry periods.

The thickness and hydraulic properties of stratified-drift
aquifers in the study area were determined by Moore (1990)
and Stekl and Flanagan (1992). The horizontal hydraulic
conductivity of stratified drift in New Hampshire ranges
from about 2 to 15 ft/d for fine-grained sands, and from 50
to more than 200 ft/d for coarse-grained sands and gravel
(Ayotte and Toppin, 1995; Medalie and Moore, 1995). The
vertical hydraulic conductivity of stratified-drift sediments in
New England is generally about one-tenth of the horizontal
hydraulic conductivity (Randall, 2001). Most areas of the
Seacoast have saturated thicknesses less than 40 ft. Notable
exceptions include the stratified-drift aquifer underlying the
Pease Tradeport, also known as the former Pease Air Force
Base (PAFB), in Newington; an aquifer in Kensington at Great
Brook Meadows; and thinner aquifers in Hampton.

Stratified-drift deposits cover about 24 percent of the
study area. Only about 2 percent of the study area, however,
is covered by stratified-drift aquifers with transmissivities
of 1,000 ft*/d or greater (Moore, 1990; Stekl and Flanagan,
1992). Less than 1 percent of the study area is covered by
stratified-drift aquifers with transmissivities of 2,000 ft*/d
or greater. In some areas the stratified-drift aquifers support
very high-yield supply wells. The most prominent stratified-
drift aquifer in the study area is the plain covering parts of
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Table 1. Subwatersheds and percentages of surficial geologic sediments, wetlands, surface-water bodies, and bedrock within each
subwatershed, Seacoast model area, southeastern New Hampshire.
[All streams are in New Hampshire unless otherwise noted. Subwatershed areas shown on figure 2; mi?, square miles; —, not available]
Stratified
wats:rz;led . Area drift and Marine . Surface-
number River or stream name (mi?) other coarse- i ents Till Wetland wat_er Bedrock
(fig. 2) gr:jnned bodies
sediments
1 Mill Brook, Stratham 1.98 64.1 24.8 5.3 5.8 0.0 0.0
2 Back River, South Hampton 1.53 1.6 .0 94.1 4.0 3 .0
3 Packer Brook, Greenland 2.31 49.2 27.0 7.3 14.8 1.7 .0
4 Pickering Brook, Newington 1.29 73.2 22.8 3.9 .0 .0 .0
5 Bailey Brook, Rye 1.95 39.5 10.1 43.0 7.1 3 .0
6 Hodgson Brook, Portsmouth 3.52 49.4 26.4 23.0 9 3 .0
7 Pickering Brook, Greenland 2.97 43.5 11.8 15.8 28.1 .6 1
8.0 Hampton Falls River, Route 1, 6.66 22.3 21.7 52.0 32 8 .0
Hampton Falls
8.1 Hampton Falls River, Mill Lane, 3.61 10.4 N 45.0 44.1 4 .0
Hampton Falls
9 Parkman Brook, Stratham 1.89 23.8 33.8 42.1 .0 3
10 Great Brook, Kensington 5.45 1.1 6.8 81.3 10.6 3
11.0 Little River, North Hampton 6.12 22.9 23.2 46.1 7.4 4 .0
12 Smallpox Brook, Salisbury, Mass. 1.83 95.0 5.0 — — — —
13 Taylor River, Hampton 8.41 7.1 24.2 59.6 8.5 .6 .0
14.0 Winnicut River, Greenland 14.19 32.5 13.7 43.1 10.0 .6 .0
15 Berrys Brook, Rye 5.38 36.1 35.8 13.7 14.2 1 .0
Approximate total area and 230 243 17.6 39.1 7.7 11.1 2

percentages of materials in the
total area

Newington and Portsmouth beneath the PAFB. This deposit

Fine-grained marine sediments include fine-grained

is 4 mi long, 0.25 to 1 mi wide, and up to 70 ft thick (Bradley,
1964). The Haven Well, a water-supply well for the city of
Portsmouth, is completed in this deposit and has a potential
yield of more than 800 gal/min, although the permitted yield
is limited to 300 gal/min to prevent drawing contaminated
ground water into the well. The horizontal hydraulic
conductivities of sands near the supply well were estimated

to be approximately 210 to 260 ft/d (Montgomery Watson
Harza, Inc., 2002). An extensive but thinner stratified-drift
aquifer extends from western Rye to southern Portsmouth and
northern Greenland. This aquifer includes the Greenland Well,
which supplies more than 600,000 gal/d, and is generally less
than 40 ft thick. Another notable but less extensive stratified-
drift aquifer, with thicknesses of up to about 40 ft, is beneath
central North Hampton (figs. 1 and 3). Stratified-drift deposits
also cover parts of Seabrook and much of Salisbury, Mass.,
but these generally are thin discontinuous deposits.

sand, silt, or clay. These sediments, deposited in estuaries and
tidal areas during deglaciation, are in areas of lower elevation
and cover about 18 percent of the study area (table 1). Fine-
grained sediments typically have hydraulic conductivities of
about 1 ft/d or less. Although some marine sediments (sands)
may locally have higher horizontal hydraulic conductivity,
the marine sediments typically have low horizontal hydraulic
conductivities and very low vertical hydraulic conductivities;
these sediments were considered as one unit for this regional
investigation. Sediments beneath Great Bay, to the west,

are primarily fine-grained sand, silts, and clays. Sediments
beneath the Atlantic Ocean to the east were primarily coarse-
grained sands and gravels (Poppe and others, 2003).

Wetland deposits cover approximately 8 percent of the
study area (table 1). Large freshwater wetlands dominate the
central areas of the Seacoast and smaller wetlands cover many
low-lying areas (figs. 2 and 3). Coastal areas with prominent



saltwater wetlands include Portsmouth, Hampton, Seabrook,
and Salisbury. An investigation of a pond-dominated aquifer
system in central Massachusetts (Carlson and Lyford, 2005)
noted that wetland deposits likely have horizontal hydraulic
conductivities of tens of feet per day and vertical conductivi-
ties of less than 1 ft/d.

The amount of water stored in unconsolidated sediments
is typically about 25 to 50 percent per saturated volume for
gravel, sand, and silt, and as much as 70 percent for clay
(Freeze and Cherry, 1979). However, the water that can be
released from gravity drainage per unit decline in the water
table, termed specific yield, is less than the amount of water
stored. The total amount of water available in the overburden
aquifer is determined by the specific yield and thickness of the
deposit. The specific yields of till, fine- and coarse-grained
stratified drift are relatively similar, about 25 percent (Melvin
and others, 1992). The specific yields of silt and clay may be
on the order of 0.02 to 0.08 (DeSimone, 2004; Domenico and
Schwartz, 1997; Kontis and others, 2004). Wetland deposits
probably have specific yields greater than that of other surfi-
cial sediments; values of 0.4 have been reported (Domenico
and Schwartz, 1997; Morris and Johnson, 1967).

Bedrock

Bedrock in the study area consists of crystalline
metasedimentary and igneous rocks (Novotny, 1969) oriented
in a northeast-southwest-trending structural pattern (fig. 4).
Bedrock is exposed throughout the study area, particularly
along the northern coastal shorelines; however, outcrop area
makes up less than | percent of the study area (table 1). The
hydraulic conductivity of the bedrock aquifer, which depends
on the bedrock-fracture network and investigation scale,
spans several orders of magnitude. Regionally, the hydraulic
conductivity of the bedrock aquifer is defined by the small
fractures of the pervasive fracture network (Tiedeman and
others, 1997). The regional hydraulic conductivity estimated
for crystalline rock in northern New Hampshire ranges from
about 0.01 to 0.1 ft/d (Tiedeman and others, 1997).

The crystalline bedrock of the Seacoast effectively has
little primary porosity for release of water from storage.
Ground water is stored and transmitted in the secondary
porosity provided by fracturing in the rock. The secondary
porosity of crystalline bedrock aquifers due to fractures has
been reported as 0 to 10 percent (Freeze and Cherry, 1979;
Snow, 1968). However, very high well yields (more than
40 gal/min, appendix 2) and large ground-water supply
wells (appendix 5) in some areas of the Seacoast, such as
in the Kittery Formation and Rye Complex, indicate that
the secondary porosity is likely to be great. Daniel (1989)
found well yield and specific capacity to be correlated in
the crystalline bedrock in North Carolina. Moore and others
(2002) determined that the wells in the Rye Complex and
the Kittery and Eliot Formations in the Seacoast area have a
greater probability of a high yield compared to wells in the
other bedrock types in New Hampshire. Additional discussion
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of bedrock well yields in the study area is provided in
appendix 2.

Bedrock aquifers in the study area generally respond
to stresses as a confined aquifer where the amount of water
that can be released from the aquifer, from a decrease in
hydraulic head, is defined by cither a storage coefficient
(S,) or a specific storage (S, ). Specific storage is defined as
the storage coefficient divided by the aquifer thickness (b).!
Storage coefficients for fractured rock have been reported
from 2 x 10 to 6 x 10 (Randall and others, 1988; Tiedeman
and Hsieh, 2001; Paillet, 2001). Lyford and others (2003)
calculated a storage coefficient of 9 x 10 based on an aquifer
test at a high-yield supply well in the phyllite of the Eliot
Formation less than 10 mi south of the study area. Analysis
of earth-tide water-level fluctuations in the study area
(appendix 3) indicates a bedrock-aquifer porosity of about
0.02 percent and a specific storage (S ) of approximately
2 x 107, Nielsen (2002) estimated porosities of 0.08 to
1.4 percent and 0.1 to 0.7 percent for schist and granitic rocks,
based on geophysical analyses, in Bar Harbor, Maine.

Ground-Water Flow

Ground water flows toward water bodies from topo-
graphic highs to lows in the study area. The water table in
the study area is generally 10 to 20 ft below the land surface,
following the topography, except in wetlands and water bod-
ies, where the water table is at the land surface. The ground-
water system is recharged by precipitation at the land surface
and discharges to streams or to tidal water bodies. Recharge
is generally greatest in spring (March and April) and late fall
(November and December). During summer months (July
and August), evapotranspiration (ET) may cause the effective
recharge to be zero or negative.

Recharge

Seasonal and average annual recharge rates (table 2) were
estimated by Flynn and Tasker (2004) or calculated by Robert
Flynn (U.S. Geological Survey, written commun., 2005) for
watersheds of nearby stream-gaging stations (Keirstead and
others, 2004) and for subwatersheds in the study area
(fig. 2). Flynn and Tasker (2004) analyzed the historical
streamflow records of more than 50 streams statewide with
respect to climatic, topographic, land-cover, and surficial-
geologic variables, using the techniques of Rutledge (1993,
1998) to estimate seasonal and annual recharge by hydrograph
separation. Long-term average annual recharge at the
Oyster River station (USGS number 01073000), which is

! Storage in the bedrock aquifer derived from an aquifer hydraulic test
is commonly reported using the term storage coefficient (dimensionless)
because the thickness (b) of the bedrock aquifer is generally unknown. The
storage discussed in this report with respect to the ground-water-flow model is
specific storage (with units of I''), which is applied to a prescribed aquifer (or
layer) thickness.
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Table 2. Recharge estimates calculated for streams in southeastern New Hampshire and northern Massachusetts, and estimated for
selected watersheds in the Seacoast model area, southeastern New Hampshire.

[Areas of stratified drift from Flynn and Tasker (2004), based on areal coverages published earlier than the extents listed in table 1; mi?, square miles; in., inches;

—, not available]

] . brai Stratifiod Average Normalized
Stream ongth  area it M gy WMer  Spring' Summer - Fal
(years) (mi?) (percent) re(zi:;'ge rec!large n. n. . n.
(in.)

Mohawk Brook? 11 7.5 18.7 23.9 5.4 7.6 1.6 4.2
Opyster River? 50 12.1 19.5 20.7 5.9 7.6 2.8 4
Dudley Brook? 23 5.8 25 — — 3.9 52 1.4 24
Parker River, Mass.? 50 21.2 4 23.1 26.1 7.8 8.8 3.9 4.8
Mill Brook? Estimation 2.5 64 21.8 — 6.0 7.3 2.5 4.3
Winnicut River® Estimation 14.2 35 22.0 — 6.1 7.3 2.5 43
Berrys Brook? Estimation 5.4 36 22.2 — 6.1 7.3 2.5 44
Little River? Estimation 6.1 23 20.5 — 5.8 7.0 2.4 3.9
Taylor River® Estimation 8.4 7 20.1 — 5.8 7.1 2.5 3.8
Hampton Falls River? Estimation 3.6 10 22.2 — 6.3 7.5 2.4 43
Great Brook® Estimation 5.5 1 22.0 — 6.2 7.5 2.5 43

!Seasons as used by Flynn and Tasker (2004): Winter is January 1 through March 15; Spring is March 16 through May 31; Summer is June 1 through

October 31; and Fall is November 1 through December 31.

2Analysis of historical streamflow records from Flynn and Tasker (2004).

3Calculations based on watershed characteristics (Robert H. Flynn, U.S. Geological Survey, written commun., 2005).

approximately 5 mi northwest of the study area, was estimated
to be approximately 19 in/yr. The area of the Oyster River
watershed is approximately 12 mi?, and 7 percent of it is
covered by stratified drift. Estimated average annual recharge
in the Mohawk River watershed in Strafford, N.H., a 7.5 mi?
watershed consisting entirely of till-covered bedrock, is about
19 in/yr (Flynn and Tasker, 2004).

Recharge in the glaciated Northeast is commonly thought
to be a function of sediment type with higher recharge rates
attributed to coarse-grained sand and gravel and lower
rates attributed to fine-grained sediments and tills. Many
investigations in New England refer to a relation between
sediment type and recharge. Weiss and others (1982) present
a curve indicating increasing streamflow per square mile with
increasingly coarse-grained sediment in Connecticut. This
work may more appropriately indicate increased storage in
coarse-grained sediments and not necessarily an increased
amount of recharge. Recharge rates in till-covered areas and
areas covered by stratified drift were found to be similar by
recent investigations in Massachusetts (Bent, 1999), New
Hampshire and Vermont (Flynn and Tasker, 2004), and
Michigan (Hotschlag, 1997). Recharge rates in coarse-grained
sediments are not necessarily higher than in till, but a well
completed in coarse-grained sediments can capture water from
a larger area with less drawdown.

Long-term recharge trends were assessed by analyzing
monthly total recharge estimated by hydrograph separation
(RORA method) (Rutledge, 1998, 2000) of daily streamflows
at the Oyster River station between 1935 and 2003 (fig. 5).
The median monthly total recharge is less than 1 in. from June
to October, about 0.14 in. from July to September, and a high
of 4.6 in. in March. The median monthly recharge was 0.9 in.
(exceeded 50 percent of the time), whereas the mean monthly
recharge was 1.6 in. (exceeded 35 percent of the time). Hydro-
graph separation results in negative recharge during some
months, when there can be a net loss due to ET.

Monthly recharge was estimated for the continuous
streamflow-gaging stations in the study area (fig. 2) for the
period of investigation (fig. 6). Recharge estimated for the
Oyster River station was similar to that estimated for other
stations in the model area. Recharge varied monthly with the
amount of precipitation. Little or no recharge was estimated
for July and August of each year and for January 2004
(0.60-in. precipitation). Peaks were estimated for March 2003
and April 2004; however, monthly total recharge estimates
for March 2003 at the Oyster, Winnicut, and Hampton Falls
stations were not realistic in that they were greater than the
precipitation total for the month. Hydrograph-separation
techniques are not always appropriate at small time scales,
such as monthly intervals, and must be used with caution
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PRECIPITATION AND RECHARGE, IN INCHES
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EXPLANATION
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= Monthly precipitation
== |\]ean precipitation

== Average recharge as percent of
monthly precipitation

STREAMFLOW-GAGING-STATION DATA
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Oyster River
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—*— Berrys Brook

Figure 6. August 2002 to December 2004 monthly recharge estimated for Seacoast and Oyster River streamflow-gaging

stations and precipitation in New Hampshire.

(Rutledge, 2000). It was assumed that recharge is not greater
than 65 percent of precipitation for these months. Monthly
recharge was estimated to be a few percent of precipitation
in the summer months, about 30 to 50 percent in the fall, and
about 65 percent of precipitation in April.

Water Levels

Ground-water levels were measured at selected stratified-
drift, till, and bedrock monitoring wells in the study area
(fig. 7). Water levels also were available from Aquarion Water
Company (Raymond Talkington, Geosphere Environmental,
written commun., 2005) Golf Club of New England (Timothy
Warr, Exeter Environmental, written commun., 2005), and the

former Pease Air Force Base (Peter Forbes, U.S. Air Force,
written commun., 2004; William Pepe, Montgomery Watson
Herza, written commun., 2005). Historical water levels were
obtained from drilling completion reports and a waste-site
inventory of well information (GEOLOGS); both databases
were maintained by the NHGS (Frederick Chormann, New
Hampshire Geological Survey, written commun., 2004).

The longest water-level record within the model area was
provided by Aquarion Water Company in support of a NHDES
ground-water-withdrawal compliance program. Water levels
have been measured at an overburden (stratified-drift) and
bedrock-well pair since July 1997 (fig. 8). Water levels reach
their annual peaks in the spring between late March and early
May, and are low in the late fall and occasionally in the winter
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(A) Ground-water monitoring wells in the study area.
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Figure 8. Monthly ground-water levels at an overburden (SSW-249) and bedrock (SSW-248) well pair in Stratham,

New Hampshire. (Location of wells shown in figure 7)

during periods of low precipitation. The historical total ranges
in water levels in these wells, the difference between maxima
and minima, are about 12 ft in the bedrock and 15 ft in the
overburden aquifer. The typical annual range is about 8—10 ft
in either the stratified drift or bedrock, and therefore, water
levels generally vary to about 4 to 5 ft above or below median
values. The overburden- and bedrock-well hydrographs reflect
seasonal hydraulic gradients. During high water levels, the
overburden head is typically higher than the bedrock head, and
ground water is moving downward into the bedrock. During
periods of low recharge, the head in the overburden may be
similar to the bedrock head or below it, indicating that water
may have drained from the overburden aquifer. At nearby
long-term (1953-2004) monitoring well NH-LIW 1 in Lee,
N.H., less than 10 mi northwest of the study area, water levels
in a coarse-grained deltaic deposit situated above other depos-
its have followed a similar pattern but with about a 2-ft annual
water-level fluctuation (Keirstead and others, 2004, 2005).
Ground-water levels in 3 till and 3 bedrock wells were
collected continuously in the study area during the investiga-
tion (fig. 9). In general, water levels at the wells show simi-

lar rises and falls in response to precipitation events. Wells
completed in till (SSW-7, HEW-45, and GTW-156) show a
greater natural range in water-level fluctuations. Well SSW7
shows about a 13-ft range in water levels during the period of
investigation. A 10-ft range was observed in periodic measure-
ments made at SSW-7 in the mid-1950s (Bradley and
Peterson, 1962). It is interesting to note that a decline in water
level of more than 3 ft occurred from July 28 to August 4,
2004, and July 28 to August 5, 2005, when the well went

dry (not shown). These periods coincide with the high water
demands of the Stratham Fair, which was supplied by a
bedrock well less than 100 ft away from well SSW-7. The
hydrograph for well GTW-156 shows a smaller range in
water levels (about 8 ft) for a till well; however, it is near a
dam on the Winnicut River, and the water-table fluctuations
were likely to be somewhat damped by the pond formed by
the dam. The water-level fluctuation at till well HEW-45 also
is about 10 ft annually. A domestic bedrock well is less than
50 ft from HEW-45, but its use is relatively low and it likely
imposes a small stress on the overlying till aquifer. Historical
water levels measured at HEW-1, a dug till well approximately
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1,000 ft west of HEW-45, show a 20-ft range from December
1953 to December 1957 (Bradley and Peterson, 1962). This
well was used for domestic supply at the time, and it is likely
that during periods of greater depths to water on the hydro-
graph, the well was actually dry. Although till has a specific
yield similar to stratified drift (about 0.25 percent), till aqui-
fers have low hydraulic conductivity, cannot readily transmit
ground water to nearby drainage areas (or to sources of stress),
and show a greater water-level response to precipitation than
a coarse-grained aquifer. As observed at well SSW-7 (fig. 9),
saturated till deposits provide some storage of ground water
to underlying aquifers. Lyford and others (2003) found that a
till aquifer in Newbury, Mass., provided a source of water for
withdrawals in the underlying bedrock aquifer. Because of low
hydraulic conductivity in a till aquifer, the water stored in it is
only readily transmitted to nearby sources of stress.

The effects of residential development and associated
domestic water use on ground-water levels were observed
in some monitoring wells during the study period. Without
anthropogenic stresses, such as nearby withdrawals, the annual
range in bedrock ground-water levels is typically less than
3 ft. For example, the range in the water levels at two bedrock
wells monitored in the study area—HEW-44, a high-yield
(50 gal/min) bedrock well, and GTW-141, a moderate-yield
(5 gal/min) bedrock well—were slightly less than 3 ft dur-
ing the period of study. Near the end of the study (2005), a
residential development was constructed within 500 ft of
bedrock monitoring well HEW-44. The installation of domes-
tic wells by rotary drilling with a yield test upon completion
caused anomalous rapid water-level declines in HEW-44 that
corresponded with the timing of well installations. During this
same period, the range in water levels at USGS monitoring
well NH-PBW-148 (about 35 mi to the west) was about 2.5 ft.
Hydrographs for the well pair SSW-248 and SSW-249, located
in a rural neighborhood in Stratham, N.H. (fig. 8) (Raymond
Talkington, Geosphere, Inc., written commun., 2005), showed
a maximum range of about 16 ft, and a typical annual range
of about 8-10 ft, between 1997 and 2004. The annual range
in water levels at the Stratham well pair may be influenced
by domestic water use at nearby wells. The mean-daily water
level in well GTW-157, an unused bedrock well in a neigh-
borhood with nearby domestic wells, showed a range of over
12 ft. Instantaneous water-level measurements at GTW-157
indicated an even greater range in water-level changes
likely caused by nearby well interference. The peaks of the
GTW-157 hydrograph, which does not show the instantaneous
responses, show an annual water-level range of about 6 ft.
The rapid response to precipitation indicates that the bedrock
aquifer receives rapid recharge because it is in good hydraulic
connection with surficial deposits. A pronounced drawdown
pattern (fig. 10) was measured at a well pair consisting of
an active domestic bedrock supply well and unused over-
burden (till) well (Timothy Warr, written commun., 2006).
Drawdowns in the bedrock well were commonly between
5 and 15 ft, but the water level recovered daily and showed
seasonal trends even with daily use of the well. Water levels
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from the nearby till well (fig. 10) showed seasonal trends and
the effects of the domestic withdrawals. Head differences
observed at the wells during stressed periods, summer and fall,
indicate that the overburden aquifer is likely supplying water
to the underlying bedrock in the early summer (indicated by
overburden heads above bedrock heads) and may become
depleted late in the summer or early fall (indicated by overbur-
den heads below bedrock heads). During less-stressed periods
of the year, with higher water levels, heads in the aquifers
were generally nearly equal. The coincidence between the flat
part of the till water-level record in September 2003 and the
maximum water depth indicates that the till well was dry.

The long-term monthly record for LIW-1, a dug well
in stratified drift 8 mi west of the study area in Lee, N.H.
(Keirstead and others, 2005), indicates that the water level
in this well rose and fell in the same manner as the water
levels in the Stratham well pair. The range in water levels at
LIW-1, however, was less than 1 ft annually because of the
coarse-grained and well-drained nature of the aquifer. Because
the aquifer can drain rapidly through good connections to
nearby sinks (drainages), the head in LIW-1 fluctuates little
with recharge. If there were no other stresses, the head in
the aquifer would seek the altitude of the sink, the nearby
streams. In contrast, the water level in the Stratham surficial
aquifer closely paralleled the bedrock water level (correlation
coefficient of 0.97). The stratified drift mapped at this location
is not well connected to drainages, and the natural drainage of
ground water in this aquifer system is through the adjacent till
and bedrock aquifers.

Water levels measured periodically since 1994 in bedrock
monitoring wells near a municipal well field in northwest
Seabrook (Douglass DeNatalie, Earth Tech, written com-
mun., 2005) show that water levels declined from approxi-
mately 1996 until about 2002 (fig. 11) as a result of increased
withdrawals combined with several years of low precipita-
tion (appendix 1). Ground-water levels rose with increased
precipitation at the end of a drought (2002) and possibly also
because of changes in withdrawal amounts or locations. Water
levels in well SGW-26 in the stratified-drift aquifer showed
some withdrawal-related changes of more than 30 ft. Although
there were too few observations to show seasonal trends, water
levels in the surficial aquifer usually recovered to high levels
during non-summer seasons and other low-stress periods.

In general, water levels in the surficial and bedrock aquifers
recovered rapidly—within a few months—with reduced with-
drawals and increased precipitation.

Surface Water

The study area consists of many small watersheds that
drain directly to tidal water bodies (fig. 2). The Winnicut River
watershed, in the center of the study area, is the largest water-
shed (14.2 mi?), followed by the Taylor River (8.41 mi?) and
Hampton Falls River (6.7 mi®) watersheds (table 1). Because
of the low relief (generally less than 60 ft) and extensive
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wetlands in the center of the study area, the drainage divide
between some adjacent watersheds, such as the Winnicut and
Taylor River watersheds, is difficult to distinguish. Stream-
flow was measured at 6 continuous streamflow-gaging stations
selected to represent the larger watersheds in the study area,
and miscellaneous streamflow measurements were collected at
17 partial record stations (fig. 2, table 3). Few locations pro-
vide suitable hydraulic conditions for stream gaging. The loca-
tions suitable for continuous streamflow gaging, particularly
Berry’s Brook and Little River, also were favored by beavers
and were difficult to keep clear of beaver dams and debris.

Average flow in the Winnicut River for water years
2002-2004 is 22.3 ft¥/s or 1.65 ft*/s/mi%. The 90-percent flow
duration for this period was 2.2 ft*/s. The lowest daily mean
flow was 0.30 ft*/s and occurred on 9 days in August and
September 2002 (Keirstead and others, 2004). Mean annual
and monthly (table 3) base flows at streamflow-gaging sta-
tions in the study area were calculated by using the automated
hydrograph-separation method PART (Rutledge, 1993, 1998).
Annual base flows calculated for 1934 to the present for the
long-term Oyster River streamflow-gaging station are shown
for comparison. An investigation of streamflows in Maine
indicated a trend of earlier spring peak flows during the 20th
century over the period of record but generally no change in
total annual flow (Dudley and Hodgkins, 2002). Figure 12
shows monthly mean base flows calculated for 2002—04 for
the study area.

There are few freshwater bodies in the model area, and
most are small ponds. An impoundment near the outlet of one
water body, Dearborn Brook in Exeter (fig. 2), forms a small
(about 0.01-mi?) surface-water reservoir. Wetlands (fig. 3)
extend throughout the center of the model area, particularly
in the Winnicut, Taylor, Pickering, Packer, and Berry’s River
watersheds. Large ponds and wetlands represent a surface
expression of the regional water table. Where withdrawals
in a well field lowered the water table, some wetlands were
perched above the water table (Geosphere, 2003). Small
ponds and wetlands, representing a more localized drainage
feature, were more likely to be perched above the water
table than more extensive wetlands or water bodies. For
example, streamflow measurements at Nilus Brook and an
unnamed tributary to Little River in Hampton in October 2004
(table 3) likely represent drainage from a seasonally perched
pond and wetland.

Ground-Water-Flow Simulation

Ground-water flow was simulated by a numerical
ground-water-flow model to assess regional ground-water
availability by accounting for, and providing a means to quan-
tify, all components of flow in the aquifer system. To assess
the components of the ground-water-flow system, models
were developed and calibrated under steady-state seasonal
low-flow and transient monthly conditions. The development

and calibration of these two models are discussed in the report
sections Steady-State Model and Transient Model. Two model
scenarios are then discussed, in the report sections indicated,
to simulate current and future projected water use (Potential
Future Water Use) and current and future projected climate
change conditions (Potential Climate Change).

A summary of the models developed for calibration,
parameter estimation, and various simulations is provided
in table 4. The models include (1) simulation of current and
future water use by a steady-state model representing seasonal
low-flow conditions; (2) simulation of current and future
climate change by a transient model representing estimated
future monthly conditions for a 2-year cycle; and (3) simula-
tion of historical ground-water flow and residence time by a
transient model representing annual average conditions over a
55-year period.

The three-dimensional finite-difference ground-water
flow program MODFLOW-2000 (Harbaugh and others, 2000)
was used to simulate ground-water flow. By this technique, the
ground-water-flow system is subdivided into a grid consisting
of layers of cells with unique hydrologic properties. Physical
processes in the natural system, such as recharge, streamflows,
and wells, were represented numerically as boundary condi-
tions in the model. Parameters (Hill and others, 2000) were
used to describe recharge and the hydraulic conductivity,
or a multiplier of conductivity, of specific geologic units or
zones of similar surficial materials; riverbed conductivity; and
constant-head cells.

Model Design and Spatial Discretization

The regional ground-water-flow system is one of thin
and discontinuous surficial aquifers underlain by a fractured
crystalline-bedrock aquifer. Figure 13 provides a conceptual
and numerical representation of the ground-water flow system
of the study area.

The lateral boundaries of the model were selected to
coincide with major hydrologic features, primarily tidal water
bodies, of the Seacoast (figs. 1, 2). The area of the model
domain was approximately 190 mi? (160 mi? in New
Hampshire and 30 mi? in Massachusetts) and was surrounded
by a no-flow boundary. Model grid-cell sizes were determined
by trial and error. Determining the optimum grid-cell size
required evaluating the resolution of the simulated hydrologic
features with respect to the time required for data-set develop-
ment and simulation computation time, both which increase
dramatically with small cell size. The model was simulated
with a grid-cell size of 200 by 200 ft. Smaller grid spacing
was tested, primarily to provide finer stream discretization but
resulted in greatly increased computer storage and simulation
time with little improvement in the regional simulation.

The model is subdivided vertically into five layers
(fig. 13). Model grid-cell elevations were interpreted with
respect to 30-meter Digital Elevation Model (DEM) point ele-
vations. The upper surface of the model (layer 1) corresponds
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Figure 13. Schematic cross section of the ground-water-flow model for the Seacoast model area, southeastern New Hampshire.



to the nearest DEM 30-meter grid-cell elevation. All other
elevations used in the model were calculated from the surface
elevation interpreted for each individual grid cell. Layer thick-
nesses and extent were chosen to represent both hydrogeologic
characteristics and numerical considerations. Layers 1 and

2 represent primarily surficial deposits or water bodies. The
thickness of layer 1 in marine areas was equal to the surface-
water depth provided by bathymetric data for areas including
Great Bay, Piscataqua River, and the Atlantic Ocean. On land,
the thickness of layer 1 was determined from contours repre-
senting thickness of the stratified-drift aquifer (Moore, 1990;
Stekl and Flanagan, 1992), bedrock well casing lengths and
boring data, and thicknesses inferred from surficial mapping.
Model layers 3 and 4 were each 300 ft thick, following the
base of layer 2, and model layer 5 was 400 ft thick following
the base of layer 4 (fig. 13).

The conceptual model of the ground-water-flow system
is one of a fractured crystalline-bedrock aquifer with a range
of regional hydraulic conductivities and an overlying layer of
thin unconsolidated glacial sediments and discontinuous strati-
fied-drift aquifers. The stratified-drift aquifers cover about
24 percent of the total model area (table 1); however, the high-
yielding stratified-drift aquifers cover much smaller areas. A
continuum approach, in which the fractured bedrock net-
work is represented as an equivalent porous medium (Hsieh,
2002), was used in the simulation of ground-water flow. For
this purpose, bulk hydraulic properties are usually sufficient
to describe regional ground-water recharge, discharge, and
storage (Shapiro, 2002). Bulk hydraulic properties in this
case refer to aquifer properties such as hydraulic conductiv-
ity, which can be assumed to be constant at a particular scale
for a specific geologic material or unit. For example, in the
Seacoast model area, a specific gneiss generally has a greater
hydraulic conductivity, as indicated by well yields, than that
of a nearby schist. Despite local variations in the hydraulic
conductivity of both rocks, the bulk hydraulic conductivity of
the gneiss is greater than that of the schist at the regional scale.
Through the use of the continuum approach, regional varia-
tions in hydraulic conductivity and other hydraulic properties
were incorporated into the model to account for heterogeneity
in aquifer properties at the regional scale.

The ground-water models developed herein were
designed to represent ground-water flow in the regional
aquifer system. Although the models incorporate specific large
ground-water withdrawals in the surficial and bedrock aqui-
fers, they cannot be used to accurately characterize ground-
water levels near withdrawal wells or specific ground-water
flow paths at the cell level of precision. The models can be
used to calculate regional- or subwatershed-level ground-water
balances, regional changes in ground-water levels, and general
flowpaths. Data sets for the Seacoast ground-water-flow mod-
els are available on the DVD at the back of the report and at
http://pubs.usgs.gov/sir/2008/5222/.

Ground-Water-Flow Simulation 29

Simulated Recharge, Discharge, and Storage

The regional ground-water-flow models (described above
and in appendixes 5 and 7) were used to assess ground-water
availability in the Seacoast area. Model analyses indicate that
the Seacoast aquifer system is a transient flow system with
seasonal ground-water flow variations. Seasonal high flows
are in March and April, and low flows occur from July through
October. The fall is generally a more stable period and can be
termed a pseudo-steady state; fluxes are lower, and inflows
and outflows are approximately balanced. Figure 14 provides
a simulated-head surface representing a seasonal low-flow
condition in October 2004.

The transient ground-water-flow model was used to
assess average monthly and specific monthly recharge rates
for 2003 and 2004 (appendix 7). The average annual recharge
during the study period (22 in/yr) was approximately
51 percent of the annual precipitation (table 7—1). The
average monthly rate of recharge between 2000 and 2004
ranged from 5.5 in/mo in March to net recharge rates of zero
in July and about 0.3 in/mo in August and September (fig. 15).
Average recharge increases to about 2 in/mo in late fall and
early winter and declines to about 1.5 in/mo in late winter.

In general, about 50 percent of the annual recharge occurs
in the spring and 20 percent occurs in the late fall and early
winter. Although monthly precipitation is typically between
3 and 5 in/mo (fig. 6), monthly recharge can be greater
than the actual precipitation during snowmelt periods, and
net recharge (recharge minus ET) can be negative during
the summer.

Streamflows in the Seacoast aquifer system originate
from recharge within the study area. Ground water in the
bedrock aquifer system may follow a short or long flow path
because of factors such as position in the flow system and
local stresses. In general, ground water in the bedrock aquifer
near the coastal boundary has followed a relatively long flow
path from its source of recharge, compared to other areas, and
may have recharged the aquifer over 30 years ago. With the
addition of withdrawal stresses, the natural flow system would
be altered and ground-water-flow paths may become shorter
and the withdrawn water younger. Some of the ground water
contributing to a withdrawal well is generally a mix with short
and long residence times. The water may have traveled a rela-
tively short distance, on the order of hundreds of feet, and may
have recharged the aquifer within months to a few years. The
withdrawal also may include water that has traveled farther
through the flow system and has a residence time of decades.

The amount of ground water that could flow into the
Seacoast area from inland areas to the west (from outside
the model area) is likely to be insignificant. Some ground
water may flow thousands of feet deep in the bedrock aquifer,
following regional paths, in accordance with flow concepts
described by Toth (1963). The nature of the bedrock aquifer
itself and of the hydrologic boundaries between the Seacoast
model area and the inland areas to the west of Great Bay
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(a high equivalent freshwater-head boundary), the shorelines
and the Squamscott River (low heads at points of discharge),
and the low hydraulic conductivities of the bedrock aquifers
prevent regional ground-water inflows from the inland areas
from being a significant component of the Seacoast water
balance. Such flow, if present, would consist of slow-moving
ground water in low-yielding deep bedrock areas and would
not be a sustainable supply source.

Storage

Ground water is stored in the Seacoast area in the pore
space of unconsolidated overburden sediments as primary
porosity and in fractures in the crystalline bedrock as
secondary porosity. The total volume of water stored in the
Seacoast aquifer system was estimated on the basis of model-
cell thicknesses and assumed bulk hydraulic properties. See
the Hydraulic Properties section of the report for a discussion
of these properties. Approximately 560,000 Mgal may be
stored in the Seacoast model area aquifer system (table 5),
although storage may range from 260,000 to 1,600,000 Mgal
for the sediment or rock porosities assumed to be present.
The estimated ranges for water storage in the unconsolidated
sediments in table SA were calculated by adding or subtracting
10 percent from the assumed primary porosities or specific
yields. The estimated range in water stored in the bedrock
aquifers were calculated by varying the secondary porosity
one order of magnitude lower, and one-half an order of
magnitude greater, than the assumed porosities (table 5B).

Estimates of the total volumes of water stored in the
aquifer system (table 5) are useful for comparing the relative
storage volumes for different geohydrologic zones and their
contribution to the entire Seacoast aquifer system. Noteworthy
is the amount of water stored in unconsolidated till and
fine-grained sediments; these sediments are generally not
considered primary aquifers; however, they do contribute
water directly to the underlying bedrock aquifer. In the model
area (fig. 3), these sediments store more than twice as much
water as the coarse-grained unconsolidated-sediments
(table 5A). The bedrock aquifers associated with model
zones Rx1 (Rye Complex and Breakfast Hill granite of the
Rye Complex) and Rx2 (Kittery Formation) (fig. 4) are
estimated to have the most water in storage, about 77,000 to
99,000 Mgal, respectively, as a result of their areal extent
(fig. 4) and assumed bulk secondary porosities (table 5B).
Model bedrock zone Rx3 (the Eliot and Berwick Formations)
was estimated to have nearly as much water in storage
(58,000 Mgal) as each of the model bedrock zones Rx1 and
Rx2. Model bedrock zone Rx4, representing the Newburyport
Complex and Exeter Diorite, was estimated to have less water
in storage as a result of its smaller areal extent (fig. 4) and
lower assumed secondary porosity than the other zones
(table 5B).

Theoretical volumes of water that could be released
by the Seacoast area aquifer system also were estimated
(table 5). Total volumes and the amounts that could be

released by 3- and 10-foot water-level (head) declines are
provided. The range in water volumes that could be released
from the unconsolidated aquifers was estimated by adding
and subtracting 10 percent from the assumed specific yield.
The range in water volumes that could be released from the
bedrock aquifer was calculated by varying the specific storage
by plus and minus one order of magnitude. Many variables
used in the transient flow models to generate the estimates in
table 5 were approximated at a regional scale; therefore, the
volumes of water stored should be considered gross estimates.

Numerous qualifications and limitations are associated
with the storage estimates in table 5. For instance, the second-
ary porosity and specific storage of bedrock aquifers are not
well known, and the specific storage, in particular, may differ
from estimates by orders of magnitude. Table 5 indicates that a
considerable volume of water is stored in the bedrock aquifer.
However, a much smaller volume of water can theoretically
be released from the aquifer system and most of the water
released would be from overburden aquifers. The volume of
water that can be released from the bulk storage of an aqui-
fer is limited by the hydraulic properties of the aquifer. The
volume of water that could potentially be released, or drained,
from the unconfined surficial aquifer is limited by specific
yield, which is less than the porosity of the aquifer. At least
10 percent of the bulk water in the surficial aquifers will be
retained in the pore spaces after water drainage or withdrawal.
Under confined conditions in the bedrock aquifers, the amount
of water that can be released, determined by the specific stor-
age, is orders of magnitude less than the bulk water estimated
by the secondary porosity (table 5B). Where the bedrock aqui-
fer actually dewaters and becomes unconfined (not calculated
in table 5), the water released by drainage would be the water
stored in the secondary porosity, or less than 1 percent of the
volume of the rock drained.

Additional limitations include the well efficiencies and
effectiveness and spatial constraints of well placement and
aquifer setting. For example, releasing the total volume of
water stored in an aquifer would require lowering the water
level to the base of the aquifer. This would not be realistic;
closely-spaced wells, tens to hundreds of feet apart, would
have to be installed throughout the entire aquifer area. An
estimated 85,000 Mgal of water would be released from
storage by a 10-ft decline in the water table (table 5A,B). Such
a large decline, however, is also not realistic for the entire
model area because of limitations on well placement. In highly
developed, restricted, or peripheral areas of the flow system,
installing as many wells as would be needed to capture water
is not practical. Greater head declines (tens to hundreds of
feet) are known to occur locally in response to ground-water
withdrawals. Such large head declines, however, generally do
not propagate far in the bedrock aquifer because of the low
bulk hydraulic conductivities.

A more realistic scenario was based on a smaller, 3-ft
head decline, which may occur over the course of a year in
most of the study area. Given this condition, it was estimated
that relatively little water would be released from the bedrock
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aquifer (0.11 Mgal), but a much greater amount would be
released from the overburden sediments (25,700 Mgal).
Because the bedrock aquifer and the overlying unconsolidated
aquifers in the study area are hydraulically well connected, the
water released from the overburden aquifers would contribute
to the water available from the bedrock aquifer. Thus,
sediments that generally are not considered primary aquifers,
such as till or fine-grained sediments, have an important
role in contributing a considerable amount of water to the
underlying bedrock aquifer.

The 25,700 Mgal associated with a 3-ft head decline
also corresponds to the amount of water released annually
due to seasonal drainage. This water is not available for use
but is released from the aquifer system to streams and other
water bodies such as tidal estuaries. On the basis of simulated
recharge rate of 22 in/yr (appendix 7, Transient Model), an
estimated 35,000 Mgal/yr moves through the entire aquifer
system. The transient-model analysis indicates that a larger
volume of water moves through the bedrock aquifer on a daily
basis; this larger volume highlights the importance of recharge
and hydraulic connectivity in the bedrock-aquifer system.
Both the bulk water in the aquifer system and the water mov-
ing through the system are about an order of magnitude larger
than the approximate 3,800 Mgal/yr currently being extracted.
In addition, the amount of water available for use at a location
depends on many local factors, including the amount of water
that can physically be extracted without exceeding drawdown
limitations at the well and the ability for water to flow to a
supply well; these factors are governed by the hydraulic prop-
erties of the aquifer. Finally, where water can be extracted,
the resultant stress on the aquifer system must be evaluated
with respect to declines in ground-water levels elsewhere and
discharges to streams or other water bodies.

Future Water Availability

In the evaluation of future water availability, two fac-
tors were of primary concern: increased use of water associ-
ated with projected population growth, and potential changes
in precipitation and ET that may be associated with climate
change. The future population growth in the Seacoast area
has been projected by the Rockingham Planning Commission
(RPC) for the years 2017 and 2025 (Tom Falk, Rockingham
Planning Commission, written commun., 2006), whereas the
Union of Concerned Scientists has forecast climate change
globally, including New Hampshire (Ekwurzel, 2006).
Detailed coefficients for water use and projected future water
use, based on population projections for Rockingham County,
N.H., have been developed by Horn and others (2007) for the
study area. Increases in future water demand in the model area
of approximately 20 and 33 percent have been projected for
2017 and 2025, respectively, and were used in this investiga-
tion as the basis for future simulated water demands.

Along with increasing water use, potential climate change
may affect future water availability. An objective of the study
was to assess the effect of adverse climate conditions on the
hydrology of the Seacoast area. Discussion of climate change
within this century includes projections of increasing tempera-
tures and changing precipitation patterns; some researchers
indicate that climate changes are currently occurring (Hayhoe
and others, 2006; Hodgkins and others, 2003, 2005; Hodgkins
and Dudley, 2006; Huntington and others, 2004). A similar
ground-water-flow simulation was conducted by Scibek and
Allen (2006) to assess the effect of climate change on ground
water in British Columbia, Canada. The Intergovernmental
Panel on Climate Change (IGPCC) forecasts that the pro-
jected increasing temperature in the northern United States
will lead to earlier spring snowmelts and patterns of reduced
summer runoff (Intergovernmental Panel on Climate Change,
2001). Increases in temperature and changes in ET and
precipitation patterns in New England presented by Hayhoe
and others (2006) were interpolated and used as a basis for
climate change in this investigation. The effects of increasing
future water use and potential climate changes on the Sea-
coast ground-water resources were evaluated with respect to
changes in base flows and ground-water heads.

Potential Future Water Use

A steady-state ground-water-flow model, described above
and in appendix E, was used as the basis for calculating the
effect of future water demands and uses on the water balance
in the study area. The steady-state model represents a seasonal
low-flow condition (October 2004) to provide an analysis of
water demand during critical periods of low water availability.
During high-flow periods, seasonal water demands generally
are less critical for human or biotic needs. Projected water
demands were based on the RPC’s Transportation Analysis
Zone (TAZ) regional growth model and water-use coefficients
developed by the Seacoast water-use investigation (Horn and
others, 2007). Projected water-use demands were calculated
for the years 2017 and 2025 for TAZ areas. The TAZ areas are
subdivisions of town areas and were larger than the census
block areas used in model calibration (appendix 5) but TAZ
area water-use projections were distributed in a consistent
manner. The future demands (2017 and 2025) were compared
to ground-water flow and water-use simulations based on
2003 TAZ data to provide current and future simulations with
consistent water-use and planning methodology. Because
of differences in population-projection zones used in the
future water-use analysis, the water-use compilation used in
the future water-use scenarios is slightly different from the
water-use compilation used in the monthly transient model
calibration (discussed in detail in appendix 7). Although
the water-use compilation used in the transient model is
more precise for current (2003—04) water uses, a base
scenario calculated on the basis of generalized 2004 water-
use information, but in the same manner as the scenarios of



future water uses, was used to provide a consistent water-use
compilation for simulation comparisons.

The distribution of current and future withdrawals and
returns was determined on the basis of existing large ground-
water withdrawals, water and sewer distribution systems,
wetlands, and protected areas. Rates of existing registered
withdrawals were increased to projected withdrawal rates by
the percentage of change calculated for the TAZ projections
for 2003 to 2017 and 2003 to 2025. Areas currently supplied
by water sources external to the model area were assumed to
continue to be externally supplied and were not included in
the areas for which withdrawals were simulated. The per-
centages of change in the current and future TAZ projected
withdrawals were assigned to the wells that supply areas
that have water-distribution systems. In the model, existing
overburden or bedrock wells were represented by simulated
wells in model layers 1 or 3. The changes in TAZ withdrawals
for areas served by water-distribution systems were compared
to determine the relative changes in withdrawals over time.
Current (2004) total withdrawals, registered and distributed, in
the model area were approximately 10 Mgal/d. Factors of 1.20
and 1.33 were applied to withdrawal rates at existing water
system withdrawal wells to simulate 2017 and 2025 withdraw-
als, respectively. In areas without water-distribution systems,
current and future withdrawals were distributed over simulated
withdrawal areas (appendix 5, fig.5-5A) according to the
percentage of change in water use in the TAZ areas.

Estimated withdrawals for some areas could be greater
than what could probably be obtained from the surficial or
bedrock aquifer at that location. For example, obtaining a high
yield from a bedrock well requires locating fracture zones that
intersect sufficient fractures to access ground water stored in
the regional aquifer system. Such fracture zones may not exist
or they may not yet have been identified. This study did not
assess the locations of potential fracture zones or supply wells.
Evaluation of the potential yield of an individual well can only
be done with site-specific investigations. This study evaluated
the potential hydrologic impacts of such withdrawals within
the regional aquifer.

Distributed withdrawals (aggregated non-registered uses)
were simulated using the Flow and Head Boundary (FHB)
package (Leake and Lilly, 1997) by TAZ area. Return flows
were distributed in areas not served by an external water sup-
ply and not served by an existing sewer system. Returns were
estimated to be 85 percent (assuming a 15-percent loss) of the
total water used (Horn and others, 2007) and were distributed
over simulated return areas (appendix 5, fig.5-5) according
to the percentage of change in water use in the TAZ areas.
Returns were simulated using the FHB package as a source in
model layer 2.

The effects of increased water use include increased
consumptive use and water transfers. Because treated sewer
returns in the Seacoast model area are water transfers that
are discharged to tidal water bodies, these transfers represent
a loss of water from the hydrologic system. In some areas,
supplied water is returned to leach fields and may result in a
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water input to the local hydrologic system. In the Seacoast
aquifer system, almost all recharge enters the aquifer system
through surficial sediments. Impervious surfaces cover about
7.5 percent of the larger Seacoast region (Justice and Rubin,
2005). Precipitation on bedrock and impervious surfaces
generally flows to nearby surficial sediments. Precipitation on
impervious surfaces that drain to a sewer system is transferred
to another area in the aquifer or out of the area through a
sewer, representing a loss of potential recharge; thus, recharge
at an impervious surface is effectively zero. If the impervious
surface does not drain to a sewer system or stream network but
drains to surficial sediments, there is no change in recharge
from the impervious surface. This was found to be the case for
a 20-mi’ watershed in Maine where impervious surfaces dou-
bled (to 3.5 percent) over 35 years but little statistical change
was detected in streamflow peaks or recessions (Dudley and
others, 2001). Changes in base flow caused by sewering asso-
ciated with urbanization are well documented for other areas
(Simmons and Reynolds, 1982; Spinello and Simmons, 1992).
To assess the potential effect of the loss of return flows due to
sewering, a second set of simulations was conducted in which
the entire model area was assumed to be fully sewered and
withdrawals were not returned to the aquifer.

Calculated water balances (recharge, outflows, and
consumptive use) with respect to increased future water use
are presented in figure 16 for the model area. For the Sea-
coast hydrologic system, future water-use scenarios projected
decreases in fresh ground-water discharge to tidal water bodies
of approximately 1 and 2 percent and decreased base flows of
5 and 7 percent for 2017 and 2025, respectively (fig. 16). With
a fully sewered scenario, projected decreases in fresh ground-
water discharge to tidal water bodies were approximately 3
and 5 percent and decreased base flows of 9 and 13 percent for
2017 and 2025, respectively. The reduced discharges effec-
tively lengthen the low-flow periods in the annual flow cycle.

Changes in ground-water heads differed by watershed
and were larger in areas of greater demand and use (fig. 17).
Regional changes in ground-water levels were subtle but were
greatest near large ground-water withdrawals with increas-
ing demands and in developing rural areas (fig. 17). In some
areas of the model, simulated head contours moved inland
with increased water use, particularly in areas with increased
use and shallow head gradients (areas with less topographic
relief). In addition, larger ground-water withdrawals in the
system were typically in areas with less relief. Reduced
freshwater discharge to tidal areas and lower heads in lowly-
ing coastal areas could cause the interface between fresh and
saline ground water to move inland.

Potential Climate Change

Potential changes in ground-water conditions caused
by climate change were simulated for a 2025 climate-change
scenario. Interpolation of climate-change conditions projected
for the end of this century to near-term (2017) conditions
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WATER USE, IN MILLION GALLONS PER DAY
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2017

EXPLANATION
[ Existing scenarios

- Ground-water discharge
to tidal areas

- Ground-water discharge
to base flow

Consumptive water use
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- Ground-water discharge
to tidal areas

Ground-water discharge
to base flow

Consumptive water use

2025

Figure 16. Simulated current (2004) and future (2017 and 2025) ground-water discharge and consumptive use for the Seacoast

model area, southeastern New Hampshire.

would not be realistic. Potential climate changes may affect
both the total annual recharge to the Seacoast hydrologic
system and the timing of recharge during the year; therefore, a
transient monthly ground-water-flow simulation was selected.
All model parameters, with the exception of net recharge,
were the same as those used for the transient monthly model.
Although water demand for the year 2025 is projected to
increase, the simulated climate change for 2025 was evaluated
on the basis of the current (2003—-04) water-use conditions to
isolate the effects of only climate change without the influence
of other variables.

Hayhoe and others (2006) present meteorological,
hydrological, and biological observations of recent climate
change and estimates of potential future climate change for
the northeastern United States. Projected climate conditions of
interest to this investigation include changes in precipitation
amounts and patterns, and changes in ET rates and growing-
season lengths caused by rising temperatures. Hayhoe and
others (2006) indicate that, by the end of the century, average
precipitation is projected to increase 11 to 14 percent during
the winter and not to change or slightly decrease in the
summer. Slight changes in precipitation patterns in these
directions have been observed since 1970. Interpolating

projections given by Hayhoe and others (table 3, 2006) to
2025, winter precipitation may increase by 5 percent, but not
change during other seasons. Increasing winter precipitation
has also been accompanied by intensification of storms
(Huntington, 2006; Wake and Markholm, 2005). This trend
of intensification is projected to continue with an increase
in both high and low streamflow events (Hayhoe and others,
20006). In this investigation, analysis of monthly precipitation
totals and base flows indicates that periods with intense storms
increase the total precipitation but may not proportionately
increase the base flow and, therefore, the effective recharge.
Intense precipitation produces more runoff, and therefore,
less recharge relative to the amount of precipitation, than
recharge caused by less intense precipitation events. Thus,
intensified precipitation is likely to lead to little increase, or
even a decrease, in winter recharge. Increased temperatures
would increase ET in spring and fall and thus would lead to a
decrease in net recharge. Therefore, it is likely that the effect
of more intense future storms on recharge in the future would
be negative.

In addition to changing precipitation amounts and
patterns, two other likely effects of increasing temperatures
were of primary interest to the Seacoast water-availability
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study; runoff from spring snowmelt may occur earlier in
the winter, and a longer growing season may extend ET
earlier in the spring and later in the fall. Hodgkins and others
(2005) and Hodgkins and Dudley (2006) have noted a trend
of increasingly earlier spring runoff that is correlated with
increasing temperatures. During the current investigation, the
period of greatest recharge was March through April. If the
growing-season length described by Hayhoe and others (2006)
is interpolated to 2025, the growing season is predicted to
extend 1 to 2 weeks longer into October in 2025 than currently
(2004). ET is forecast to increase by 4 to 16 percent by the end
of the century with most change occurring in the spring and
summer (Hayhoe and others, 2006). For this investigation, it
was assumed that the growing season in 2025 will begin two
weeks earlier than present (2004).

Figure 18 presents effective recharge (recharge minus
ET) estimated for average monthly 2000-04 conditions
(fig. 15) and recharge changes used in the ground-water-flow
simulations for three likely future climate scenarios based on
interpretation of future climate predictions by Hayhoe and
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others (2006). All future (2025) scenarios incorporated the
effect of increasing temperatures on the Seacoast hydrologic
system by simulating an earlier spring snowmelt and a
longer ET season. In the first scenario, winter precipitation
and the peak spring recharge were increased by 5 percent,
and the effective recharge was calculated on the basis of
current monthly precipitation-to-recharge ratios. The second
scenario simulated no change in the winter-precipitation
and peak-recharge rates. The third scenario simulated a
S-percent decrease in winter recharge as may be caused by
intensification of precipitation and a reduction in effective
recharge. All scenarios were initiated by using heads from
the end of the 2000—04 scenario (end of December) as initial
boundary conditions. Two 2-year cycles of each future
scenario were run to remove the effects of the initial boundary
condition on the simulations.

Future scenarios were characterized by earlier
peak recharge in late winter and a longer low-recharge
period (fig. 18). The first future scenario, the base scenario,
simulates a spring snowmelt that is shifted from March and
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Figure 18. Simulated current (2004) and future (2025) effective recharge rates caused by three different climate-change
scenarios for the Seacoast model area, southeastern New Hampshire.



April into February and March. In addition, the estimated
average monthly recharge rates for May and June were shifted
one month earlier to April and May. Because of increased
temperature and an earlier onset of ET, the spring net recharge
would increase. In the current simulation, the net recharge
for July was slightly negative (-0.2 in.), representing fully
effective ET. On the basis of the assumption that the ET
rate in the future June may be between the current June and
July rates, the future June recharge rate was conservatively
simulated at half the current June rate, or 0.5 in. The October
recharge rate also was reduced by half to 0.4 in. to account
for an increased ET rate. The winter rates for December and
January (54 and 42 percent of precipitation, respectively)
were 5 percent higher than present rates at 2.2 and 2.5 in.,
respectively. The future simulation was also assessed with
winter recharge rates equal to present rates and with recharge
5 percent lower than present rates (fig. 18).

Base flows simulated for future climate conditions were
compared to current average monthly base flows. The Winni-
cut River, the largest watershed in the study area, was used for
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this comparison (fig. 19). Because there is little storage in the
Seacoast hydrologic system, changes in recharge result in sim-
ilar changes in base flows. The simulations indicated increases
in winter base flows but decreases in spring and summer base
flows. Similar to recharge (fig. 18), the peak base flow may
be slightly greater but will likely occur earlier in the winter.
An increase in the growing-season length (and consequently
increased ET) would result in reduced net recharge and
decreased water availability through the summer months.

The effects of changes in the simulated net recharge
(fig. 18) on regional ground-water heads in the bedrock aqui-
fer are shown in figure 20. The effects of the three scenarios
on heads were similar at the regional scale. October heads in
the bedrock aquifer were calculated for layer 3, for the second
climate-change scenario (no change in winter precipitation),
and were compared to the current average recharge scenario
(fig. 20). Simulated changes were greater than the changes
caused by increased water use. Apparent impacts were
observed in all areas of the model but were greatest in low
relief, high water-use areas.

3,600,000 [
3,100,000 Current (2004) recharge scenario
I Future 2025:
2,600,000 — = Winter recharge increased 5 percent

2,100,000
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— No change in winter recharge
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Figure 19. Simulated current (2004) and future (2025) base flows in the Winnicut River as a result of climate changes simulated

for the Seacoast model area, southeastern New Hampshire.
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Figure 20. Simulated current (2004) and future (2025) heads in layer 3 of the model of the bedrock aquifer under climate
changes simulated for the Seacoast model area, southeastern New Hampshire.



Another potential effect of climate change is sea-level
rise. Ward and Adams (2001) estimate a 2-ft rise in sea level
and inundation of low-lying areas of New Hampshire’s coast
by the year 2100. The implications of such a change on
Seacoast water resources would be two fold: (1) an increase
in the potential-head surface in tidal areas would cause the
fresh ground-water/saltwater interface to move inland, and
(2) additional areas of New Hampshire’s coastline would be
inundated with saltwater, causing a landward movement of
the interface closer to existing fresh ground-water aquifers.
The effects of these changes would take time, possibly years,
to propagate inland and achieve a new dynamic steady state
between the aquifers and sea water. The effects of sea-level
rise on ground-water resources were not simulated; however,
the effects would be greatest in low-lying areas adjacent to
the coast and less in interior areas of the Seacoast aquifer
system. Ground-water resources immediately adjacent to the
tidal areas, and primarily used for domestic supply, would be
affected first and most strongly by a sea-level rise.

Discussion

The October synoptic measurement conditions, and asso-
ciated steady-state simulation, were representative of seasonal
low-flow rates but would not represent long-term average
conditions; flow rates would be too low. The October steady-
state simulation is useful for simulation of a quasi-steady state,
seasonal low-flow condition such as that investigated with the
future water-use scenarios. Depending on the objective of the
model, an average of the monthly recharge rates or a specified
annual recharge rate, such as that derived from the transient
analysis, may be appropriate for use in steady-state simula-
tions representing a multiyear or long-term ground-water-flow
scenario as described in appendix 9. Anderson and Evans
(2007) similarly found that calibrating a steady-state model
to low-flow conditions may estimate recharge correctly for
that period but would underestimate annual recharge. Simi-
larly, they found that steady-state average-recharge conditions
can provide a representation of annual transient conditions.
The seasonal and annual recharge rates calculated by Flynn
and Tasker (2004) were comparable to those developed in
this investigation despite differences in time discretization
(seasonal compared to monthly) and analysis period (decades
compared to recent years). These considerations indicate
that regional simulations by the Seacoast ground-water-flow
model may be most appropriate at longer time scales, such as
seasonal or annual stress periods based on seasonal or annual
average rates rather than on monthly or shorter stress periods.
The spatial and temporal design of a simulation, however, also
depends on the purpose and objectives of the investigation.

Because it is largely bounded by tidal water bodies,
the Seacoast aquifer system may be affected by salt-water
intrusion. Salt-water intrusion is not believed to be widespread
but has been reported in some domestic supply wells adjacent
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to salt-water bodies. The orientation of the regional bedrock
structure (northeast/southwest, parallel to the coast), and the
estimated anisotropy of the hydraulic conductivity may limit
the potential for salt-water intrusion to the larger ground-
water supply wells for much of the Seacoast bedrock aquifer.
Lineaments oriented orthogonal to the regional structure
(Ferguson and others, 1997a, b; Johnson and others, 1999)
however, could represent important bedrock-fracture zones
and a potential pathway for salt-water intrusion. A linear
pattern orthogonal to the regional structure is apparent in the
orientation of the major rivers within and along the boundaries
of the study area; these rivers include the Merrimack and
Piscataqua Rivers, and sections of the Taylor River, Little
River, and Bailey Brook (fig. 1). Hypothesis tests were
conducted to assess the potential for salt-water intrusion in
large ground-water-withdrawal well fields between 1 and

2 mi from the coastline (Mack, 2004). Hypothetical orthogonal
fracture zones were simulated with a hydraulic conductivity
1,000 times the bulk-matrix conductivity and oriented from
the well fields directly to the ocean. Ground-water-flow
simulations indicated that salt-water intrusion near the
shoreline is unlikely to migrate into the interior areas of the
Seacoast model area under current climate conditions.

Sustained large ground-water withdrawals alter the
natural ground-water-flow system by causing younger water
to flow deeper into the aquifer, some of which is captured
by the well, than would occur at that same location if there
were little or no withdrawal. This probably occurs in the more
developed parts of the Seacoast model area. Large ground-
water withdrawals in the Seacoast aquifer are only possible in
areas of high transmissivity, such as in highly fractured areas
of the Kittery Formation and Rye Complex or in some fracture
zones in other bedrock units. Any ground-water withdrawal,
however, is balanced by a reduction in flow or a short-term
removal of water from storage elsewhere in the ground-
water-flow system. The reduction will affect ground-water
flow to a hydraulic boundary, such as a stream or other water
body, or another area of the aquifer. Highly fractured bedrock
generally has a greater storage capacity than less fractured,
lower-yielding bedrock and can, therefore, buffer the effect of
withdrawals to some extent. Projected future water uses for the
years 2017 and 2025 were simulated to result in reduced base
flows and freshwater discharges to tidal areas. Such changes
will be most apparent during low-flow periods, as assessed;
for example, some streams that have historically gone dry may
go dry for longer periods of the year. If future development
scenarios include additional consumptive water uses, such as
regional sewering that does not return water to the aquifer, the
combined effect may result in further decreases in base flows
and tidal discharges.

The projections of Hayhoe and others (2006) were
approximately interpolated in this investigation to provide
near-term (2025) potential future climate conditions for the
Seacoast ground-water-availability assessment. Potential
climate changes include higher temperatures, longer growing
seasons, increased ET, and precipitation changes. Although the
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climate-change interpolations used in the present investigation
were speculative, recent climate-change research indicates that
increasing temperatures are highly likely during this century
(Hayhoe and others, 2006). Rising temperatures will result in
reduced annual recharge caused by a longer ET period during
the year. Temperature increases, however, also may result in
less of the winter precipitation stored in the annual snowpack
and less water released during the snowmelt recharge period in
March and April. This period may shift to a time earlier in the
year and farther from the period of peak summer demand. The
climate forecasts (Hayhoe and others, 2006) include a poten-
tial slight increase in winter precipitation and more frequent
occurrences of intense precipitation events. Slight (5 percent)
increases in winter precipitation had little effect on the annual
water balance. More frequent and intense precipitation events
are expected to decrease the potential for long-term droughts
(Hayhoe and others, 2006); however, increasingly intense
storms may result in an effective net decrease in recharge
because of increased surface runoff as has been observed by
this investigation.

Projected future increases in water use would affect the
hydrologic system by decreasing base flows, tidal discharges,
and ground-water levels. Based on projected estimates of
growth (Horn and others, 2007), most of these effects will
most likely occur by the year 2017. The potential effects of
climate change simulated for the Seacoast hydrologic sys-
tem will likely exacerbate the same effects. The effects of
these changes by 2025 were estimated to be greater than the
potential effect of increased water demands. Although simula-
tion of the effects of near-term (2025) climate changes on the
hydrology of the Seacoast are speculative, climate change is
expected to continue and be more severe later in this century
(Hayhoe and others, 2006). Future water demand and potential
climate-change scenarios were investigated independently
to allow for assessment of the separate effects of each sce-
nario. These scenarios are not likely to occur independently;
however, potential climate changes will likely exacerbate the
effects of increasing water demand. Additionally, increas-
ing temperatures and longer growing seasons would likely
result in greater water demands than the estimates used in
this analysis.

The analyses indicate potential issues of concern in terms
of future water availability in the Seacoast region. Develop-
ment associated with growth may result in increases in water
use, the addition of sewered areas that discharge to tidal
waters, or the construction of new connections from impervi-
ous areas to sewer systems. All of these changes would alter
the water balance of the Seacoast aquifer system. Any change
in one component of the hydrologic system—surface water or
ground water—is balanced by changes in another part of the
system (Alley and others, 1999; Winter and others, 1998). For
example, increased consumptive water use or increased water
transfers out of the system (sewering) will result in lower
ground-water levels and reductions in base flow to streams
or in ground-water discharges to tidal areas. The concept of a
“water budget” or “safe yield” of an aquifer system, defined

as an amount of water that can be withdrawn without affect-
ing the system, is not considered valid by some researchers
(Bredehoft, 1997; Bredehoft and others, 1982; Sophocleous,
1997, 2000). A withdrawal will have an effect at some level on
the aquifer system. The magnitude of the effect may need to
be evaluated to determine whether the yield of the withdrawal
well can be considered safe in a hydrologic or ecological
context. Although the yield of one well at a specified rate may
have little effect on the hydrologic system, the cumulative
effect of multiple independent withdrawals at the same rate
may have a measurable hydrologic or ecologic effect on the
environment. The amount of water stored in and recharging
the aquifer system can be calculated, as in this investigation;
however, the amount of water that can be withdrawn without
affecting the system, called the “sustainable use,” needs to be
assessed by water-resource planners and is not addressed by
this investigation.

The sustainable use can be determined by hydrologic
properties and by the amount of change in the water balance
that is considered acceptable by planners, water-resource
managers, regulators, and the community (Sophocleous,
2000). Ground-water and surface-water systems are generally
connected (Winter and others, 1998), especially on a regional
scale. Ground-water withdrawals can have complex interac-
tions with surface-water and aquifer systems. For this reason,
water-management decisions generally require the use of a
model and assessment by a hydrologist (Bredehoft, 2002).
The models developed and demonstrated in this investigation
are intended to provide water-resource managers and planners
with tools with which to assess future water resources in the
Seacoast region.

Model Limitations

The ground-water-flow models developed for the
Seacoast area provide a regional-scale simulation of ground-
water flow specifically for simulation of water-balance issues,
but not for analysis on a site-specific scale. For example,
the ground-water-flow models may be used to investigate
the effects of water-use changes resulting from development
on regional ground-water levels, heads, and discharges to
streams. Site-specific scales of analysis might include calcula-
tions of the drawdown in a well field, the sustainable yield
of a well, the head at a specific location, or the flow path to a
withdrawal point.

Ground-water-flow models are a numerical representa-
tion of the physical flow system and require simplifications
and assumptions. Limitations are inherent in the practical
application of ground-water-flow models, and the assump-
tions and simplifications incorporated in a model depend to
some extent on the intended use of that model. A discussion
of the adequacy of models for their intended use is provided
by Reilly and Harbaugh (2004). Several model limitations that
are discussed by DeSimone (2004) for a similar investigation



in eastern Massachusetts also apply to the Seacoast models.
For example, the Seacoast ground-water-flow models do not
simulate unsaturated-zone flow processes (ground-water flow
above the water table), or the direct, or overland, component
of streamflow; instead, the models simulate the base-flow
component of streamflow, or ground-water discharge. Evapo-
transpiration also is not specifically simulated but is accounted
for within a net (or effective) recharge.

Simplifications include the parameterization of hydro-
geologic properties and characteristics into homogenous units
and the assignment of these parameters to groups of cells with
areas of 200 by 200 ft and thicknesses that depend on the
model layer. Simplification also includes the temporal group-
ing of recharge, streamflow, and ground-water-flow character-
istics into monthly and annual periods.

An important limitation of the Seacoast models is that
they do not specifically simulate ground-water flow in bed-
rock fractures, but rather the bulk flow of ground water in
the regional-flow system. Thus, the model accounts for the
overall movement of ground water through the aquifer system,
incorporating regional bedrock anisotropy, but not through
specific fractures. The detailed configuration of fracture
networks is generally known only at few research sites and
then generally only at scales on the order of tens to hundreds
of feet, the cell-size scale in the Seacoast model. Incorporation
of detailed fracture characteristics into the ground-water-flow
model is not possible at the scale of investigation used and it
is not necessary for simulation of regional ground-water flow.
Simulation of site-specific conditions would require additional
hydrogeologic data and possibly the use of local grid refine-
ment techniques (Mehl and Hill, 2005).

Limitations resulting from not incorporating detailed
fracture information include inaccurate calculation of flow or
heads that are influenced by individual fractures and frac-
ture zones, and poor model performance in the immediate
vicinity of ground-water withdrawals. The model underesti-
mates model-cell hydraulic conductivity in areas where the
bedrock aquifer is highly fractured and does not account for
the anisotropy of individual fractures or fracture zones. As a
result, in the vicinity of ground-water withdrawals, simulated
water-level drawdowns will be greater than actual drawdowns,
and ground-water flow paths, which locally are controlled by
the fracture network, may differ from the simulated direc-
tion of flow imposed by the regional hydraulic gradient. Such
limitations apply to the vicinity of a well field and indicate
that the models cannot be used to simulate ground-water flow
at a well-field scale. The size of the area affected by these
limitations may be hundreds of feet; the actual size depends
on multiple hydrogeologic factors and is directly related to
the magnitude of the ground-water withdrawal. However, the
models simulate the regional ground-water flow to or from
such well fields and can be used to account for the effects of
ground-water withdrawals on the regional hydrologic system.
The ground-water-flow models also can be used to provide
boundary conditions, including hydrologic properties and
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fluxes, to models designed to be used in small-scale or site-
specific studies.

Summary and Conclusions

Ground-water availability in the Seacoast region was
analyzed between 2003 and 2004 though a cooperative
investigation among the Seacoast’s communities, the New
Hampshire Department of Environmental Services’ Coastal
Program and Geological Survey, and the U.S. Geological
Survey. The investigation was completed by developing
ground-water-flow models for a 160-square mile area of
coastal New Hampshire to provide insight into the recharge,
discharge, and availability of ground water in the study area.
Population growth and increasing water use have prompted
concern about the sustainability of regional ground-water
resources. New supply wells are installed almost exclusively
in the region’s bedrock aquifer. The bedrock aquifer has
recently become more important for water supply than it has in
the past because local high-yielding stratified-drift aquifers are
either fully utilized or not available because of development
or other restrictions. Previously, the regional characteristics
of the fractured-bedrock aquifer in the Seacoast area of New
Hampshire were not well known. Increasing reliance on the
bedrock aquifer, increasing ground-water withdrawals, and
potential changes in patterns of use have increased concern
about the sustainability of the region’s ground-water resources.

Components of the ground-water-flow system were
assessed by developing and calibrating models for steady-state
seasonal low-flow and transient monthly conditions. A steady-
state model was used to simulate current and future projected
water use during low-flow conditions, and a transient model
was used to simulate the hydrologic effects of current average
and estimated future monthly climate conditions over a
2-year period.

The finite-difference ground-water-flow models were
based on MODFLOW-2000 and auxiliary packages for inverse
parameter-estimation. Surficial sediments and surface-water
bodies were simulated in the first model layer, which ranged
in thickness from near zero to about 100 feet (ft). The second
model layer had a uniform thickness of 6 ft and represented a
lower saturated sediment layer representing till in most areas.
Model layers 3 and 4 were both 300 ft thick and represented
the underlying bedrock aquifer and withdrawals from it. The
fifth model layer was 400 ft thick and represented a deeper
bedrock aquifer. Nearly three quarters of the lateral uppermost
boundary of the model consisted of salt-water bays, estuar-
ies, and the ocean; these water bodies were simulated as an
equivalent fresh-water constant-head boundary.

The ground-water-flow simulations indicated that the
Seacoast aquifer system is a transient flow system with
seasonal ground-water-flow variations. The aquifer system
has seasonal high flows in March and April, and seasonal low
flows occur from July through October. The fall (September
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and October) is generally a more stable period during which
inflow and outflow fluxes are lower and are approximately
balanced. The average annual recharge during the study period
was approximately 51 percent of the annual precipitation. The
average monthly rate of recharge to the aquifer (or effec-

tive recharge, which is recharge minus evapotranspiration)
between 2000 and 2004 ranged from 5.5 inches per month
(in/mo) in March to 0.0 in/mo in July and about 0.3 in/mo in
August and September. Recharge increased to about 2 in/mo
in late fall and early winter and declined to about 1.5 in/mo in
late winter. In general, about 50 percent of the annual recharge
occurs in the spring (March and April), and 20 percent occurs
in the late fall and early winter (November through January).
Recharge can be greater than the actual precipitation during
snowmelt periods and effective recharge can be negative dur-
ing summer months (July and August).

Regional hydraulic conductivities of the bedrock aquifer
were estimated to be about 0.1 to 1.0 foot per day (ft/d),
with a regional horizontal anisotropy of 2.5:1 to 5:1 in some
areas. Model areas representing the Rye Complex and the
Kittery Formation were assigned higher estimated hydraulic
conductivities (0.5 to 1 ft/d) than areas representing the Eliot
Formation, the Exeter Diorite, or Newburyport Complex
(0.1 to 0.2 ft/d). A northeast-southwest anisotropy was
estimated (2.5 to 5:1) that follows the regional structural trend
and predominant fracture orientation. Higher confidence
was calculated for parameters assigned to areas with greater
amounts of data, such as the central and eastern areas, than to
other areas such as the south and western areas representing
the Exeter Diorite and Newburyport Complex. In these areas
of the model, the upper and lower 95-percent confidence
intervals for the estimated bedrock hydraulic conductivity
were about half an order of magnitude above and below the
estimate, and the 95-percent confidence intervals for specific
storage were several orders of magnitude above and below
the estimate. The uncertainty in estimated model parameters
in this part of the model is higher for areas with less
observational data and fewer withdrawal stresses.

Recharge enters the Seacoast aquifer system almost
entirely through surficial aquifer sediments. Precipitation on
bedrock and impervious surfaces generally flows to nearby
surficial sediments. Precipitation that drains from impervi-
ous surfaces to a sewer system is transferred to another area
in the aquifer system or out of the system altogether; in the
latter situation, potential recharge is lost. The majority of the
recharge, about 90 percent, enters the bedrock aquifer. The
amount of recharge that flows into the lower bedrock aquifer
is considerably lower (regionally about 17 percent) and at any
given point depends on the location of the point in the flow
field, the hydraulic conductivity of the bedrock, connectiv-
ity of fractures, and the stresses within the bedrock aquifer.
Therefore, depending on these regional and anthropogenic
factors, the recharge that flows into the bedrock aquifer at a

specific location can range from zero to nearly all the recharge
at the surface.

Regionally, a considerable amount of water
(approximately 240,000 million gallons (Mgal)) may be
stored in the secondary porosity provided by fractures in
bedrock aquifers in the Seacoast model area. The bedrock in
the eastern area of the model likely stores more water than
bedrock in the southwestern area of the model. The estimated
hydraulic properties of the bedrock aquifers, however, indicate
that the amount of water available for release from storage in
the bedrock may be less than 1 Mgal on an annual basis. A
much larger volume of water (320,000 Mgal) may be stored
in the pore space of unconsolidated overburden sediments. Of
that water, about 25,000 Mgal may be released from storage
seasonally. About half of that water is stored in till and other
fine-grained sediments, which are generally not considered
primary aquifers; about one quarter is stored in coarse-grained
(sand and gravel) sediments; and one quarter is stored in
wetlands and underlying glacial sediments. Stresses on the
aquifer system resulting from water extracted from storage,
however, must be evaluated with respect to declines in ground-
water levels and discharges to streams or other water bodies.

In a natural setting with few withdrawal stresses,
more recharge in the ground-water-flow system remains in
the unconsolidated aquifers or upper bedrock than moves
through the deeper bedrock aquifer. With increased withdraw-
als, more of the recharge in the aquifer system will move into
the deeper areas of the aquifer. The residence time of ground
water in the bedrock aquifer was investigated by chlorofluo-
rocarbon age-dating at locations of high and low water use
and at different areas of the flow system. Ground-water ages
ranged from near zero (recently recharged water) to more than
30 years old. Ground water is oldest in areas with little water
use, a low head gradient above the point of interest, and at
discharge areas in the flow system. In areas where water use is
high, or from shallow depths in the flow system, the residence
time of ground water may be nearly zero (very recent). Water
sampled from high-use supply wells sampled in the model
area included a mixture of recently recharged water to water
30 years old or more. Some residence times may be longer
because of diffusion of water from fractures in the rock matrix.
Some of the supply wells sampled were installed within the
past few years, or within the past decade. The residence time
of ground water withdrawn from such wells may become less
with time as the effects of the withdrawal on the flow system
become established and less older water diffuses from the
fractured rock.

Model parameters, including hydraulic conductivity,
storage, and porosity, were estimated for the regional aquifer
system and do not incorporate local heterogeneities in the
aquifer such as fracture zones. The hydraulic conductivity
measured at a specific site may be orders of magnitude greater
or smaller than the regional value. The regionally estimated
geohydrologic characteristics, however, can be used to provide



general boundary conditions and aquifer properties for use

in site-specific investigations. Although the models were not
designed to accurately calculate heads or flows at specific
points in the aquifer, they can be used to describe the general
ground-water-flow system and to assess differences in ground-
water flow in the study area.

Simulated effects on the Seacoast hydrologic system from
projected increased future water use include declining base
flows; declining fresh ground-water discharges to tidal bays,
estuaries, and the ocean; and lowered ground-water levels. The
hydrologic system will be affected most during periods of low
flow and annual low-streamflow periods may be longer. Simu-
lations of the hydrologic effects of increased water demand
for the years 2017 and 2025 indicated that these effects will
likely be apparent within the next 10 years (by 2017). By
2025, increased demand may result in a reduction in ground-
water discharge to streams of about 7 percent and a slight
reduction, about 2 percent, in freshwater discharge to tidal
areas. With additional sewering in the Seacoast, the reduc-
tion in flows would be greater. The potential future effects of
climate change on the Seacoast hydrologic system will also
likely include reduced base flows and fresh ground-water
discharges to tidal areas, and lowered ground-water levels.

By 2025, these effects were estimated to be greater than the
potential effects of increased water demands. The effects of
increased demands on the hydrologic system were exacerbated
by simulations with a hypothetical regional sewer system. The
declines in ground-water levels in these simulations were most
pronounced in low-lying areas with higher rates of water use;
these are also the areas with many of the Seacoast’s extra large
ground-water supply systems.

The simulations based on future water demands and cli-
mate changes provide an indication of potential effects on the
Seacoast hydrologic system later in this century (2025). These
predicted effects pose a potential concern for future water
resources in the Seacoast region. The models developed in
this investigation can provide tools with which water-resource
managers and planners can assess future water resources in the
Seacoast region of New Hampshire.

Although the ground-water-flow models were developed
for a specific area, many of the findings of this investigation
regarding ground-water availability in glacial and fractured
bedrock aquifer systems may be transferrable to other areas
of the Nation with similar hydrogeologic or climatic charac-
teristics, particularly in the glaciated northern United States.
For example, findings related to seasonal recharge may be
applicable to regions with similar climates and precipitation
patterns. Likewise, findings regarding the effect of increas-
ing water demand and future climate change on ground-water
availability may be applicable to other regions of the Nation
with similar hydrogeologic and climatic conditions.
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