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Abstract
Numerical ground-water-flow models were developed for 

a 160-square-mile area of coastal New Hampshire to provide 
insight into the recharge, discharge, and availability of ground 
water. Population growth and increasing water use prompted 
concern for the sustainability of the region’s ground-water 
resources. Previously, the regional hydraulic characteristics of 
the fractured bedrock aquifer in the Seacoast region of New 
Hampshire were not well known. In the current study, the 
ground-water-flow system was assessed by using two different 
models developed and calibrated under steady-state seasonal 
low-flow and transient monthly conditions to ground-water 
heads and base-flow discharges. The models were, (1) a 
steady-state model representing current (2003–04) seasonal 
low-flow conditions used to simulate current and future 
projected water use during low-flow conditions; and (2) a tran-
sient model representing current average and estimated future 
monthly conditions over a 2-year period used to simulate cur-
rent and future projected climate-change conditions. 

The analysis by the ground-water-flow models indicates 
that the Seacoast aquifer system is a transient flow system 
with seasonal variations in ground-water flow. A pseudo-
steady-state condition exists in the fall when the steady-state 
model was calibrated. The average annual recharge during the 
period analyzed, 2000–04, was approximately 51 percent of 
the annual precipitation. The average net monthly recharge 
rate between 2003 and 2004 varied from 5.5 inches per month 
in March, to zero in July, and to about 0.3 inches per month in 
August and September. Recharge normally increases to about 
2 inches per month in late fall and early winter (November 
through December) and declines to about 1.5 inches per month 
in late winter (January and February). About 50 percent of the 
annual recharge coincides with snowmelt in the spring (March 
and April), and 20 percent occurs in the late fall and early 
winter (November through February). Net recharge, calculated 
as infiltration of precipitation minus evapotranspiration, can 
be negative during summer months (particularly July). 

Regional bulk hydraulic conductivities of the bedrock 
aquifer were estimated to be about 0.1 to 1.0 feet per day. Esti-
mated hydraulic conductivities in model areas representing the 
Rye Complex and the Kittery Formation were higher (0.5 to 

1 foot per day) than in areas representing the Eliot Formation, 
the Exeter Diorite, and the Newburyport Complex, which have 
estimated hydraulic conductivities of 0.1 to 0.2 foot per day.  
A northeast-southwest regional anisotropy of about 5:1 was 
estimated in some areas of the model; this pattern is parallel to 
the regional structural trend and predominant fracture orienta-
tion. In areas of the model with more observation data, the 
upper and lower 95-percent confidence intervals for the esti-
mated bedrock hydraulic conductivity were about half an order 
of magnitude above and below the parameter, respectively, 
and the estimated confidence intervals for estimated specific 
storage were within an order of magnitude of the parameter. In 
areas of the model with few data points, or few stresses, con-
fidence intervals were several orders of magnitude. Estimated 
model parameters and their confidence intervals are a func-
tion of the conceptual model design, observation data, and the 
weights placed on the data. 

The amount of recharge that enters the bedrock aquifer 
at a specific point depends on (1) the location of the point in 
the flow field; (2) the hydraulic conductivity of the bedrock 
(or the connectivity of fractures); and (3) the stresses within 
the bedrock aquifer. In addition, ground water stored in 
unconsolidated overburden sediments, including till and other 
fine-grained sediments, may constitute a large percentage 
of the water available from storage to the bedrock aquifer. 
Recharge into the bedrock aquifer at a point can range from 
zero to nearly all the recharge at the surface depending on 
regional hydrogeologic and anthropogenic factors. In a setting 
with few ground-water withdrawals, a larger portion of the 
recharge in the ground-water-flow system remains in the 
unconsolidated aquifers or upper bedrock than moves through 
the deeper bedrock aquifer, even in a setting with conductive 
bedrock, at any given time. With increased withdrawals in 
the bedrock aquifer, a larger proportion of the recharge in the 
aquifer system will move into the deeper areas of the aquifer 
system at any given time. 

Ground-water residence time estimated by chlorofluo-
rocarbon age-dating methods ranged from near zero (recently 
recharged) to more than 50 years. Ground water was oldest in 
areas with little water use, a low head gradient above the point 
of interest, and at a point of discharge in the flow system. At 
such locations, ground water may have flowed a considerable 
distance in the watershed. Where water use was high, or at an 
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area of recharge, the ground-water age may be younger. At 
large ground-water withdrawal points, ground water with-
drawn includes a mix of water from recently recharged to that 
with residence times 30 years or more. The ground-water flow 
to large withdrawals includes ground water in the immediate 
area of the well and older water from greater distances. The 
age of water captured by recently installed large ground-water-
withdrawal wells may become younger with time as the effects 
of the withdrawal on the flow system become established and 
the flow system reaches a new equilibrium.

Simulated effects to the Seacoast hydrologic system 
caused by increasing future water use include stream base 
flows declining by about 7 percent; fresh ground-water 
discharges to tidal bays, estuaries, and the ocean declining by 
about 2 percent; and lowered ground-water levels.  Changes in 
ground-water levels were subtle but were greatest near large 
ground-water withdrawals with increasing demands and in 
developing rural areas. On the basis of the simulations, the 
hydrologic system will be most affected during periods of low 
flow, which may result in longer annual low-streamflow peri-
ods. Simulations show that the effects of increased demand 
will likely become apparent within the next 10 years (before 
2017). Simulations of a hypothetical increase in sewering 
result in further declines in base flow (13 percent) and dis-
charge to bays, estuaries, and the ocean (5 percent).

Climate change in New England is forecast to include 
more frequent and intense precipitation events, with a slight 
decrease to little change in total precipitation, and increas-
ing temperatures. The effects of this potential future climate 
change on the Seacoast hydrologic system would likely 
include reduced base flows and fresh ground-water discharges 
to tidal areas and lowered ground-water levels. The effects of 
these climate changes by 2025 were estimated to be greater 
than the potential effects of increased water demands. The 
analyses indicated that there are potential issues of concern for 
future use of water resources in the Seacoast region. The mod-
els developed and demonstrated in this investigation can pro-
vide water-resource managers and planners tools with which 
to assess future water resources in this region. The findings 
regarding the effects of increasing water demand and potential 
climate change on ground-water availability may be transfer-
rable to other regions of the Nation with similar hydrogeologic 
and climatic characteristics.

Introduction
The Seacoast region encompasses an area of southeastern 

New Hampshire bordering the Atlantic Ocean from Maine to 
Massachusetts (fig. 1). In 2004, the twelve towns that make 
up the Seacoast region (fig. 1) had a population of 80,000 
that relied primarily on local ground-water resources for its 
water needs. The proximity of this region to the expanding 
area of metropolitan Boston has led to a 36-percent population 
increase over the past 20 years. This development has been 

accompanied by an increase in the use of ground water from 
both domestic and supply wells, nearly all of which are 
completed in the fractured-bedrock aquifer. Historically, the 
fractured-bedrock aquifer had not been considered a principal 
aquifer, and water-resource investigations of the 1970s 
(Anderson-Nichols, 1980; Cotton, 1977) and 1980s (Moore, 
1990; Stekl and Flanagan, 1992) focused on stratified-drift 
aquifers to meet the increasing water demand. Currently 
(2003–04), the stratified-drift aquifers of the region are 
essentially fully utilized, and water levels have declined in 
some stratified-drift aquifers in southeastern New Hampshire 
over recent years. Consequently, the fractured-bedrock 
aquifers in the Seacoast and elsewhere in New Hampshire 
have become increasingly important for providing future 
ground-water resources.

In addition to use by a greater population in the region, 
individual usage has been increasing to meet the needs of 
modern appliances and landscaping. In addition, water may be 
distributed outside the source area or removed through sewer-
ing. In the Seacoast region, sewers eventually discharge to 
tidal water bodies, including local bays and the ocean,  
and sewering, therefore, removes freshwater from local  
aquifer systems. 

These pressures on the Seacoast water resources became 
more apparent in 2001 and 2002 when an extensive drought 
affected the entire northeastern United States. In response to 
this drought, many Seacoast communities implemented water-
use restrictions, and concern increased about the availability 
and sustainability of ground-water resources in the region. 
At the time of this drought, the potential effects of increasing 
demands, changes in water usages, and increased reliance on 
the fractured-bedrock aquifer on ground-water resources in the 
Seacoast region had not yet been quantified. 

To address these concerns, cooperative investigations 
involving the New Hampshire Department of Environmental 
Services (NHDES) Coastal Program (NHCP) and Geological 
Survey (NHGS), the Seacoast communities, and the  
U.S. Geological Survey (USGS) were initiated in 2003 to 
assess water resources and needs for the Piscataqua River 
drainage basin and the coastal drainages of southeastern  
New Hampshire (fig. 1, inset map). Companion investigations 
by the NHGS provided geologic and well data for this 
investigation, and a companion investigation of water 
use in 44 towns within the Piscataqua River watershed in 
New Hampshire (Horn and others, 2007) provided water-
use information. The current investigation developed a 
regional ground-water-flow model to evaluate ground-water 
availability in an approximately 160 mi2 area of coastal 
New Hampshire, which includes 12 towns and is termed 
the Seacoast region (fig. 1). Although considerable data are 
collected on an on-going basis at sites of proposed large 
ground-water withdrawals, there was no comprehensive 
means for State, regional, and local interests to evaluate the 
cumulative hydrologic effects of additional withdrawals, in 
conjunction with existing water uses, on the water resources 
of the region. In this investigation, regional ground-water-
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Figure 1. The Seacoast region, town boundaries, and major hydrologic features in the Seacoast model area, 
southeastern New Hampshire.
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flow models were developed to provide an evaluation and a 
framework for understanding the present ground-water-flow 
system and a tool for evaluating the cumulative effects of 
increasing water demand on ground-water resources in the 
Seacoast region. The effects of increasing water demand and 
potential climate change are a National concern and many of 
the findings from the Seacoast region are transferrable to other 
regions, particularly in the glaciated northern United States, 
with similar hydrogeologic and climatic characteristics.

Purpose and Scope

This report describes an assessment of ground-water 
resources in the Seacoast region of coastal southeastern New 
Hampshire. The report includes documentation of the design 
and calibration of numerical ground-water-flow models and 
their use and limitations for evaluation of current and future 
ground-water availability. Current (2003–04) and projected 
(for 2017 and 2025) ground-water-resource conditions are 
described in the report. 

The scope of this investigation is regional. The ground-
water-flow models are designed for use in watershed- to sub-
watershed-level planning and management of ground-water 
resources, not for site-specific hydrologic analyses. Evalua-
tions of potential or future scenarios presented in this report 
are based on information available at the time of the study. 

Description of the Study Area

The study area includes 160 mi2 comprising all or parts 
of 12 towns in New Hampshire and a 30-mi2 area comprising 
parts of 2 towns in northeastern Massachusetts. The two 
towns in Massachusetts were in the ground-water-flow model 
area but were not included in the ground-water-availability 
investigation. Study-area boundaries coincide with the 
boundaries of major hydrologic features, including tidal 
water bodies (Squamscott River, Great Bay, Atlantic Ocean, 
Piscataqua River, Merrimack River), the Powwow River 
(fig. 1), and Great Brook drainage divide (fig. 2) along the 
southwestern model-domain boundary. Altitudes range from 
0 to about 300 ft, with most of the study area gently sloping 
and at altitudes less than 100 ft above North American Vertical 
Datum of 1988 (NAVD 88). All streams originate in and flow 
out of the study area (fig. 2). The exceptions are discharge 
areas in the Seacoast hydrologic system, and include the 
Powwow, Piscataqua, and Merrimack Rivers; the latter two 
are tidal water bodies in the study area. The climate of the 
Seacoast study area, including long-term precipitation data and 
trends, is described in appendix 1.

Geologic and Geographic Setting
The geographic setting of the study area was described 

by Bradley (1964) as part of the Seaboard Lowland section of 
the New England Physiographic Province. The area is covered 
by thin glacial and marine sediments (fig. 3) and the topog-
raphy is generally low and reflects the shape of the bedrock 
surface. In the Seacoast area, ground water occurs in three 
major geologic units:  glacial till, stratified-drift deposits, and 
bedrock. Glacial till is an unsorted mixture of clay, silt, sand, 
gravel, and cobbles deposited directly under glacial ice. Till 
is generally about 20 ft thick or less throughout the Seacoast. 
Stratified deposits consist of sorted and layered sand, gravel, 
silt, and clay of glacial or marine origin. Crystalline metasedi-
mentary or intrusive bedrock underlies the surficial sediments, 
and is exposed at the surface in some areas. 

Other geologic units in the Seacoast, which are less 
important with respect to ground-water resources, include 
beach alluvium, which forms the coastal shoreline in the 
southern half of the study area (Hampton, N.H., to Salisbury, 
Mass.); freshwater wetland deposits that dominate the central 
part of the study area, including some areas of the I-95 corri-
dor; and marine wetland deposits, which particularly dominate 
the nearshore areas from Hampton, N.H., to Salisbury, Mass.

The bedrock in the study area consists of crystalline 
igneous rocks and metamorphic rocks of sedimentary origin 
(fig. 4). Crystalline bedrock is generally not considered a 
high-yielding ground-water resource; however, some of the 
highest-yielding bedrock wells in New Hampshire are in the 
Seacoast region (Moore and others, 2002). The geology of the 
Seacoast area has been the subject of numerous investigations 
including the work of Novotny (1969) and, more recently, 
Escamilla-Casas (2003), and mapping by Dr. Wallace Bothner 
(University of New Hampshire, oral commun., 2006). Bedrock 
structures of the Seacoast study area include the Rye anticline 
east of Great Bay; the Great Bay syncline, which coincides 
with the location of Great Bay; and the Portsmouth Fault 
(Lyons and others, 1997; Novotny, 1969, p. 4). These struc-
tures produce a northeast-southwest regional structural trend 
(approximately north 22 degrees east). The dominant rock 
types are metasedimentary rocks of the Rye Complex (fig. 4), 
which commonly consists of coarse-grained gneiss, quartzite, 
and schist; the Kittery Formation (fig. 4), primarily a phyl-
lite, and schist; and the Eliot Formation, which is primarily 
slate, phyllite, and schist. The igneous rocks of the Breakfast 
Hill granite; the Exeter Diorite; and the Newburyport Com-
plex, a quartz diorite, form lesser amounts of the bedrock in 
the study area (fig. 4). The geology of West Newbury, Mass., 
immediately adjacent and south of the study area, has been 
investigated by Walsh (2001) and includes bedrock of the 
Eliot Formation and Newburyport Complex. In terms of water 
resources, properties of the bedrock aquifer of the study area 
remain less well known than those of the surficial hydrogeo-
logic units. 



Introduction  5

Figure 2. Watershed drainage divides, tidal areas, and streamflow-gaging stations in the Seacoast model area, 
southeastern New Hampshire.
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Figure 3. Distribution of surficial sediments, wetlands, and water bodies in the Seacoast model area, southeastern 
New Hampshire.
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Figure 4. Dominant bedrock formations in the Seacoast area and bedrock parameter zones used in the Seacoast model, 
southeastern New Hampshire.
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Background and Previous Studies

The first comprehensive assessment of the geology and 
ground-water resources of the study area was completed by 
Bradley (1964). In the 1980s, regional stratified-drift-aquifer 
assessments were completed in the study area in cooperation 
with the NHDES, and covered the coastal river basins (Stekl 
and Flanagan, 1992) and the Exeter River basin (Moore, 
1990). These USGS investigations mapped the boundaries, 
saturated thickness, and transmissivity of stratified-drift 
aquifers, which were the aquifer resource with the greatest 
transmissivity and capacity for additional water supplies. 
Prior to the 1950s, many residents of the Seacoast relied on 
dug wells in glacial deposits. Although dug wells provide 
very little storage capacity, they generally were sufficient 
for domestic water needs at the time. Advances in drilling 
techniques and well pumps, after the 1950s, made bedrock 
wells easier to install and use. Bedrock wells have gained 
favor over time because of their storage capacity. The volume 
of water stored in a borehole can be a few times larger than 
that of a dug well during dry periods when water levels may 
be near the bottom of a dug well. Bedrock wells are also 
regarded as providing security against shallow contaminants 
such as septic inflows. 

By the 1990s, stratified-drift aquifers in the Seacoast 
were either fully utilized, unavailable because of development, 
or in some localized areas contaminated by anthropogenic 
activities. Some water suppliers began installing supply 
wells in the bedrock aquifer in areas of the Seacoast to meet 
increasing demand. In response to an increasing demand 
for water resources and an interest in the State’s bedrock 
aquifers, an assessment of factors related to well yield in the 
fractured-bedrock aquifer of New Hampshire was conducted 
by the USGS in cooperation with NHDES (Moore and 
others, 2002). A digital coverage of the bedrock geology of 
New Hampshire was provided by Lyons and others (1997) 
at a scale of 1:125,000. Detailed information about the 
geology of the Seacoast is provided by Novotny (1969), 
Escamilla-Casas (2003), and Dr. Wallace Bothner (University 
of New Hampshire, oral commun., 2005). Numerous site-
specific water-supply investigations have been conducted by 
hydrogeologic consulting and engineering firms throughout 
the Seacoast area to identify new sources of ground water or 
describe aquifer characteristics.

Only within the past decade have ground-water-flow 
simulations been more widely used in the investigation 
of bedrock aquifers in the eastern United States. Two 
investigations of note were among the first regional ground-
water-flow simulations in crystalline bedrock aquifers. Daniel 
and others (1997) used ground-water-flow simulation and 
flow-path analysis to investigate a 146-mi2 hydrogeologic 
system in North Carolina’s piedmont crystalline-bedrock 
aquifer. Tiedeman and others (1997) used ground-water-flow 
simulation and flow-path analysis to investigate the 4-mi2 
Mirror Lake watershed in northern New Hampshire.

Ground water in the crystalline-bedrock aquifer flows 
through discrete fractures and partings. At site-specific scales 
of tens to hundreds of feet, the location, orientation, and 
nature of individual fractures dominate the characteristics of 
ground-water flow; however, at larger scales—hundreds of 
feet or greater—the nature and location of individual fractures 
are not nearly as important in understanding the movement of 
ground water and fluxes (flow into or out of an aquifer) in the 
regional system. More important is understanding the large-
scale properties of the rock, such as the regional connectivity 
of the individual fractures. This regional connectivity will 
determine the hydraulic conductivity of the rock at greater 
scales, or what can be termed “bulk hydraulic conductivity.” 
This concept is analogous to ground-water flow in porous 
media; understanding the nature of individual pores, or the 
movement of ground water between pores, is not necessary 
for understanding and simulating ground-water flow in porous 
media. The bedrock aquifer can be treated as an equivalent 
porous medium (EPM) in some circumstances using a 
continuum approach, which is discussed with application 
to fractured bedrock by Hsieh (2002) and Hsieh and others 
(1999). The EPM approach has been used in an investigation 
of a limestone aquifer (Langevin, 2003a) in which solution 
fracture zones within the consolidated rock were not explicitly 
simulated but were represented as part of a continuum.

The scale of investigation is very important in the 
application of the EPM approach. It is assumed that bedrock 
at the scale of interest can be represented by zones of similar 
hydrologic characteristics. At larger scales, such as the 
watershed scale, the area of interest will be more homogenous. 
In the case of fractured-crystalline bedrock, zones of the 
bedrock aquifer with similar hydraulic properties, such as 
bulk hydraulic conductivity, are assumed to be identified by 
mapped geologic units. The EPM approach makes use of 
contrasts in fracture density, connectivity, yield, and possibly 
other properties between one rock formation and another. 
At small scales—for example, at the well-field scale—this 
approach may not be valid because the heterogeneity imposed 
by individual fractures, or a fracture zone, may dominate the 
flow system.

The EPM approach has been applied at the watershed 
scale to crystalline-bedrock aquifer systems in the eastern 
United States that are similar to that in the Seacoast study 
area. Examples include investigations by Lyford and others 
(2003) in Massachusetts; Harte (1992) and Tiedeman and 
others (1997, 1998) in northern New Hampshire; Daniel and 
others (1997) in North Carolina; and Starn and Stone (2005) 
in Connecticut. A preliminary simulation of regional ground-
water flow in the Seacoast area was done by Mack and others 
(2002) and Mack (2003) for this investigation. Ground-water 
availability and use in fractured-rock settings elsewhere were 
investigated by Hunt and others (2001), Willey and Achmad 
(1986), and Vogel and Reif (1993). A helpful synthesis of 
fractured-bedrock investigations including ground-water- 
flow simulations and well yield is provided by Starn and  
Stone (2005).
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Methods

This investigation provides a model of Seacoast 
ground-water resources through an integrated analysis of 
geohydrologic data including geologic information, water 
levels, streamflows, and water-use data. An assessment of 
ground-water sustainability requires an understanding and 
approximation of the complete hydrologic system and of the 
interaction of its components. These components depend 
upon the hydraulic properties of the surficial sediments and 
bedrock and upon the climate and topography of the area. 
Quantification of the hydrologic components also depends on 
the scale of investigation; these components were evaluated 
with respect to the regional ground-water-flow system. 

Numerical ground-water-flow simulations were used 
to assess aquifer properties and surface- and ground-water 
interactions. A numerical model is a representation that 
describes the geometry, composition, and hydraulic properties 
of a ground-water-flow system and accounts for all known 
or estimated (conceptual) hydrologic processes included in 
ground-water flow. For calculating the availability of water 
over a watershed or regional setting, regionally varying bulk 
hydraulic properties that characterize different lithologic 
settings, as used in this investigation, are usually sufficient 
(Shapiro, 2002) to describe regional ground-water recharge, 
discharge, and storage. By constructing the numerical model 
and assigning known, estimated, or hypothetical properties to 
the flow components, it is possible to assess the conceptual 
understanding of the ground-water-flow system and its various 
components. The USGS modular finite-difference ground-
water-flow model, MODFLOW-2000 (Harbaugh and others, 
2000), was used as the computer code for this investigation. 
Digital coverages of topography, bathymetry, hydrography, 
and aquifer properties were used with preprocessing software 
(Winston, 2000) to construct MODFLOW-2000 data sets. The 
conceptual and numerical characteristics of these software 
packages are described later in this report. The model was 
designed and calibrated according to guidelines and methods 
described by Hill (1998) and the analysis techniques of Hill 
and others (2001).

Hydrogeologic Characteristics of the 
Seacoast Region

Hydraulic Properties

Hydraulic properties of aquifer materials include the 
horizontal and vertical hydraulic conductivity, specific yield, 
and specific storage. Surficial sediments and bedrock aquifers 
have contrasting hydraulic properties because of differences in 
the amount of consolidation that has occurred. 

Surficial Deposits
The surficial geology of the Seacoast area (Bennett 

and others, 2004) was divided into four general groups of 
sediments with different origins and characteristics for the 
ground-water-flow simulation in this investigation. The 
hydraulic conductivites of the overburden aquifers, which 
affect ground-water-flow paths and residence times, differ 
considerably with the type of overburden deposit. The 4 
groups are shown in figure 3; till; coarse-grained sediments, 
including sand and gravel, alluvium, and fill; fine-grained 
marine sediments, including fine-grained sand, silt, and clay; 
and wetland deposits, including freshwater and saltwater 
wetland deposits. The percentages of the study area and 
selected subwatersheds (fig. 2) covered by each of the four 
surficial sediment categories, surface water, and bedrock  
(fig. 3) are provided in table 1. 

The most extensive surficial sediment is till, which 
covers about 39 percent of the study area. Till is generally a 
few feet to less than 20 feet thick and underlies most other 
sediments in the study area; the thickness generally can be 
inferred to be thin near large boulders or bedrock exposures. 
The hydraulic conductivity of till in New England has been 
measured at about 1 ft/d (Harte, 1997; Mack, 1995; Melvin 
and others, 1992). Till generally has similar horizontal and 
vertical hydraulic conductivities (Melvin and others, 1992) 
likely because it is an unsorted mixture of sediments. Before 
the mid-1900s, wells dug in till were typically about 20 ft deep 
and were adequate for domestic supply. Shallow till wells, 
which can still be found at many older homes in the Seacoast, 
generally do not meet the current water-supply needs of 
domestic users, particularly during dry periods. 

The thickness and hydraulic properties of stratified-drift 
aquifers in the study area were determined by Moore (1990) 
and Stekl and Flanagan (1992). The horizontal hydraulic 
conductivity of stratified drift in New Hampshire ranges 
from about 2 to 15 ft/d for fine-grained sands, and from 50 
to more than 200 ft/d for coarse-grained sands and gravel 
(Ayotte and Toppin, 1995; Medalie and Moore, 1995). The 
vertical hydraulic conductivity of stratified-drift sediments in 
New England is generally about one-tenth of the horizontal 
hydraulic conductivity (Randall, 2001). Most areas of the 
Seacoast have saturated thicknesses less than 40 ft. Notable 
exceptions include the stratified-drift aquifer underlying the 
Pease Tradeport, also known as the former Pease Air Force 
Base (PAFB), in Newington; an aquifer in Kensington at Great 
Brook Meadows; and thinner aquifers in Hampton. 

Stratified-drift deposits cover about 24 percent of the 
study area. Only about 2 percent of the study area, however, 
is covered by stratified-drift aquifers with transmissivities 
of 1,000 ft2/d or greater (Moore, 1990; Stekl and Flanagan, 
1992). Less than 1 percent of the study area is covered by 
stratified-drift aquifers with transmissivities of 2,000 ft2/d 
or greater. In some areas the stratified-drift aquifers support 
very high-yield supply wells. The most prominent stratified-
drift aquifer in the study area is the plain covering parts of 
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Newington and Portsmouth beneath the PAFB. This deposit 
is 4 mi long, 0.25 to 1 mi wide, and up to 70 ft thick (Bradley, 
1964). The Haven Well, a water-supply well for the city of 
Portsmouth, is completed in this deposit and has a potential 
yield of more than 800 gal/min, although the permitted yield 
is limited to 300 gal/min to prevent drawing contaminated 
ground water into the well. The horizontal hydraulic 
conductivities of sands near the supply well were estimated 
to be approximately 210 to 260 ft/d (Montgomery Watson 
Harza, Inc., 2002). An extensive but thinner stratified-drift 
aquifer extends from western Rye to southern Portsmouth and 
northern Greenland. This aquifer includes the Greenland Well, 
which supplies more than 600,000 gal/d, and is generally less 
than 40 ft thick. Another notable but less extensive stratified-
drift aquifer, with thicknesses of up to about 40 ft, is beneath 
central North Hampton (figs. 1 and 3). Stratified-drift deposits 
also cover parts of Seabrook and much of Salisbury, Mass., 
but these generally are thin discontinuous deposits.

Fine-grained marine sediments include fine-grained 
sand, silt, or clay. These sediments, deposited in estuaries and 
tidal areas during deglaciation, are in areas of lower elevation 
and cover about 18 percent of the study area (table 1). Fine-
grained sediments typically have hydraulic conductivities of 
about 1 ft/d or less. Although some marine sediments (sands) 
may locally have higher horizontal hydraulic conductivity, 
the marine sediments typically have low horizontal hydraulic 
conductivities and very low vertical hydraulic conductivities; 
these sediments were considered as one unit for this regional 
investigation. Sediments beneath Great Bay, to the west, 
are primarily fine-grained sand, silts, and clays. Sediments 
beneath the Atlantic Ocean to the east were primarily coarse-
grained sands and gravels (Poppe and others, 2003).

Wetland deposits cover approximately 8 percent of the 
study area (table 1). Large freshwater wetlands dominate the 
central areas of the Seacoast and smaller wetlands cover many 
low-lying areas (figs. 2 and 3). Coastal areas with prominent 

Table 1. Subwatersheds and percentages of surficial geologic sediments, wetlands, surface-water bodies, and bedrock within each 
subwatershed, Seacoast model area, southeastern New Hampshire .

[All streams are in New Hampshire unless otherwise noted. Subwatershed areas shown on figure 2; mi2, square miles; —, not available]

Sub- 
watershed 

number 
(fig. 2)

River or stream name
Area  
 (mi2)

Stratified 
drift and 

other coarse-
grained 

sediments

Marine 
sediments

Till Wetland
Surface- 

water  
bodies

Bedrock

1 Mill Brook, Stratham 1.98 64.1 24.8 5.3 5.8 0.0 0.0
2 Back River, South Hampton 1.53 1.6 .0 94.1 4.0 .3 .0
3 Packer Brook, Greenland 2.31 49.2 27.0 7.3 14.8 1.7 .0
4 Pickering Brook, Newington 1.29 73.2 22.8 3.9 .0 .0 .0
5 Bailey Brook, Rye 1.95 39.5 10.1 43.0 7.1 .3 .0
6 Hodgson Brook, Portsmouth 3.52 49.4 26.4 23.0 .9 .3 .0
7 Pickering Brook, Greenland 2.97 43.5 11.8 15.8 28.1 .6 .1
8.0 Hampton Falls River, Route 1, 

Hampton Falls
6.66 22.3 21.7 52.0 3.2 .8 .0

8.1 Hampton Falls River, Mill Lane, 
Hampton Falls

3.61 10.4 .1 45.0 44.1 .4 .0

9 Parkman Brook, Stratham 1.89 23.8 33.8 42.1 .0 .3 .0
10 Great Brook, Kensington 5.45 1.1 6.8 81.3 10.6 .3 .0
11.0 Little River, North Hampton 6.12 22.9 23.2 46.1 7.4 .4 .0
12 Smallpox Brook, Salisbury, Mass. 1.83 95.0 5.0 — — — —

13 Taylor River, Hampton 8.41 7.1 24.2 59.6 8.5 .6 .0
14.0 Winnicut River, Greenland 14.19 32.5 13.7 43.1 10.0 .6 .0
15 Berrys Brook, Rye 5.38 36.1 35.8 13.7 14.2 .1 .0

Approximate total area and  
percentages of materials in the 
total area

230 24.3 17.6 39.1 7.7 11.1 .2
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saltwater wetlands include Portsmouth, Hampton, Seabrook, 
and Salisbury. An investigation of a pond-dominated aquifer 
system in central Massachusetts (Carlson and Lyford, 2005) 
noted that wetland deposits likely have horizontal hydraulic 
conductivities of tens of feet per day and vertical conductivi-
ties of less than 1 ft/d. 

The amount of water stored in unconsolidated sediments 
is typically about 25 to 50 percent per saturated volume for 
gravel, sand, and silt, and as much as 70 percent for clay 
(Freeze and Cherry, 1979). However, the water that can be 
released from gravity drainage per unit decline in the water 
table, termed specific yield, is less than the amount of water 
stored. The total amount of water available in the overburden 
aquifer is determined by the specific yield and thickness of the 
deposit. The specific yields of till, fine- and coarse-grained 
stratified drift are relatively similar, about 25 percent (Melvin 
and others, 1992). The specific yields of silt and clay may be 
on the order of 0.02 to 0.08 (DeSimone, 2004; Domenico and 
Schwartz, 1997; Kontis and others, 2004). Wetland deposits 
probably have specific yields greater than that of other surfi-
cial sediments; values of 0.4 have been reported (Domenico 
and Schwartz, 1997; Morris and Johnson, 1967). 

Bedrock
Bedrock in the study area consists of crystalline 

metasedimentary and igneous rocks (Novotny, 1969) oriented 
in a northeast-southwest-trending structural pattern (fig. 4). 
Bedrock is exposed throughout the study area, particularly 
along the northern coastal shorelines; however, outcrop area 
makes up less than 1 percent of the study area (table 1). The 
hydraulic conductivity of the bedrock aquifer, which depends 
on the bedrock-fracture network and investigation scale, 
spans several orders of magnitude. Regionally, the hydraulic 
conductivity of the bedrock aquifer is defined by the small 
fractures of the pervasive fracture network (Tiedeman and 
others, 1997). The regional hydraulic conductivity estimated 
for crystalline rock in northern New Hampshire ranges from 
about 0.01 to 0.1 ft/d (Tiedeman and others, 1997). 

The crystalline bedrock of the Seacoast effectively has 
little primary porosity for release of water from storage. 
Ground water is stored and transmitted in the secondary 
porosity provided by fracturing in the rock. The secondary 
porosity of crystalline bedrock aquifers due to fractures has 
been reported as 0 to 10 percent (Freeze and Cherry, 1979; 
Snow, 1968). However, very high well yields (more than 
40 gal/min, appendix 2) and large ground-water supply 
wells (appendix 5) in some areas of the Seacoast, such as 
in the Kittery Formation and Rye Complex, indicate that 
the secondary porosity is likely to be great. Daniel (1989) 
found well yield and specific capacity to be correlated in 
the crystalline bedrock in North Carolina. Moore and others 
(2002) determined that the wells in the Rye Complex and 
the Kittery and Eliot Formations in the Seacoast area have a 
greater probability of a high yield compared to wells in the 
other bedrock types in New Hampshire. Additional discussion 

of bedrock well yields in the study area is provided in 
appendix 2. 

Bedrock aquifers in the study area generally respond 
to stresses as a confined aquifer where the amount of water 
that can be released from the aquifer, from a decrease in 
hydraulic head, is defined by either a storage coefficient 
(Sc) or a specific storage (Ss). Specific storage is defined as 
the storage coefficient divided by the aquifer thickness (b).1 
Storage coefficients for fractured rock have been reported 
from 2 × 10-4 to 6 × 10-6 (Randall and others, 1988; Tiedeman 
and Hsieh, 2001; Paillet, 2001). Lyford and others (2003) 
calculated a storage coefficient of 9 × 10-4 based on an aquifer 
test at a high-yield supply well in the phyllite of the Eliot 
Formation less than 10 mi south of the study area. Analysis  
of earth-tide water-level fluctuations in the study area 
(appendix 3) indicates a bedrock-aquifer porosity of about 
0.02 percent and a specific storage (Ss) of approximately 
2 × 10-7. Nielsen (2002) estimated porosities of 0.08 to 
1.4 percent and 0.1 to 0.7 percent for schist and granitic rocks, 
based on geophysical analyses, in Bar Harbor, Maine.

Ground-Water Flow

Ground water flows toward water bodies from topo-
graphic highs to lows in the study area. The water table in 
the study area is generally 10 to 20 ft below the land surface, 
following the topography, except in wetlands and water bod-
ies, where the water table is at the land surface. The ground-
water system is recharged by precipitation at the land surface 
and discharges to streams or to tidal water bodies. Recharge 
is generally greatest in spring (March and April) and late fall 
(November and December). During summer months (July 
and August), evapotranspiration (ET) may cause the effective 
recharge to be zero or negative. 

Recharge

Seasonal and average annual recharge rates (table 2) were 
estimated by Flynn and Tasker (2004) or calculated by Robert 
Flynn (U.S. Geological Survey, written commun., 2005) for 
watersheds of nearby stream-gaging stations (Keirstead and 
others, 2004) and for subwatersheds in the study area  
(fig. 2). Flynn and Tasker (2004) analyzed the historical 
streamflow records of more than 50 streams statewide with 
respect to climatic, topographic, land-cover, and surficial-
geologic variables, using the techniques of Rutledge (1993, 
1998) to estimate seasonal and annual recharge by hydrograph 
separation. Long-term average annual recharge at the 
Oyster River station (USGS number 01073000), which is 

1 Storage in the bedrock aquifer derived from an aquifer hydraulic test 
is commonly reported using the term storage coefficient (dimensionless) 
because the thickness (b) of the bedrock aquifer is generally unknown. The 
storage discussed in this report with respect to the ground-water-flow model is 
specific storage (with units of l-1), which is applied to a prescribed aquifer (or 
layer) thickness.
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approximately 5 mi northwest of the study area, was estimated 
to be approximately 19 in/yr. The area of the Oyster River 
watershed is approximately 12 mi2, and 7 percent of it is 
covered by stratified drift. Estimated average annual recharge 
in the Mohawk River watershed in Strafford, N.H., a 7.5 mi2 
watershed consisting entirely of till-covered bedrock, is about  
19 in/yr (Flynn and Tasker, 2004). 

Recharge in the glaciated Northeast is commonly thought 
to be a function of sediment type with higher recharge rates 
attributed to coarse-grained sand and gravel and lower 
rates attributed to fine-grained sediments and tills. Many 
investigations in New England refer to a relation between 
sediment type and recharge. Weiss and others (1982) present 
a curve indicating increasing streamflow per square mile with 
increasingly coarse-grained sediment in Connecticut. This 
work may more appropriately indicate increased storage in 
coarse-grained sediments and not necessarily an increased 
amount of recharge. Recharge rates in till-covered areas and 
areas covered by stratified drift were found to be similar by 
recent investigations in Massachusetts (Bent, 1999), New 
Hampshire and Vermont (Flynn and Tasker, 2004), and 
Michigan (Hotschlag, 1997). Recharge rates in coarse-grained 
sediments are not necessarily higher than in till, but a well 
completed in coarse-grained sediments can capture water from 
a larger area with less drawdown.

Long-term recharge trends were assessed by analyzing 
monthly total recharge estimated by hydrograph separation 
(RORA method) (Rutledge, 1998, 2000) of daily streamflows 
at the Oyster River station between 1935 and 2003 (fig. 5). 
The median monthly total recharge is less than 1 in. from June 
to October, about 0.14 in. from July to September, and a high 
of 4.6 in. in March. The median monthly recharge was 0.9 in. 
(exceeded 50 percent of the time), whereas the mean monthly 
recharge was 1.6 in. (exceeded 35 percent of the time). Hydro-
graph separation results in negative recharge during some 
months, when there can be a net loss due to ET. 

Monthly recharge was estimated for the continuous 
streamflow-gaging stations in the study area (fig. 2) for the 
period of investigation (fig. 6). Recharge estimated for the 
Oyster River station was similar to that estimated for other 
stations in the model area. Recharge varied monthly with the 
amount of precipitation. Little or no recharge was estimated 
for July and August of each year and for January 2004  
(0.60-in. precipitation). Peaks were estimated for March 2003 
and April 2004; however, monthly total recharge estimates 
for March 2003 at the Oyster, Winnicut, and Hampton Falls 
stations were not realistic in that they were greater than the 
precipitation total for the month. Hydrograph-separation 
techniques are not always appropriate at small time scales, 
such as monthly intervals, and must be used with caution 

Table 2. Recharge estimates calculated for streams in southeastern New Hampshire and northern Massachusetts, and estimated for 
selected watersheds in the Seacoast model area, southeastern New Hampshire.

[Areas of stratified drift from Flynn and Tasker (2004), based on areal coverages published earlier than the extents listed in table 1; mi2, square miles; in., inches; 
—, not available]

Stream
Record  
length 
(years)

Drainage 
area
(mi2)

Stratified 
drift

(percent)

Average 
annual 

recharge
(in.)

Normalized 
average 
annual 

recharge
(in.)

Winter1

(in.)
Spring1

(in.)
Summer1

(in.)
Fall1

(in.)

Mohawk Brook2 11 7.5 0 18.7 23.9 5.4 7.6 1.6 4.2
Oyster River2 50 12.1 7 19.5 20.7 5.9 7.6 2.8 4
Dudley Brook2 23 5.8 25 — — 3.9 5.2 1.4 2.4
Parker River, Mass.2 50 21.2 4 23.1 26.1 7.8 8.8 3.9 4.8
Mill Brook3 Estimation 2.5 64 21.8 — 6.0 7.3 2.5 4.3

Winnicut River3 Estimation 14.2 35 22.0 — 6.1 7.3 2.5 4.3

Berrys Brook3 Estimation 5.4 36 22.2 — 6.1 7.3 2.5 4.4

Little River3 Estimation 6.1 23 20.5 — 5.8 7.0 2.4 3.9

Taylor River3 Estimation 8.4 7 20.1 — 5.8 7.1 2.5 3.8

Hampton Falls River3 Estimation 3.6 10 22.2 — 6.3 7.5 2.4 4.3

Great Brook3 Estimation 5.5 1 22.0 — 6.2 7.5 2.5 4.3
1Seasons as used by Flynn and Tasker (2004):  Winter is January 1 through March 15; Spring is March 16 through May 31; Summer is June 1 through 

October 31; and Fall is November 1 through December 31.
2Analysis of historical streamflow records from Flynn and Tasker (2004).
3Calculations based on watershed characteristics (Robert H. Flynn, U.S. Geological Survey, written commun., 2005).
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(Rutledge, 2000). It was assumed that recharge is not greater 
than 65 percent of precipitation for these months. Monthly 
recharge was estimated to be a few percent of precipitation 
in the summer months, about 30 to 50 percent in the fall, and 
about 65 percent of precipitation in April. 

Water Levels

Ground-water levels were measured at selected stratified-
drift, till, and bedrock monitoring wells in the study area  
(fig. 7). Water levels also were available from Aquarion Water 
Company (Raymond Talkington, Geosphere Environmental, 
written commun., 2005) Golf Club of New England (Timothy 
Warr, Exeter Environmental, written commun., 2005), and the 

former Pease Air Force Base (Peter Forbes, U.S. Air Force, 
written commun., 2004; William Pepe, Montgomery Watson 
Herza, written commun., 2005). Historical water levels were 
obtained from drilling completion reports and a waste-site 
inventory of well information (GEOLOGS); both databases 
were maintained by the NHGS (Frederick Chormann, New 
Hampshire Geological Survey, written commun., 2004). 

The longest water-level record within the model area was 
provided by Aquarion Water Company in support of a NHDES 
ground-water-withdrawal compliance program. Water levels 
have been measured at an overburden (stratified-drift) and 
bedrock-well pair since July 1997 (fig. 8). Water levels reach 
their annual peaks in the spring between late March and early 
May, and are low in the late fall and occasionally in the winter 
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Figure 7. (A) Ground-water monitoring wells in the study area.
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during periods of low precipitation. The historical total ranges 
in water levels in these wells, the difference between maxima 
and minima, are about 12 ft in the bedrock and 15 ft in the 
overburden aquifer. The typical annual range is about 8–10 ft 
in either the stratified drift or bedrock, and therefore, water 
levels generally vary to about 4 to 5 ft above or below median 
values. The overburden- and bedrock-well hydrographs reflect 
seasonal hydraulic gradients. During high water levels, the 
overburden head is typically higher than the bedrock head, and 
ground water is moving downward into the bedrock. During 
periods of low recharge, the head in the overburden may be 
similar to the bedrock head or below it, indicating that water 
may have drained from the overburden aquifer. At nearby 
long-term (1953–2004) monitoring well NH-LIW 1 in Lee, 
N.H., less than 10 mi northwest of the study area, water levels 
in a coarse-grained deltaic deposit situated above other depos-
its have followed a similar pattern but with about a 2-ft annual 
water-level fluctuation (Keirstead and others, 2004, 2005). 

Ground-water levels in 3 till and 3 bedrock wells were 
collected continuously in the study area during the investiga-
tion (fig. 9). In general, water levels at the wells show simi-

lar rises and falls in response to precipitation events. Wells 
completed in till (SSW-7, HEW-45, and GTW-156) show a 
greater natural range in water-level fluctuations. Well SSW7 
shows about a 13-ft range in water levels during the period of 
investigation. A 10-ft range was observed in periodic measure-
ments made at SSW-7 in the mid-1950s (Bradley and  
Peterson, 1962). It is interesting to note that a decline in water 
level of more than 3 ft occurred from July 28 to August 4, 
2004, and July 28 to August 5, 2005, when the well went 
dry (not shown). These periods coincide with the high water 
demands of the Stratham Fair, which was supplied by a 
bedrock well less than 100 ft away from well SSW-7. The 
hydrograph for well GTW-156 shows a smaller range in 
water levels (about 8 ft) for a till well; however, it is near a 
dam on the Winnicut River, and the water-table fluctuations 
were likely to be somewhat damped by the pond formed by 
the dam. The water-level fluctuation at till well HEW-45 also 
is about 10 ft annually. A domestic bedrock well is less than 
50 ft from HEW-45, but its use is relatively low and it likely 
imposes a small stress on the overlying till aquifer. Historical 
water levels measured at HEW-1, a dug till well approximately 
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1,000 ft west of HEW-45, show a 20-ft range from December 
1953 to December 1957 (Bradley and Peterson, 1962). This 
well was used for domestic supply at the time, and it is likely 
that during periods of greater depths to water on the hydro-
graph, the well was actually dry. Although till has a specific 
yield similar to stratified drift (about 0.25 percent), till aqui-
fers have low hydraulic conductivity, cannot readily transmit 
ground water to nearby drainage areas (or to sources of stress), 
and show a greater water-level response to precipitation than 
a coarse-grained aquifer. As observed at well SSW-7 (fig. 9), 
saturated till deposits provide some storage of ground water 
to underlying aquifers. Lyford and others (2003) found that a 
till aquifer in Newbury, Mass., provided a source of water for 
withdrawals in the underlying bedrock aquifer. Because of low 
hydraulic conductivity in a till aquifer, the water stored in it is 
only readily transmitted to nearby sources of stress. 

The effects of residential development and associated 
domestic water use on ground-water levels were observed 
in some monitoring wells during the study period. Without 
anthropogenic stresses, such as nearby withdrawals, the annual 
range in bedrock ground-water levels is typically less than  
3 ft. For example, the range in the water levels at two bedrock 
wells monitored in the study area—HEW-44, a high-yield  
(50 gal/min) bedrock well, and GTW-141, a moderate-yield  
(5 gal/min) bedrock well—were slightly less than 3 ft dur-
ing the period of study. Near the end of the study (2005), a 
residential development was constructed within 500 ft of 
bedrock monitoring well HEW-44. The installation of domes-
tic wells by rotary drilling with a yield test upon completion 
caused anomalous rapid water-level declines in HEW-44 that 
corresponded with the timing of well installations. During this 
same period, the range in water levels at USGS monitoring 
well NH-PBW-148 (about 35 mi to the west) was about 2.5 ft. 
Hydrographs for the well pair SSW-248 and SSW-249, located 
in a rural neighborhood in Stratham, N.H. (fig. 8) (Raymond 
Talkington, Geosphere, Inc., written commun., 2005), showed 
a maximum range of about 16 ft, and a typical annual range 
of about 8–10 ft, between 1997 and 2004. The annual range 
in water levels at the Stratham well pair may be influenced 
by domestic water use at nearby wells. The mean-daily water 
level in well GTW-157, an unused bedrock well in a neigh-
borhood with nearby domestic wells, showed a range of over 
12 ft. Instantaneous water-level measurements at GTW-157 
indicated an even greater range in water-level changes  
likely caused by nearby well interference. The peaks of the  
GTW-157 hydrograph, which does not show the instantaneous 
responses, show an annual water-level range of about 6 ft. 
The rapid response to precipitation indicates that the bedrock 
aquifer receives rapid recharge because it is in good hydraulic 
connection with surficial deposits. A pronounced drawdown 
pattern (fig. 10) was measured at a well pair consisting of 
an active domestic bedrock supply well and unused over-
burden (till) well (Timothy Warr, written commun., 2006). 
Drawdowns in the bedrock well were commonly between 
5 and 15 ft, but the water level recovered daily and showed 
seasonal trends even with daily use of the well. Water levels 

from the nearby till well (fig. 10) showed seasonal trends and 
the effects of the domestic withdrawals. Head differences 
observed at the wells during stressed periods, summer and fall, 
indicate that the overburden aquifer is likely supplying water 
to the underlying bedrock in the early summer (indicated by 
overburden heads above bedrock heads) and may become 
depleted late in the summer or early fall (indicated by overbur-
den heads below bedrock heads). During less-stressed periods 
of the year, with higher water levels, heads in the aquifers 
were generally nearly equal. The coincidence between the flat 
part of the till water-level record in September 2003 and the 
maximum water depth indicates that the till well was dry. 

The long-term monthly record for LIW-1, a dug well 
in stratified drift 8 mi west of the study area in Lee, N.H. 
(Keirstead and others, 2005), indicates that the water level 
in this well rose and fell in the same manner as the water 
levels in the Stratham well pair. The range in water levels at 
LIW-1, however, was less than 1 ft annually because of the 
coarse-grained and well-drained nature of the aquifer. Because 
the aquifer can drain rapidly through good connections to 
nearby sinks (drainages), the head in LIW-1 fluctuates little 
with recharge. If there were no other stresses, the head in 
the aquifer would seek the altitude of the sink, the nearby 
streams. In contrast, the water level in the Stratham surficial 
aquifer closely paralleled the bedrock water level (correlation 
coefficient of 0.97). The stratified drift mapped at this location 
is not well connected to drainages, and the natural drainage of 
ground water in this aquifer system is through the adjacent till 
and bedrock aquifers.

Water levels measured periodically since 1994 in bedrock 
monitoring wells near a municipal well field in northwest 
Seabrook (Douglass DeNatalie, Earth Tech, written com-
mun., 2005) show that water levels declined from approxi-
mately 1996 until about 2002 (fig. 11) as a result of increased 
withdrawals combined with several years of low precipita-
tion (appendix 1). Ground-water levels rose with increased 
precipitation at the end of a drought (2002) and possibly also 
because of changes in withdrawal amounts or locations. Water 
levels in well SGW-26 in the stratified-drift aquifer showed 
some withdrawal-related changes of more than 30 ft. Although 
there were too few observations to show seasonal trends, water 
levels in the surficial aquifer usually recovered to high levels 
during non-summer seasons and other low-stress periods. 
In general, water levels in the surficial and bedrock aquifers 
recovered rapidly—within a few months—with reduced with-
drawals and increased precipitation. 

Surface Water

The study area consists of many small watersheds that 
drain directly to tidal water bodies (fig. 2). The Winnicut River 
watershed, in the center of the study area, is the largest water-
shed (14.2 mi2), followed by the Taylor River (8.41 mi2) and 
Hampton Falls River (6.7 mi2) watersheds (table 1). Because 
of the low relief (generally less than 60 ft) and extensive 
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wetlands in the center of the study area, the drainage divide 
between some adjacent watersheds, such as the Winnicut and 
Taylor River watersheds, is difficult to distinguish. Stream-
flow was measured at 6 continuous streamflow-gaging stations 
selected to represent the larger watersheds in the study area, 
and miscellaneous streamflow measurements were collected at 
17 partial record stations (fig. 2, table 3). Few locations pro-
vide suitable hydraulic conditions for stream gaging. The loca-
tions suitable for continuous streamflow gaging, particularly 
Berry’s Brook and Little River, also were favored by beavers 
and were difficult to keep clear of beaver dams and debris. 

Average flow in the Winnicut River for water years 
2002–2004 is 22.3 ft3/s or 1.65 ft3/s/mi2. The 90-percent flow 
duration for this period was 2.2 ft3/s. The lowest daily mean 
flow was 0.30 ft3/s and occurred on 9 days in August and 
September 2002 (Keirstead and others, 2004). Mean annual 
and monthly (table 3) base flows at streamflow-gaging sta-
tions in the study area were calculated by using the automated 
hydrograph-separation method PART (Rutledge, 1993, 1998). 
Annual base flows calculated for 1934 to the present for the 
long-term Oyster River streamflow-gaging station are shown 
for comparison. An investigation of streamflows in Maine 
indicated a trend of earlier spring peak flows during the 20th 
century over the period of record but generally no change in 
total annual flow (Dudley and Hodgkins, 2002). Figure 12 
shows monthly mean base flows calculated for 2002–04 for 
the study area.

There are few freshwater bodies in the model area, and 
most are small ponds. An impoundment near the outlet of one 
water body, Dearborn Brook in Exeter (fig. 2), forms a small 
(about 0.01-mi2) surface-water reservoir. Wetlands (fig. 3) 
extend throughout the center of the model area, particularly 
in the Winnicut, Taylor, Pickering, Packer, and Berry’s River 
watersheds. Large ponds and wetlands represent a surface 
expression of the regional water table. Where withdrawals 
in a well field lowered the water table, some wetlands were 
perched above the water table (Geosphere, 2003). Small  
ponds and wetlands, representing a more localized drainage 
feature, were more likely to be perched above the water  
table than more extensive wetlands or water bodies. For 
example, streamflow measurements at Nilus Brook and an 
unnamed tributary to Little River in Hampton in October 2004 
(table 3) likely represent drainage from a seasonally perched 
pond and wetland.

Ground-Water-Flow Simulation
Ground-water flow was simulated by a numerical 

ground-water-flow model to assess regional ground-water 
availability by accounting for, and providing a means to quan-
tify, all components of flow in the aquifer system. To assess 
the components of the ground-water-flow system, models 
were developed and calibrated under steady-state seasonal 
low-flow and transient monthly conditions. The development 

and calibration of these two models are discussed in the report 
sections Steady-State Model and Transient Model. Two model 
scenarios are then discussed, in the report sections indicated, 
to simulate current and future projected water use (Potential 
Future Water Use) and current and future projected climate 
change conditions (Potential Climate Change). 

A summary of the models developed for calibration, 
parameter estimation, and various simulations is provided 
in table 4. The models include (1) simulation of current and 
future water use by a steady-state model representing seasonal 
low-flow conditions; (2) simulation of current and future 
climate change by a transient model representing estimated 
future monthly conditions for a 2-year cycle; and (3) simula-
tion of historical ground-water flow and residence time by a 
transient model representing annual average conditions over a 
55-year period.

The three-dimensional finite-difference ground-water 
flow program MODFLOW-2000 (Harbaugh and others, 2000) 
was used to simulate ground-water flow. By this technique, the 
ground-water-flow system is subdivided into a grid consisting 
of layers of cells with unique hydrologic properties. Physical 
processes in the natural system, such as recharge, streamflows, 
and wells, were represented numerically as boundary condi-
tions in the model. Parameters (Hill and others, 2000) were 
used to describe recharge and the hydraulic conductivity, 
or a multiplier of conductivity, of specific geologic units or 
zones of similar surficial materials; riverbed conductivity; and 
constant-head cells. 

Model Design and Spatial Discretization

The regional ground-water-flow system is one of thin 
and discontinuous surficial aquifers underlain by a fractured 
crystalline-bedrock aquifer. Figure 13 provides a conceptual 
and numerical representation of the ground-water flow system 
of the study area.

The lateral boundaries of the model were selected to 
coincide with major hydrologic features, primarily tidal water 
bodies, of the Seacoast (figs. 1, 2). The area of the model 
domain was approximately 190 mi2 (160 mi2 in New 
Hampshire and 30 mi2 in Massachusetts) and was surrounded 
by a no-flow boundary. Model grid-cell sizes were determined 
by trial and error. Determining the optimum grid-cell size 
required evaluating the resolution of the simulated hydrologic 
features with respect to the time required for data-set develop-
ment and simulation computation time, both which increase 
dramatically with small cell size. The model was simulated 
with a grid-cell size of 200 by 200 ft. Smaller grid spacing 
was tested, primarily to provide finer stream discretization but 
resulted in greatly increased computer storage and simulation 
time with little improvement in the regional simulation. 

The model is subdivided vertically into five layers  
(fig. 13). Model grid-cell elevations were interpreted with 
respect to 30-meter Digital Elevation Model (DEM) point ele-
vations. The upper surface of the model (layer 1) corresponds 
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to the nearest DEM 30-meter grid-cell elevation. All other 
elevations used in the model were calculated from the surface 
elevation interpreted for each individual grid cell. Layer thick-
nesses and extent were chosen to represent both hydrogeologic 
characteristics and numerical considerations. Layers 1 and 
2 represent primarily surficial deposits or water bodies. The 
thickness of layer 1 in marine areas was equal to the surface-
water depth provided by bathymetric data for areas including 
Great Bay, Piscataqua River, and the Atlantic Ocean. On land, 
the thickness of layer 1 was determined from contours repre-
senting thickness of the stratified-drift aquifer (Moore, 1990; 
Stekl and Flanagan, 1992), bedrock well casing lengths and 
boring data, and thicknesses inferred from surficial mapping. 
Model layers 3 and 4 were each 300 ft thick, following the 
base of layer 2, and model layer 5 was 400 ft thick following 
the base of layer 4 (fig. 13).

The conceptual model of the ground-water-flow system 
is one of a fractured crystalline-bedrock aquifer with a range 
of regional hydraulic conductivities and an overlying layer of 
thin unconsolidated glacial sediments and discontinuous strati-
fied-drift aquifers. The stratified-drift aquifers cover about  
24 percent of the total model area (table 1); however, the high-
yielding stratified-drift aquifers cover much smaller areas. A 
continuum approach, in which the fractured bedrock net-
work is represented as an equivalent porous medium (Hsieh, 
2002), was used in the simulation of ground-water flow. For 
this purpose, bulk hydraulic properties are usually sufficient 
to describe regional ground-water recharge, discharge, and 
storage (Shapiro, 2002). Bulk hydraulic properties in this 
case refer to aquifer properties such as hydraulic conductiv-
ity, which can be assumed to be constant at a particular scale 
for a specific geologic material or unit. For example, in the 
Seacoast model area, a specific gneiss generally has a greater 
hydraulic conductivity, as indicated by well yields, than that 
of a nearby schist. Despite local variations in the hydraulic 
conductivity of both rocks, the bulk hydraulic conductivity of 
the gneiss is greater than that of the schist at the regional scale. 
Through the use of the continuum approach, regional varia-
tions in hydraulic conductivity and other hydraulic properties 
were incorporated into the model to account for heterogeneity 
in aquifer properties at the regional scale. 

The ground-water models developed herein were 
designed to represent ground-water flow in the regional 
aquifer system. Although the models incorporate specific large 
ground-water withdrawals in the surficial and bedrock aqui-
fers, they cannot be used to accurately characterize ground-
water levels near withdrawal wells or specific ground-water 
flow paths at the cell level of precision. The models can be 
used to calculate regional- or subwatershed-level ground-water 
balances, regional changes in ground-water levels, and general 
flowpaths. Data sets for the Seacoast ground-water-flow mod-
els are available on the DVD at the back of the report and at 
http://pubs.usgs.gov/sir/2008/5222/.

Simulated Recharge, Discharge, and Storage

The regional ground-water-flow models (described above 
and in appendixes 5 and 7) were used to assess ground-water 
availability in the Seacoast area. Model analyses indicate that 
the Seacoast aquifer system is a transient flow system with 
seasonal ground-water flow variations. Seasonal high flows 
are in March and April, and low flows occur from July through 
October. The fall is generally a more stable period and can be 
termed a pseudo-steady state; fluxes are lower, and inflows 
and outflows are approximately balanced. Figure 14 provides 
a simulated-head surface representing a seasonal low-flow 
condition in October 2004. 

The transient ground-water-flow model was used to 
assess average monthly and specific monthly recharge rates 
for 2003 and 2004 (appendix 7). The average annual recharge 
during the study period (22 in/yr) was approximately  
51 percent of the annual precipitation (table 7–1). The  
average monthly rate of recharge between 2000 and 2004 
ranged from 5.5 in/mo in March to net recharge rates of zero 
in July and about 0.3 in/mo in August and September (fig. 15). 
Average recharge increases to about 2 in/mo in late fall and 
early winter and declines to about 1.5 in/mo in late winter.  
In general, about 50 percent of the annual recharge occurs 
in the spring and 20 percent occurs in the late fall and early 
winter. Although monthly precipitation is typically between  
3 and 5 in/mo (fig. 6), monthly recharge can be greater  
than the actual precipitation during snowmelt periods, and  
net recharge (recharge minus ET) can be negative during  
the summer. 

Streamflows in the Seacoast aquifer system originate 
from recharge within the study area. Ground water in the 
bedrock aquifer system may follow a short or long flow path 
because of factors such as position in the flow system and 
local stresses. In general, ground water in the bedrock aquifer 
near the coastal boundary has followed a relatively long flow 
path from its source of recharge, compared to other areas, and 
may have recharged the aquifer over 30 years ago. With the 
addition of withdrawal stresses, the natural flow system would 
be altered and ground-water-flow paths may become shorter 
and the withdrawn water younger. Some of the ground water 
contributing to a withdrawal well is generally a mix with short 
and long residence times. The water may have traveled a rela-
tively short distance, on the order of hundreds of feet, and may 
have recharged the aquifer within months to a few years. The 
withdrawal also may include water that has traveled farther 
through the flow system and has a residence time of decades. 

The amount of ground water that could flow into the 
Seacoast area from inland areas to the west (from outside 
the model area) is likely to be insignificant. Some ground 
water may flow thousands of feet deep in the bedrock aquifer, 
following regional paths, in accordance with flow concepts 
described by Toth (1963). The nature of the bedrock aquifer 
itself and of the hydrologic boundaries between the Seacoast 
model area and the inland areas to the west of Great Bay  

http://
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Figure 14. Surface representing calculated steady-state heads for model layer 3, October 2004, Seacoast model area, 
southeastern New Hampshire.
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(a high equivalent freshwater-head boundary), the shorelines 
and the Squamscott River (low heads at points of discharge), 
and the low hydraulic conductivities of the bedrock aquifers 
prevent regional ground-water inflows from the inland areas 
from being a significant component of the Seacoast water 
balance. Such flow, if present, would consist of slow-moving 
ground water in low-yielding deep bedrock areas and would 
not be a sustainable supply source. 

Storage
Ground water is stored in the Seacoast area in the pore 

space of unconsolidated overburden sediments as primary 
porosity and in fractures in the crystalline bedrock as 
secondary porosity. The total volume of water stored in the 
Seacoast aquifer system was estimated on the basis of model-
cell thicknesses and assumed bulk hydraulic properties. See 
the Hydraulic Properties section of the report for a discussion 
of these properties. Approximately 560,000 Mgal may be 
stored in the Seacoast model area aquifer system (table 5), 
although storage may range from 260,000 to 1,600,000 Mgal 
for the sediment or rock porosities assumed to be present. 
The estimated ranges for water storage in the unconsolidated 
sediments in table 5A were calculated by adding or subtracting 
10 percent from the assumed primary porosities or specific 
yields. The estimated range in water stored in the bedrock 
aquifers were calculated by varying the secondary porosity 
one order of magnitude lower, and one-half an order of 
magnitude greater, than the assumed porosities (table 5B). 

Estimates of the total volumes of water stored in the 
aquifer system (table 5) are useful for comparing the relative 
storage volumes for different geohydrologic zones and their 
contribution to the entire Seacoast aquifer system. Noteworthy 
is the amount of water stored in unconsolidated till and 
fine-grained sediments; these sediments are generally not 
considered primary aquifers; however, they do contribute 
water directly to the underlying bedrock aquifer. In the model 
area (fig. 3), these sediments store more than twice as much 
water as the coarse-grained unconsolidated-sediments  
(table 5A). The bedrock aquifers associated with model  
zones Rx1 (Rye Complex and Breakfast Hill granite of the 
Rye Complex) and Rx2 (Kittery Formation) (fig. 4) are 
estimated to have the most water in storage, about 77,000 to 
99,000 Mgal, respectively, as a result of their areal extent  
(fig. 4) and assumed bulk secondary porosities (table 5B). 
Model bedrock zone Rx3 (the Eliot and Berwick Formations) 
was estimated to have nearly as much water in storage  
(58,000 Mgal) as each of the model bedrock zones Rx1 and 
Rx2. Model bedrock zone Rx4, representing the Newburyport 
Complex and Exeter Diorite, was estimated to have less water 
in storage as a result of its smaller areal extent (fig. 4) and 
lower assumed secondary porosity than the other zones  
(table 5B). 

Theoretical volumes of water that could be released  
by the Seacoast area aquifer system also were estimated  
(table 5). Total volumes and the amounts that could be 

released by 3- and 10-foot water-level (head) declines are 
provided. The range in water volumes that could be released 
from the unconsolidated aquifers was estimated by adding 
and subtracting 10 percent from the assumed specific yield. 
The range in water volumes that could be released from the 
bedrock aquifer was calculated by varying the specific storage 
by plus and minus one order of magnitude. Many variables 
used in the transient flow models to generate the estimates in 
table 5 were approximated at a regional scale; therefore, the 
volumes of water stored should be considered gross estimates.

Numerous qualifications and limitations are associated 
with the storage estimates in table 5. For instance, the second-
ary porosity and specific storage of bedrock aquifers are not 
well known, and the specific storage, in particular, may differ 
from estimates by orders of magnitude. Table 5 indicates that a 
considerable volume of water is stored in the bedrock aquifer. 
However, a much smaller volume of water can theoretically 
be released from the aquifer system and most of the water 
released would be from overburden aquifers. The volume of 
water that can be released from the bulk storage of an aqui-
fer is limited by the hydraulic properties of the aquifer. The 
volume of water that could potentially be released, or drained, 
from the unconfined surficial aquifer is limited by specific 
yield, which is less than the porosity of the aquifer. At least 
10 percent of the bulk water in the surficial aquifers will be 
retained in the pore spaces after water drainage or withdrawal. 
Under confined conditions in the bedrock aquifers, the amount 
of water that can be released, determined by the specific stor-
age, is orders of magnitude less than the bulk water estimated 
by the secondary porosity (table 5B). Where the bedrock aqui-
fer actually dewaters and becomes unconfined (not calculated 
in table 5), the water released by drainage would be the water 
stored in the secondary porosity, or less than 1 percent of the 
volume of the rock drained. 

Additional limitations include the well efficiencies and 
effectiveness and spatial constraints of well placement and 
aquifer setting. For example, releasing the total volume of 
water stored in an aquifer would require lowering the water 
level to the base of the aquifer. This would not be realistic; 
closely-spaced wells, tens to hundreds of feet apart, would 
have to be installed throughout the entire aquifer area. An 
estimated 85,000 Mgal of water would be released from 
storage by a 10-ft decline in the water table (table 5A,B). Such 
a large decline, however, is also not realistic for the entire 
model area because of limitations on well placement. In highly 
developed, restricted, or peripheral areas of the flow system, 
installing as many wells as would be needed to capture water 
is not practical. Greater head declines (tens to hundreds of 
feet) are known to occur locally in response to ground-water 
withdrawals. Such large head declines, however, generally do 
not propagate far in the bedrock aquifer because of the low 
bulk hydraulic conductivities. 

A more realistic scenario was based on a smaller, 3-ft 
head decline, which may occur over the course of a year in 
most of the study area. Given this condition, it was estimated 
that relatively little water would be released from the bedrock 
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aquifer (0.11 Mgal), but a much greater amount would be 
released from the overburden sediments (25,700 Mgal). 
Because the bedrock aquifer and the overlying unconsolidated 
aquifers in the study area are hydraulically well connected, the 
water released from the overburden aquifers would contribute 
to the water available from the bedrock aquifer. Thus, 
sediments that generally are not considered primary aquifers, 
such as till or fine-grained sediments, have an important 
role in contributing a considerable amount of water to the 
underlying bedrock aquifer. 

The 25,700 Mgal associated with a 3-ft head decline 
also corresponds to the amount of water released annually 
due to seasonal drainage. This water is not available for use 
but is released from the aquifer system to streams and other 
water bodies such as tidal estuaries. On the basis of simulated 
recharge rate of 22 in/yr (appendix 7, Transient Model), an 
estimated 35,000 Mgal/yr moves through the entire aquifer 
system. The transient-model analysis indicates that a larger 
volume of water moves through the bedrock aquifer on a daily 
basis; this larger volume highlights the importance of recharge 
and hydraulic connectivity in the bedrock-aquifer system. 
Both the bulk water in the aquifer system and the water mov-
ing through the system are about an order of magnitude larger 
than the approximate 3,800 Mgal/yr currently being extracted. 
In addition, the amount of water available for use at a location 
depends on many local factors, including the amount of water 
that can physically be extracted without exceeding drawdown 
limitations at the well and the ability for water to flow to a 
supply well; these factors are governed by the hydraulic prop-
erties of the aquifer. Finally, where water can be extracted, 
the resultant stress on the aquifer system must be evaluated 
with respect to declines in ground-water levels elsewhere and 
discharges to streams or other water bodies. 

Future Water Availability

In the evaluation of future water availability, two fac-
tors were of primary concern:  increased use of water associ-
ated with projected population growth, and potential changes 
in precipitation and ET that may be associated with climate 
change. The future population growth in the Seacoast area 
has been projected by the Rockingham Planning Commission 
(RPC) for the years 2017 and 2025 (Tom Falk, Rockingham 
Planning Commission, written commun., 2006), whereas the 
Union of Concerned Scientists has forecast climate change 
globally, including New Hampshire (Ekwurzel, 2006). 
Detailed coefficients for water use and projected future water 
use, based on population projections for Rockingham County, 
N.H., have been developed by Horn and others (2007) for the 
study area. Increases in future water demand in the model area 
of approximately 20 and 33 percent have been projected for 
2017 and 2025, respectively, and were used in this investiga-
tion as the basis for future simulated water demands.

Along with increasing water use, potential climate change 
may affect future water availability. An objective of the study 
was to assess the effect of adverse climate conditions on the 
hydrology of the Seacoast area. Discussion of climate change 
within this century includes projections of increasing tempera-
tures and changing precipitation patterns; some researchers 
indicate that climate changes are currently occurring (Hayhoe 
and others, 2006; Hodgkins and others, 2003, 2005; Hodgkins 
and Dudley, 2006; Huntington and others, 2004). A similar 
ground-water-flow simulation was conducted by Scibek and 
Allen (2006) to assess the effect of climate change on ground 
water in British Columbia, Canada. The Intergovernmental 
Panel on Climate Change (IGPCC) forecasts that the pro-
jected increasing temperature in the northern United States 
will lead to earlier spring snowmelts and patterns of reduced 
summer runoff (Intergovernmental Panel on Climate Change, 
2001). Increases in temperature and changes in ET and 
precipitation patterns in New England presented by Hayhoe 
and others (2006) were interpolated and used as a basis for 
climate change in this investigation. The effects of increasing 
future water use and potential climate changes on the Sea-
coast ground-water resources were evaluated with respect to 
changes in base flows and ground-water heads. 

Potential Future Water Use

A steady-state ground-water-flow model, described above 
and in appendix E, was used as the basis for calculating the 
effect of future water demands and uses on the water balance 
in the study area. The steady-state model represents a seasonal 
low-flow condition (October 2004) to provide an analysis of 
water demand during critical periods of low water availability. 
During high-flow periods, seasonal water demands generally 
are less critical for human or biotic needs. Projected water 
demands were based on the RPC’s Transportation Analysis 
Zone (TAZ) regional growth model and water-use coefficients 
developed by the Seacoast water-use investigation (Horn and 
others, 2007). Projected water-use demands were calculated 
for the years 2017 and 2025 for TAZ areas. The TAZ areas are 
subdivisions of town areas and were larger than the census 
block areas used in model calibration (appendix 5) but TAZ 
area water-use projections were distributed in a consistent 
manner. The future demands (2017 and 2025) were compared 
to ground-water flow and water-use simulations based on 
2003 TAZ data to provide current and future simulations with 
consistent water-use and planning methodology. Because 
of differences in population-projection zones used in the 
future water-use analysis, the water-use compilation used in 
the future water-use scenarios is slightly different from the 
water-use compilation used in the monthly transient model 
calibration (discussed in detail in appendix 7). Although 
the water-use compilation used in the transient model is 
more precise for current (2003–04) water uses, a base 
scenario calculated on the basis of generalized 2004 water-
use information, but in the same manner as the scenarios of 
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future water uses, was used to provide a consistent water-use 
compilation for simulation comparisons. 

The distribution of current and future withdrawals and 
returns was determined on the basis of existing large ground-
water withdrawals, water and sewer distribution systems, 
wetlands, and protected areas. Rates of existing registered 
withdrawals were increased to projected withdrawal rates by 
the percentage of change calculated for the TAZ projections 
for 2003 to 2017 and 2003 to 2025. Areas currently supplied 
by water sources external to the model area were assumed to 
continue to be externally supplied and were not included in 
the areas for which withdrawals were simulated. The per-
centages of change in the current and future TAZ projected 
withdrawals were assigned to the wells that supply areas 
that have water-distribution systems. In the model, existing 
overburden or bedrock wells were represented by simulated 
wells in model layers 1 or 3. The changes in TAZ withdrawals 
for areas served by water-distribution systems were compared 
to determine the relative changes in withdrawals over time. 
Current (2004) total withdrawals, registered and distributed, in 
the model area were approximately 10 Mgal/d. Factors of 1.20 
and 1.33 were applied to withdrawal rates at existing water 
system withdrawal wells to simulate 2017 and 2025 withdraw-
als, respectively. In areas without water-distribution systems, 
current and future withdrawals were distributed over simulated 
withdrawal areas (appendix 5, fig.5–5A) according to the 
percentage of change in water use in the TAZ areas.  

Estimated withdrawals for some areas could be greater 
than what could probably be obtained from the surficial or 
bedrock aquifer at that location. For example, obtaining a high 
yield from a bedrock well requires locating fracture zones that 
intersect sufficient fractures to access ground water stored in 
the regional aquifer system. Such fracture zones may not exist 
or they may not yet have been identified. This study did not 
assess the locations of potential fracture zones or supply wells. 
Evaluation of the potential yield of an individual well can only 
be done with site-specific investigations. This study evaluated 
the potential hydrologic impacts of such withdrawals within 
the regional aquifer. 

Distributed withdrawals (aggregated non-registered uses) 
were simulated using the Flow and Head Boundary (FHB) 
package (Leake and Lilly, 1997) by TAZ area. Return flows 
were distributed in areas not served by an external water sup-
ply and not served by an existing sewer system. Returns were 
estimated to be 85 percent (assuming a 15-percent loss) of the 
total water used (Horn and others, 2007) and were distributed 
over simulated return areas (appendix 5, fig.5–5) according 
to the percentage of change in water use in the TAZ areas. 
Returns were simulated using the FHB package as a source in 
model layer 2. 

The effects of increased water use include increased 
consumptive use and water transfers. Because treated sewer 
returns in the Seacoast model area are water transfers that 
are discharged to tidal water bodies, these transfers represent 
a loss of water from the hydrologic system. In some areas, 
supplied water is returned to leach fields and may result in a 

water input to the local hydrologic system. In the Seacoast 
aquifer system, almost all recharge enters the aquifer system 
through surficial sediments. Impervious surfaces cover about 
7.5 percent of the larger Seacoast region (Justice and Rubin, 
2005). Precipitation on bedrock and impervious surfaces 
generally flows to nearby surficial sediments. Precipitation on 
impervious surfaces that drain to a sewer system is transferred 
to another area in the aquifer or out of the area through a 
sewer, representing a loss of potential recharge; thus, recharge 
at an impervious surface is effectively zero. If the impervious 
surface does not drain to a sewer system or stream network but 
drains to surficial sediments, there is no change in recharge 
from the impervious surface. This was found to be the case for 
a 20-mi2 watershed in Maine where impervious surfaces dou-
bled (to 3.5 percent) over 35 years but little statistical change 
was detected in streamflow peaks or recessions (Dudley and 
others, 2001). Changes in base flow caused by sewering asso-
ciated with urbanization are well documented for other areas 
(Simmons and Reynolds, 1982; Spinello and Simmons, 1992). 
To assess the potential effect of the loss of return flows due to 
sewering, a second set of simulations was conducted in which 
the entire model area was assumed to be fully sewered and 
withdrawals were not returned to the aquifer.

Calculated water balances (recharge, outflows, and 
consumptive use) with respect to increased future water use 
are presented in figure 16 for the model area. For the Sea-
coast hydrologic system, future water-use scenarios projected 
decreases in fresh ground-water discharge to tidal water bodies 
of approximately 1 and 2 percent and decreased base flows of 
5 and 7 percent for 2017 and 2025, respectively (fig. 16). With 
a fully sewered scenario, projected decreases in fresh ground-
water discharge to tidal water bodies were approximately 3 
and 5 percent and decreased base flows of 9 and 13 percent for 
2017 and 2025, respectively.  The reduced discharges effec-
tively lengthen the low-flow periods in the annual flow cycle. 

Changes in ground-water heads differed by watershed 
and were larger in areas of greater demand and use  (fig. 17). 
Regional changes in ground-water levels were subtle but were 
greatest near large ground-water withdrawals with increas-
ing demands and in developing rural areas (fig. 17). In some 
areas of the model, simulated head contours moved inland 
with increased water use, particularly in areas with increased 
use and shallow head gradients (areas with less topographic 
relief). In addition, larger ground-water withdrawals in the 
system were typically in areas with less relief. Reduced 
freshwater discharge to tidal areas and lower heads in lowly-
ing coastal areas could cause the interface between fresh and 
saline ground water to move inland.

Potential Climate Change

Potential changes in ground-water conditions caused 
by climate change were simulated for a 2025 climate-change 
scenario. Interpolation of climate-change conditions projected 
for the end of this century to near-term (2017) conditions 
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would not be realistic. Potential climate changes may affect 
both the total annual recharge to the Seacoast hydrologic 
system and the timing of recharge during the year; therefore, a 
transient monthly ground-water-flow simulation was selected. 
All model parameters, with the exception of net recharge, 
were the same as those used for the transient monthly model. 
Although water demand for the year 2025 is projected to 
increase, the simulated climate change for 2025 was evaluated 
on the basis of the current (2003–04) water-use conditions to 
isolate the effects of only climate change without the influence 
of other variables. 

Hayhoe and others (2006) present meteorological, 
hydrological, and biological observations of recent climate 
change and estimates of potential future climate change for 
the northeastern United States. Projected climate conditions of 
interest to this investigation include changes in precipitation 
amounts and patterns, and changes in ET rates and growing-
season lengths caused by rising temperatures. Hayhoe and 
others (2006) indicate that, by the end of the century, average 
precipitation is projected to increase 11 to 14 percent during 
the winter and not to change or slightly decrease in the 
summer. Slight changes in precipitation patterns in these 
directions have been observed since 1970. Interpolating 

projections given by Hayhoe and others (table 3, 2006) to 
2025, winter precipitation may increase by 5 percent, but not 
change during other seasons. Increasing winter precipitation 
has also been accompanied by intensification of storms 
(Huntington, 2006; Wake and Markholm, 2005). This trend 
of intensification is projected to continue with an increase 
in both high and low streamflow events (Hayhoe and others, 
2006). In this investigation, analysis of monthly precipitation 
totals and base flows indicates that periods with intense storms 
increase the total precipitation but may not proportionately 
increase the base flow and, therefore, the effective recharge. 
Intense precipitation produces more runoff, and therefore, 
less recharge relative to the amount of precipitation, than 
recharge caused by less intense precipitation events. Thus, 
intensified precipitation is likely to lead to little increase, or 
even a decrease, in winter recharge. Increased temperatures 
would increase ET in spring and fall and thus would lead to a 
decrease in net recharge. Therefore, it is likely that the effect 
of more intense future storms on recharge in the future would 
be negative. 

In addition to changing precipitation amounts and 
patterns, two other likely effects of increasing temperatures 
were of primary interest to the Seacoast water-availability 
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Figure 16. Simulated current (2004) and future (2017 and 2025) ground-water discharge and consumptive use for the Seacoast 
model area, southeastern New Hampshire.
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study; runoff from spring snowmelt may occur earlier in 
the winter, and a longer growing season may extend ET 
earlier in the spring and later in the fall. Hodgkins and others 
(2005) and Hodgkins and Dudley (2006) have noted a trend 
of increasingly earlier spring runoff that is correlated with 
increasing temperatures. During the current investigation, the 
period of greatest recharge was March through April. If the 
growing-season length described by Hayhoe and others (2006) 
is interpolated to 2025, the growing season is predicted to 
extend 1 to 2 weeks longer into October in 2025 than currently 
(2004). ET is forecast to increase by 4 to 16 percent by the end 
of the century with most change occurring in the spring and 
summer (Hayhoe and others, 2006). For this investigation, it 
was assumed that the growing season in 2025 will begin two 
weeks earlier than present (2004). 

Figure 18 presents effective recharge (recharge minus 
ET) estimated for average monthly 2000–04 conditions  
(fig. 15) and recharge changes used in the ground-water-flow 
simulations for three likely future climate scenarios based on 
interpretation of future climate predictions by Hayhoe and 

others (2006). All future (2025) scenarios incorporated the 
effect of increasing temperatures on the Seacoast hydrologic 
system by simulating an earlier spring snowmelt and a 
longer ET season. In the first scenario, winter precipitation 
and the peak spring recharge were increased by 5 percent, 
and the effective recharge was calculated on the basis of 
current monthly precipitation-to-recharge ratios. The second 
scenario simulated no change in the winter-precipitation 
and peak-recharge rates. The third scenario simulated a 
5-percent decrease in winter recharge as may be caused by 
intensification of precipitation and a reduction in effective 
recharge. All scenarios were initiated by using heads from 
the end of the 2000–04 scenario (end of December) as initial 
boundary conditions. Two 2-year cycles of each future 
scenario were run to remove the effects of the initial boundary 
condition on the simulations.

Future scenarios were characterized by earlier 
peak recharge in late winter and a longer low-recharge 
period (fig. 18). The first future scenario, the base scenario, 
simulates a spring snowmelt that is shifted from March and 
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April into February and March. In addition, the estimated 
average monthly recharge rates for May and June were shifted 
one month earlier to April and May. Because of increased 
temperature and an earlier onset of ET, the spring net recharge 
would increase. In the current simulation, the net recharge 
for July was slightly negative (-0.2 in.), representing fully 
effective ET. On the basis of the assumption that the ET 
rate in the future June may be between the current June and 
July rates, the future June recharge rate was conservatively 
simulated at half the current June rate, or 0.5 in. The October 
recharge rate also was reduced by half to 0.4 in. to account 
for an increased ET rate. The winter rates for December and 
January (54 and 42 percent of precipitation, respectively) 
were 5 percent higher than present rates at 2.2 and 2.5 in., 
respectively. The future simulation was also assessed with 
winter recharge rates equal to present rates and with recharge 
5 percent lower than present rates (fig. 18). 

Base flows simulated for future climate conditions were 
compared to current average monthly base flows. The Winni-
cut River, the largest watershed in the study area, was used for 

this comparison (fig. 19). Because there is little storage in the 
Seacoast hydrologic system, changes in recharge result in sim-
ilar changes in base flows. The simulations indicated increases 
in winter base flows but decreases in spring and summer base 
flows. Similar to recharge (fig. 18), the peak base flow may 
be slightly greater but will likely occur earlier in the winter. 
An increase in the growing-season length (and consequently 
increased ET) would result in reduced net recharge and 
decreased water availability through the summer months. 

The effects of changes in the simulated net recharge 
(fig. 18) on regional ground-water heads in the bedrock aqui-
fer are shown in figure 20. The effects of the three scenarios 
on heads were similar at the regional scale. October heads in 
the bedrock aquifer were calculated for layer 3, for the second 
climate-change scenario (no change in winter precipitation), 
and were compared to the current average recharge scenario 
(fig. 20). Simulated changes were greater than the changes 
caused by increased water use. Apparent impacts were 
observed in all areas of the model but were greatest in low 
relief, high water-use areas.
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Another potential effect of climate change is sea-level 
rise. Ward and Adams (2001) estimate a 2-ft rise in sea level 
and inundation of low-lying areas of New Hampshire’s coast 
by the year 2100. The implications of such a change on 
Seacoast water resources would be two fold:  (1) an increase 
in the potential-head surface in tidal areas would cause the 
fresh ground-water/saltwater interface to move inland, and 
(2) additional areas of New Hampshire’s coastline would be 
inundated with saltwater, causing a landward movement of 
the interface closer to existing fresh ground-water aquifers. 
The effects of these changes would take time, possibly years, 
to propagate inland and achieve a new dynamic steady state 
between the aquifers and sea water. The effects of sea-level 
rise on ground-water resources were not simulated; however, 
the effects would be greatest in low-lying areas adjacent to 
the coast and less in interior areas of the Seacoast aquifer 
system. Ground-water resources immediately adjacent to the 
tidal areas, and primarily used for domestic supply, would be 
affected first and most strongly by a sea-level rise. 

Discussion
The October synoptic measurement conditions, and asso-

ciated steady-state simulation, were representative of seasonal 
low-flow rates but would not represent long-term average 
conditions; flow rates would be too low. The October steady-
state simulation is useful for simulation of a quasi-steady state, 
seasonal low-flow condition such as that investigated with the 
future water-use scenarios. Depending on the objective of the 
model, an average of the monthly recharge rates or a specified 
annual recharge rate, such as that derived from the transient 
analysis, may be appropriate for use in steady-state simula-
tions representing a multiyear or long-term ground-water-flow 
scenario as described in appendix 9. Anderson and Evans 
(2007) similarly found that calibrating a steady-state model 
to low-flow conditions may estimate recharge correctly for 
that period but would underestimate annual recharge. Simi-
larly, they found that steady-state average-recharge conditions 
can provide a representation of annual transient conditions. 
The seasonal and annual recharge rates calculated by Flynn 
and Tasker (2004) were comparable to those developed in 
this investigation despite differences in time discretization 
(seasonal compared to monthly) and analysis period (decades 
compared to recent years). These considerations indicate 
that regional simulations by the Seacoast ground-water-flow 
model may be most appropriate at longer time scales, such as 
seasonal or annual stress periods based on seasonal or annual 
average rates rather than on monthly or shorter stress periods. 
The spatial and temporal design of a simulation, however, also 
depends on the purpose and objectives of the investigation.

Because it is largely bounded by tidal water bodies, 
the Seacoast aquifer system may be affected by salt-water 
intrusion. Salt-water intrusion is not believed to be widespread 
but has been reported in some domestic supply wells adjacent 

to salt-water bodies. The orientation of the regional bedrock 
structure (northeast/southwest, parallel to the coast), and the 
estimated anisotropy of the hydraulic conductivity may limit 
the potential for salt-water intrusion to the larger ground-
water supply wells for much of the Seacoast bedrock aquifer. 
Lineaments oriented orthogonal to the regional structure 
(Ferguson and others, 1997a, b; Johnson and others, 1999) 
however, could represent important bedrock-fracture zones 
and a potential pathway for salt-water intrusion. A linear 
pattern orthogonal to the regional structure is apparent in the 
orientation of the major rivers within and along the boundaries 
of the study area; these rivers include the Merrimack and 
Piscataqua Rivers, and sections of the Taylor River, Little 
River, and Bailey Brook (fig. 1). Hypothesis tests were 
conducted to assess the potential for salt-water intrusion in 
large ground-water-withdrawal well fields between 1 and  
2 mi from the coastline (Mack, 2004). Hypothetical orthogonal 
fracture zones were simulated with a hydraulic conductivity 
1,000 times the bulk-matrix conductivity and oriented from 
the well fields directly to the ocean. Ground-water-flow 
simulations indicated that salt-water intrusion near the 
shoreline is unlikely to migrate into the interior areas of the 
Seacoast model area under current climate conditions. 

Sustained large ground-water withdrawals alter the 
natural ground-water-flow system by causing younger water 
to flow deeper into the aquifer, some of which is captured 
by the well, than would occur at that same location if there 
were little or no withdrawal. This probably occurs in the more 
developed parts of the Seacoast model area. Large ground-
water withdrawals in the Seacoast aquifer are only possible in 
areas of high transmissivity, such as in highly fractured areas 
of the Kittery Formation and Rye Complex or in some fracture 
zones in other bedrock units. Any ground-water withdrawal, 
however, is balanced by a reduction in flow or a short-term 
removal of water from storage elsewhere in the ground-
water-flow system. The reduction will affect ground-water 
flow to a hydraulic boundary, such as a stream or other water 
body, or another area of the aquifer. Highly fractured bedrock 
generally has a greater storage capacity than less fractured, 
lower-yielding bedrock and can, therefore, buffer the effect of 
withdrawals to some extent. Projected future water uses for the 
years 2017 and 2025 were simulated to result in reduced base 
flows and freshwater discharges to tidal areas. Such changes 
will be most apparent during low-flow periods, as assessed; 
for example, some streams that have historically gone dry may 
go dry for longer periods of the year. If future development 
scenarios include additional consumptive water uses, such as 
regional sewering that does not return water to the aquifer, the 
combined effect may result in further decreases in base flows 
and tidal discharges. 

The projections of Hayhoe and others (2006) were 
approximately interpolated in this investigation to provide 
near-term (2025) potential future climate conditions for the 
Seacoast ground-water-availability assessment. Potential 
climate changes include higher temperatures, longer growing 
seasons, increased ET, and precipitation changes. Although the 
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climate-change interpolations used in the present investigation 
were speculative, recent climate-change research indicates that 
increasing temperatures are highly likely during this century 
(Hayhoe and others, 2006). Rising temperatures will result in 
reduced annual recharge caused by a longer ET period during 
the year. Temperature increases, however, also may result in 
less of the winter precipitation stored in the annual snowpack 
and less water released during the snowmelt recharge period in 
March and April. This period may shift to a time earlier in the 
year and farther from the period of peak summer demand. The 
climate forecasts (Hayhoe and others, 2006) include a poten-
tial slight increase in winter precipitation and more frequent 
occurrences of intense precipitation events. Slight (5 percent) 
increases in winter precipitation had little effect on the annual 
water balance. More frequent and intense precipitation events 
are expected to decrease the potential for long-term droughts 
(Hayhoe and others, 2006); however, increasingly intense 
storms may result in an effective net decrease in recharge 
because of increased surface runoff as has been observed by 
this investigation.

Projected future increases in water use would affect the 
hydrologic system by decreasing base flows, tidal discharges, 
and ground-water levels. Based on projected estimates of 
growth (Horn and others, 2007), most of these effects will 
most likely occur by the year 2017. The potential effects of 
climate change simulated for the Seacoast hydrologic sys-
tem will likely exacerbate the same effects. The effects of 
these changes by 2025 were estimated to be greater than the 
potential effect of increased water demands. Although simula-
tion of the effects of near-term (2025) climate changes on the 
hydrology of the Seacoast are speculative, climate change is 
expected to continue and be more severe later in this century 
(Hayhoe and others, 2006). Future water demand and potential 
climate-change scenarios were investigated independently 
to allow for assessment of the separate effects of each sce-
nario. These scenarios are not likely to occur independently; 
however, potential climate changes will likely exacerbate the 
effects of increasing water demand. Additionally, increas-
ing temperatures and longer growing seasons would likely 
result in greater water demands than the estimates used in 
this analysis.

The analyses indicate potential issues of concern in terms 
of future water availability in the Seacoast region. Develop-
ment associated with growth may result in increases in water 
use, the addition of sewered areas that discharge to tidal 
waters, or the construction of new connections from impervi-
ous areas to sewer systems. All of these changes would alter 
the water balance of the Seacoast aquifer system. Any change 
in one component of the hydrologic system—surface water or 
ground water—is balanced by changes in another part of the 
system (Alley and others, 1999; Winter and others, 1998). For 
example, increased consumptive water use or increased water 
transfers out of the system (sewering) will result in lower 
ground-water levels and reductions in base flow to streams 
or in ground-water discharges to tidal areas. The concept of a 
“water budget” or “safe yield” of an aquifer system, defined 

as an amount of water that can be withdrawn without affect-
ing the system, is not considered valid by some researchers 
(Bredehoft, 1997; Bredehoft and others, 1982; Sophocleous, 
1997, 2000). A withdrawal will have an effect at some level on 
the aquifer system. The magnitude of the effect may need to 
be evaluated to determine whether the yield of the withdrawal 
well can be considered safe in a hydrologic or ecological 
context. Although the yield of one well at a specified rate may 
have little effect on the hydrologic system, the cumulative 
effect of multiple independent withdrawals at the same rate 
may have a measurable hydrologic or ecologic effect on the 
environment. The amount of water stored in and recharging 
the aquifer system can be calculated, as in this investigation; 
however, the amount of water that can be withdrawn without 
affecting the system, called the “sustainable use,” needs to be 
assessed by water-resource planners and is not addressed by 
this investigation. 

The sustainable use can be determined by hydrologic 
properties and by the amount of change in the water balance 
that is considered acceptable by planners, water-resource 
managers, regulators, and the community (Sophocleous, 
2000). Ground-water and surface-water systems are generally 
connected (Winter and others, 1998), especially on a regional 
scale. Ground-water withdrawals can have complex interac-
tions with surface-water and aquifer systems. For this reason, 
water-management decisions generally require the use of a 
model and assessment by a hydrologist (Bredehoft, 2002). 
The models developed and demonstrated in this investigation 
are intended to provide water-resource managers and planners 
with tools with which to assess future water resources in the 
Seacoast region. 

Model Limitations
The ground-water-flow models developed for the 

Seacoast area provide a regional-scale simulation of ground-
water flow specifically for simulation of water-balance issues, 
but not for analysis on a site-specific scale. For example, 
the ground-water-flow models may be used to investigate 
the effects of water-use changes resulting from development 
on regional ground-water levels, heads, and discharges to 
streams. Site-specific scales of analysis might include calcula-
tions of the drawdown in a well field, the sustainable yield 
of a well, the head at a specific location, or the flow path to a 
withdrawal point. 

Ground-water-flow models are a numerical representa-
tion of the physical flow system and require simplifications 
and assumptions. Limitations are inherent in the practical 
application of ground-water-flow models, and the assump-
tions and simplifications incorporated in a model depend to 
some extent on the intended use of that model. A discussion 
of the adequacy of models for their intended use is provided 
by Reilly and Harbaugh (2004). Several model limitations that 
are discussed by DeSimone (2004) for a similar investigation 
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in eastern Massachusetts also apply to the Seacoast models. 
For example, the Seacoast ground-water-flow models do not 
simulate unsaturated-zone flow processes (ground-water flow 
above the water table), or the direct, or overland, component 
of streamflow; instead, the models simulate the base-flow 
component of streamflow, or ground-water discharge. Evapo-
transpiration also is not specifically simulated but is accounted 
for within a net (or effective) recharge. 

Simplifications include the parameterization of hydro-
geologic properties and characteristics into homogenous units 
and the assignment of these parameters to groups of cells with 
areas of 200 by 200 ft and thicknesses that depend on the 
model layer. Simplification also includes the temporal group-
ing of recharge, streamflow, and ground-water-flow character-
istics into monthly and annual periods. 

An important limitation of the Seacoast models is that 
they do not specifically simulate ground-water flow in bed-
rock fractures, but rather the bulk flow of ground water in 
the regional-flow system. Thus, the model accounts for the 
overall movement of ground water through the aquifer system, 
incorporating regional bedrock anisotropy, but not through 
specific fractures. The detailed configuration of fracture 
networks is generally known only at few research sites and 
then generally only at scales on the order of tens to hundreds 
of feet, the cell-size scale in the Seacoast model. Incorporation 
of detailed fracture characteristics into the ground-water-flow 
model is not possible at the scale of investigation used and it 
is not necessary for simulation of regional ground-water flow. 
Simulation of site-specific conditions would require additional 
hydrogeologic data and possibly the use of local grid refine-
ment techniques (Mehl and Hill, 2005).

Limitations resulting from not incorporating detailed 
fracture information include inaccurate calculation of flow or 
heads that are influenced by individual fractures and frac-
ture zones, and poor model performance in the immediate 
vicinity of ground-water withdrawals. The model underesti-
mates model-cell hydraulic conductivity in areas where the 
bedrock aquifer is highly fractured and does not account for 
the anisotropy of individual fractures or fracture zones. As a 
result, in the vicinity of ground-water withdrawals, simulated 
water-level drawdowns will be greater than actual drawdowns, 
and ground-water flow paths, which locally are controlled by 
the fracture network, may differ from the simulated direc-
tion of flow imposed by the regional hydraulic gradient. Such 
limitations apply to the vicinity of a well field and indicate 
that the models cannot be used to simulate ground-water flow 
at a well-field scale. The size of the area affected by these 
limitations may be hundreds of feet; the actual size depends 
on multiple hydrogeologic factors and is directly related to 
the magnitude of the ground-water withdrawal. However, the 
models simulate the regional ground-water flow to or from 
such well fields and can be used to account for the effects of 
ground-water withdrawals on the regional hydrologic system. 
The ground-water-flow models also can be used to provide 
boundary conditions, including hydrologic properties and 

fluxes, to models designed to be used in small-scale or site-
specific studies. 

Summary and Conclusions
Ground-water availability in the Seacoast region was 

analyzed between 2003 and 2004 though a cooperative 
investigation among the Seacoast’s communities, the New 
Hampshire Department of Environmental Services’ Coastal 
Program and Geological Survey, and the U.S. Geological 
Survey. The investigation was completed by developing 
ground-water-flow models for a 160-square mile area of 
coastal New Hampshire to provide insight into the recharge, 
discharge, and availability of ground water in the study area. 
Population growth and increasing water use have prompted 
concern about the sustainability of regional ground-water 
resources. New supply wells are installed almost exclusively 
in the region’s bedrock aquifer. The bedrock aquifer has 
recently become more important for water supply than it has in 
the past because local high-yielding stratified-drift aquifers are 
either fully utilized or not available because of development 
or other restrictions. Previously, the regional characteristics 
of the fractured-bedrock aquifer in the Seacoast area of New 
Hampshire were not well known. Increasing reliance on the 
bedrock aquifer, increasing ground-water withdrawals, and 
potential changes in patterns of use have increased concern 
about the sustainability of the region’s ground-water resources.

Components of the ground-water-flow system were 
assessed by developing and calibrating models for steady-state 
seasonal low-flow and transient monthly conditions. A steady-
state model was used to simulate current and future projected 
water use during low-flow conditions, and a transient model 
was used to simulate the hydrologic effects of current average 
and estimated future monthly climate conditions over a  
2-year period. 

The finite-difference ground-water-flow models were 
based on MODFLOW-2000 and auxiliary packages for inverse 
parameter-estimation. Surficial sediments and surface-water 
bodies were simulated in the first model layer, which ranged 
in thickness from near zero to about 100 feet (ft). The second 
model layer had a uniform thickness of 6 ft and represented a 
lower saturated sediment layer representing till in most areas. 
Model layers 3 and 4 were both 300 ft thick and represented 
the underlying bedrock aquifer and withdrawals from it. The 
fifth model layer was 400 ft thick and represented a deeper 
bedrock aquifer. Nearly three quarters of the lateral uppermost 
boundary of the model consisted of salt-water bays, estuar-
ies, and the ocean; these water bodies were simulated as an 
equivalent fresh-water constant-head boundary. 

The ground-water-flow simulations indicated that the 
Seacoast aquifer system is a transient flow system with 
seasonal ground-water-flow variations. The aquifer system 
has seasonal high flows in March and April, and seasonal low 
flows occur from July through October. The fall (September 
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and October) is generally a more stable period during which 
inflow and outflow fluxes are lower and are approximately 
balanced. The average annual recharge during the study period 
was approximately 51 percent of the annual precipitation. The 
average monthly rate of recharge to the aquifer (or effec-
tive recharge, which is recharge minus evapotranspiration) 
between 2000 and 2004 ranged from 5.5 inches per month 
(in/mo) in March to 0.0 in/mo in July and about 0.3 in/mo in 
August and September. Recharge increased to about 2 in/mo 
in late fall and early winter and declined to about 1.5 in/mo in 
late winter. In general, about 50 percent of the annual recharge 
occurs in the spring (March and April), and 20 percent occurs 
in the late fall and early winter (November through January). 
Recharge can be greater than the actual precipitation during 
snowmelt periods and effective recharge can be negative dur-
ing summer months (July and August). 

Regional hydraulic conductivities of the bedrock aquifer 
were estimated to be about 0.1 to 1.0 foot per day (ft/d), 
with a regional horizontal anisotropy of 2.5:1 to 5:1 in some 
areas. Model areas representing the Rye Complex and the 
Kittery Formation were assigned higher estimated hydraulic 
conductivities (0.5 to 1 ft/d) than areas representing the Eliot 
Formation, the Exeter Diorite, or Newburyport Complex  
(0.1 to 0.2 ft/d). A northeast-southwest anisotropy was 
estimated (2.5 to 5:1) that follows the regional structural trend 
and predominant fracture orientation. Higher confidence 
was calculated for parameters assigned to areas with greater 
amounts of data, such as the central and eastern areas, than to 
other areas such as the south and western areas representing 
the Exeter Diorite and Newburyport Complex. In these areas 
of the model, the upper and lower 95-percent confidence 
intervals for the estimated bedrock hydraulic conductivity 
were about half an order of magnitude above and below the 
estimate, and the 95-percent confidence intervals for specific 
storage were several orders of magnitude above and below 
the estimate. The uncertainty in estimated model parameters 
in this part of the model is higher for areas with less 
observational data and fewer withdrawal stresses. 

Recharge enters the Seacoast aquifer system almost 
entirely through surficial aquifer sediments. Precipitation on 
bedrock and impervious surfaces generally flows to nearby 
surficial sediments. Precipitation that drains from impervi-
ous surfaces to a sewer system is transferred to another area 
in the aquifer system or out of the system altogether; in the 
latter situation, potential recharge is lost. The majority of the 
recharge, about 90 percent, enters the bedrock aquifer. The 
amount of recharge that flows into the lower bedrock aquifer 
is considerably lower (regionally about 17 percent) and at any 
given point depends on the location of the point in the flow 
field, the hydraulic conductivity of the bedrock, connectiv-
ity of fractures, and the stresses within the bedrock aquifer. 
Therefore, depending on these regional and anthropogenic 
factors, the recharge that flows into the bedrock aquifer at a 

specific location can range from zero to nearly all the recharge 
at the surface. 

Regionally, a considerable amount of water 
(approximately 240,000 million gallons (Mgal)) may be 
stored in the secondary porosity provided by fractures in 
bedrock aquifers in the Seacoast model area. The bedrock in 
the eastern area of the model likely stores more water than 
bedrock in the southwestern area of the model. The estimated 
hydraulic properties of the bedrock aquifers, however, indicate 
that the amount of water available for release from storage in 
the bedrock may be less than 1 Mgal on an annual basis. A 
much larger volume of water (320,000 Mgal) may be stored 
in the pore space of unconsolidated overburden sediments. Of 
that water, about 25,000 Mgal may be released from storage 
seasonally. About half of that water is stored in till and other 
fine-grained sediments, which are generally not considered 
primary aquifers; about one quarter is stored in coarse-grained 
(sand and gravel) sediments; and one quarter is stored in 
wetlands and underlying glacial sediments. Stresses on the 
aquifer system resulting from water extracted from storage, 
however, must be evaluated with respect to declines in ground-
water levels and discharges to streams or other water bodies.

In a natural setting with few withdrawal stresses,  
more recharge in the ground-water-flow system remains in 
the unconsolidated aquifers or upper bedrock than moves 
through the deeper bedrock aquifer. With increased withdraw-
als, more of the recharge in the aquifer system will move into 
the deeper areas of the aquifer. The residence time of ground 
water in the bedrock aquifer was investigated by chlorofluo-
rocarbon age-dating at locations of high and low water use 
and at different areas of the flow system. Ground-water ages 
ranged from near zero (recently recharged water) to more than 
30 years old. Ground water is oldest in areas with little water 
use, a low head gradient above the point of interest, and at 
discharge areas in the flow system. In areas where water use is 
high, or from shallow depths in the flow system, the residence 
time of ground water may be nearly zero (very recent). Water 
sampled from high-use supply wells sampled in the model 
area included a mixture of recently recharged water to water 
30 years old or more. Some residence times may be longer 
because of diffusion of water from fractures in the rock matrix. 
Some of the supply wells sampled were installed within the 
past few years, or within the past decade. The residence time 
of ground water withdrawn from such wells may become less 
with time as the effects of the withdrawal on the flow system 
become established and less older water diffuses from the 
fractured rock. 

Model parameters, including hydraulic conductivity, 
storage, and porosity, were estimated for the regional aquifer 
system and do not incorporate local heterogeneities in the 
aquifer such as fracture zones. The hydraulic conductivity 
measured at a specific site may be orders of magnitude greater 
or smaller than the regional value. The regionally estimated 
geohydrologic characteristics, however, can be used to provide 
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general boundary conditions and aquifer properties for use 
in site-specific investigations. Although the models were not 
designed to accurately calculate heads or flows at specific 
points in the aquifer, they can be used to describe the general 
ground-water-flow system and to assess differences in ground-
water flow in the study area.

Simulated effects on the Seacoast hydrologic system from 
projected increased future water use include declining base 
flows; declining fresh ground-water discharges to tidal bays, 
estuaries, and the ocean; and lowered ground-water levels. The 
hydrologic system will be affected most during periods of low 
flow and annual low-streamflow periods may be longer. Simu-
lations of the hydrologic effects of increased water demand 
for the years 2017 and 2025 indicated that these effects will 
likely be apparent within the next 10 years (by 2017). By 
2025, increased demand may result in a reduction in ground-
water discharge to streams of about 7 percent and a slight 
reduction, about 2 percent, in freshwater discharge to tidal 
areas. With additional sewering in the Seacoast, the reduc-
tion in flows would be greater. The potential future effects of 
climate change on the Seacoast hydrologic system will also 
likely include reduced base flows and fresh ground-water 
discharges to tidal areas, and lowered ground-water levels. 
By 2025, these effects were estimated to be greater than the 
potential effects of increased water demands. The effects of 
increased demands on the hydrologic system were exacerbated 
by simulations with a hypothetical regional sewer system. The 
declines in ground-water levels in these simulations were most 
pronounced in low-lying areas with higher rates of water use; 
these are also the areas with many of the Seacoast’s extra large 
ground-water supply systems.

The simulations based on future water demands and cli-
mate changes provide an indication of potential effects on the 
Seacoast hydrologic system later in this century (2025). These 
predicted effects pose a potential concern for future water 
resources in the Seacoast region. The models developed in 
this investigation can provide tools with which water-resource 
managers and planners can assess future water resources in the 
Seacoast region of New Hampshire. 

Although the ground-water-flow models were developed 
for a specific area, many of the findings of this investigation 
regarding ground-water availability in glacial and fractured 
bedrock aquifer systems may be transferrable to other areas 
of the Nation with similar hydrogeologic or climatic charac-
teristics, particularly in the glaciated northern United States. 
For example, findings related to seasonal recharge may be 
applicable to regions with similar climates and precipitation 
patterns. Likewise, findings regarding the effect of increas-
ing water demand and future climate change on ground-water 
availability may be applicable to other regions of the Nation 
with similar hydrogeologic and climatic conditions.
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