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Abstract 
 

 

Over nearly two decades, the Water, Energy, and 
Biogeochemical Budgets (WEBB) small watershed 
research program of the U.S. Geological Survey 
(USGS) has documented how water and solute fluxes, 
nutrient, carbon, and mercury dynamics, and weathering 
and sediment transport respond to natural and human-
caused drivers, including climate, climate change, and 
atmospheric deposition. Together with a continued and 
increasing focus on the effects of climate change, more 
investigations are needed that examine ecological 
effects (e.g., evapotranspiration, nutrient uptake) and 
responses (e.g., species abundances, biodiversity) that 
are coupled with the physical and chemical processes 
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historically observed in the WEBB program.  Greater 
use of remote sensing, geographic modeling, and 
habitat/watershed modeling tools is needed, as is closer 
integration with the USGS-led National Phenology 
Network.  Better understanding of process and system 
response times is needed.  The analysis and observation 
of land-use and climate change effects over time should 
be improved by pooling data obtained by the WEBB 
program during the last two decades with data obtained 
earlier and (or) concurrently from other research and 
monitoring studies conducted at or near the five WEBB 
watershed sites.  These data can be supplemented with 
historical and paleo-environmental information, such as 
could be obtained from tree rings and lake cores.  
Because of the relatively pristine nature and small size 
of its watersheds, the WEBB program could provide 
process understanding and basic data to better 
characterize and quantify ecosystem services and to 
develop and apply indicators of ecosystem health.  In 
collaboration with other Federal and State watershed 
research programs, the WEBB program has an 
opportunity to contribute to tracking the short-term 
dynamics and long-term evolution of ecosystem services 
and health indicators at a multiplicity of scales across 
the landscape. 
 
Keywords: biogeochemistry, climate, ecohydrology, 
ecosystem indicators, ecosystem services, experimental 
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Program Background and Achievements  
  
Scientists in the WEBB (Water, Energy, and 
Biogeochemical Budgets) program of the U.S. 
Geological Survey (USGS) have been monitoring and 
conducting hydrologic-process research at five small 
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watershed sites across the United States since 1991: 
Luquillo, PR; Panola Mountain, GA; Sleepers River, 
VT; Trout Lake, WI; and Loch Vale, CO (Baedecker 
and Friedman 2000, Baedecker 2003).  The cumulative 
database now contains 18 years of observations of 
hydrology (streamflow, groundwater levels, and soil 
moisture), meteorology (precipitation, temperature, 
humidity, and wind speed and direction), and water 
quality (including major solutes, nutrients, stable 
environmental isotopes, mercury and methylmercury, 
and organic carbon).  This long-term effort has 
successfully explained and quantified many of the 
hydrological and biogeochemical processes in these 
watersheds, which have very different soils, relief, and 
climate.  The WEBB program provides an excellent 
example of the importance of long-term environmental 
monitoring (such as argued by Lovett et al. 2007).  
Important differences in water and solute fluxes and in 
mercury deposition and cycling have been revealed 
through comparisons of monitoring and modeling 
results.  Although not the sole research focus when 
initiated, the WEBB watersheds also have served as 
sentinels of global change, providing a record of 
climatic and anthropogenic effects on hydrologic and 
biogeochemical processes.  Examples of global change 
effects considered by the WEBB program include:  
 

• Timing of streamflow and snowmelt (D. Clow, 
2008, “Changes in the timing of snowmelt and 
streamflow in Colorado: A response to recent 
warming,” USGS, written commun.); 

• Loss of alpine permafrost (Clow et al. 2003a) 
and the relation between snowpack and solute 
chemistry;  

• Wetland carbon gas exchanges (Wickland et al. 
2001) and snowpack and tundra carbon gas 
fluxes (Mast et al. 1998);  

• Carbon sequestration (Huntington 1995);  
• Dissolved organic carbon fluxes (Schuster et al. 

2004) and implications for methylmercury fate 
and transport;  

• Water fluxes and chemical trends (Aulenbach 
et al. 1996, Peters et al. 2002);  

• Response of watershed hydrology (Hunt, 
Walker, et al. 2008a; Walker et al., this volume) 
and ecology (Hunt, Walker, et al. 2008b); 

• Soil-calcium depletion (Huntington 2000, 
Huntington et al. 2000, Peters and Aulenbach, 
this volume); and 

• Rock-weathering rates (White and Blum 1995 a 
and b; White et al. 1999) and mass-wasting and 
landslides (Carter et al. 2001).   

  
USGS Fact Sheets for each of the five WEBB sites and 
a synthesis paper for the entire WEBB program provide 
a retrospective on some of the processes listed above 
and their trends over the last two decades (D. Clow, 
USGS, oral commun.).  Information about the WEBB 
program is available at the program’s website, 
http://water.usgs.gov/webb.   
 
The small size of the WEBB program watersheds 
(ranging from 41 to 12,000 ha) has allowed detailed 
investigation of hydrological and biogeochemical 
processes that would not have been possible in larger 
watersheds.  Because of its montane and alpine 
environments, limited forest cover (5 percent), and 
extensive tundra, talus, and rock and snow glaciers, the 
Loch Vale site is exceptionally sensitive and responsive 
(i.e. not resilient) to atmospheric anthropogenic 
contamination and to climate change.  Research at the 
Loch Vale site has taken advantage of this sensitivity by 
investigating, for example, (1) the effects of climate on 
weathering rates (Clow and Drever 1996), and (2) the 
effects of nitrogen deposition, much of it of 
anthropogenic origin, on the diatom community in the 
lake (Baron et al. 2005).  Clow et al. (2003a) also found 
that warming climate and melting permafrost are 
affecting groundwater flow and solute fluxes at the site 
and are exposing soils that have a surprising amount of 
microbial activity.  Atmospheric inputs and the 
changing chemistry of Loch Vale have been compared 
with deposition and changes in other high-elevation 
glacial lakes (Clow et al. 2003b, Ingersoll et al. 2008).  
As part of Rocky Mountain National Park, the Loch 
Vale site is a UNESCO∗

 

 International Biosphere 
Reserve and is also one of the sites monitored under the 
National Acidic Precipitation Assessment Program 
(NAPAP), a cooperative Federal program authorized in 
1980.  

The Sleepers River watershed in Vermont, a research 
site that was established in 1958 by the Agricultural 
Research Service (ARS), has been the focus of detailed 
hydrological and biogeochemical investigations in a 
mixed land-use setting (forests, agricultural lands, and 
low-density residential).  Dunne and Black (1970) 
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developed the variable source-area concept at the 
Sleepers River watershed and studied dynamic 
subsurface and surface flow processes that control the 
movement of water from the landscape to a stream.  
Subsequent studies have quantified how preferential 
flow paths control stream hydrochemical responses 
during stormflow (Kendall et al. 1999, McGlynn et al. 
1999, Shanley et al. 2003, Sebestyen et al. 2008).  
Studies have traced variable sources and 
biogeochemical transformations that control the 
chemical speciation and concentrations of a wide range 
of stream solutes including nitrogen (Sebestyen et al. 
2008), carbon (Doctor et al. 2008, Sebestyen et al. 
2008), mercury (Shanley, Mast, et al. 2008), sulfur 
(Shanley et al. 2005; Shanley, Mayer, et al. 2008), and 
weathering products (Bullen and Kendall, 1998, 
Shanley et al. 2002).  In addition, the timing, intensity, 
and character of organic carbon transport at the site has 
been studied (Sebestyen et al. 2008, Schuster et al. 
2008) and contrasted to carbon transport processes in 
the Yukon River Basin (Schuster et al. 2004).  Acidic 
deposition effects at the site have also been studied 
extensively and have been contrasted with those 
occurring in other watersheds.  For example, Shanley et 
al. (2004) compared acid deposition effects in the 
Sleepers River watershed with those in a watershed in 
the Czech Republic.  The long-term data from Sleepers 
River have frequently been included in regional 
assessments of northeastern United States watersheds to 
quantify nutrient budgets and understand sources and 
sinks of biogeochemically active solutes (Hornbeck et 
al. 1997; Campbell et al. 2000, 2004). 
 
The Trout Lake site in northern Wisconsin is part of the 
North Temperate Lakes Long-Term Ecological 
Research (LTER) site, one of 26 LTER sites established 
in 1980 that are funded by the National Science 
Foundation (NSF).  Because of the relatively flat 
topography and northern temperate climate, this 
watershed ecosystem is dominated by groundwater 
flow.  Research at the site has focused on 
surface/groundwater interaction at local to watershed 
scales.  Hydrologic modeling tools were used to: (1) 
better delineate the groundwater watershed (Hunt et al. 
1998), (2) simulate surface/groundwater interactions 
(Hunt et al. 2003, Hunt 2003), and (3) evaluate the 
utility of different types of field data for model 
calibration and prediction (Hunt et al. 2005, Hunt and 
Doherty 2006, Doherty and Hunt 2009).  Novel 
applications of isotope and ion chemistry were used to 
investigate lake/groundwater interactions (Krabbenhoft 

et al. 1994, Walker et al. 2007) and groundwater flow 
paths (Walker and Krabbenhoft 1998; Pint et al. 2003; 
Walker et al. 2003; Fienen et al., in press).  Flow-path 
processes were characterized from the unsaturated zone 
starting points (Hunt, Prudic, et al. 2008), through the 
saturated aquifer (Bullen et al. 1996), to hyporheic 
discharge locations (Schindler and Krabbenhoft 1998, 
Lowry et al. 2007).  This understanding of 
surface/groundwater interactions provided the 
foundation for site-scale evaluations of temperature 
modulation, nutrient concentrations, and invertebrate 
populations (Hunt et al. 2006), as well as response of 
the watershed hydrology (Hunt, Walker, et al. 2008a; 
Walker et al., this volume) and ecology (Hunt, Walker, 
et al. 2008b) to climatic change.  
 
The Panola Mountain watershed in Georgia is located 
25 km southeast of Atlanta in the Panola Mountain 
State Conservation Park.  The watershed has a large 
impervious area (greater than 10 percent of the 
watershed) that is provided by granitic bedrock 
outcrops.  This feature has led to a comparison with 
urbanized watersheds in the Atlanta area (N.E. Peters, 
2008, USGS, written commun.).  Since 1985, research 
at the Panola Mountain Research Watershed (PMRW) 
has improved the conceptual understanding of the 
watershed’s response to precipitation over a range of 
temporal and spatial scales (McDonnell et al. 1996, 
Freer, McDonnell, et al. 2002, Peters et al. 2003a, 
Tromp-Van Meerveld et al. 2007) and has investigated 
the impact of different hydrologic pathways on solute 
transport (Peters 1989, 1994; Hooper et al. 1990, 1998; 
Shanley 1992; Shanley and Peters 1993; Huntington et 
al. 1994; Aulenbach et al. 1996; Burns et al. 1998, 
2001, 2003; Peters et al. 1998; Peters and Ratcliffe 
1998; Aulenbach and Hooper 2001, 2006; Hooper 
2003; Webb et al. 2003; Peters and Aulenbach, this 
volume).  Research at PMRW has investigated 
biogeochemical cycling, mercury and sulfur dynamics, 
dry deposition processes and vegetation transpiration 
effects on soil moisture content.  Hillslope studies 
quantified the importance of bedrock topography in 
controlling subsurface stormflow (Freer et al. 1997; 
Freer, Beven, et al. 2002) and of bedrock leakage in 
dominating the hillslope water balance (Tromp-van 
Meerveld et al. 2007).  In addition to the development 
of a detailed hydrologic and biogeochemical conceptual 
model, the availability of detailed long-term hydrologic 
measurements is a prerequisite for deterministic 
hydrologic modeling (Freer, McDonnell, et al. 2002; 
Peters et al. 2003b; Clark et al. 2008) and detailed 
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assessments of hillslope and catchment hydrologic 
behavior (Tromp-van Meerveld and McDonnell 2006c), 
in particular during rainstorms (Peters et al. 2003a, 
Tromp-van Meerveld and McDonnell 2006 a and b).  
Climate impacts are expected because watershed and 
hillslope stormflow water yields at PMRW are non-
linearly related to soil moisture content, rainfall, and 
water-table elevation, and the relations vary on a 
seasonal basis. 
 
The Luquillo WEBB project has evaluated hydrologic, 
chemical, and sediment processes and budgets in four 
watersheds of differing geology (granitic versus 
volcanic) and land use (mature rainforest versus 
agricultural legacy). The forested catchments are 
located in the U.S. Forest Service (FS) Luquillo 
Experimental Forest, part of which has been designated 
a UNESCO International Biosphere Reserve and 
belongs to the NSF LTER network.  The Luquillo 
WEBB watersheds are undergoing rapid change, both 
locally induced (including landcover change, species 
introductions, water resource management) and 
externally driven (including climate change and long-
range advection of pollutants).  The Luquillo WEBB 
program has investigated the effects of hurricanes, 
atmospheric pollution, drought, climate change, 
precipitation patterns, and land use on hydrology and 
water quality (Scatena and Larsen 1991; Zack and 
Larsen 1994; Larsen 2000; Stallard 2001; Shanley et al. 
2008 a and b; Murphy and Stallard, this volume).  
Research at the Luquillo site has investigated the 
possible causes of amphibian decline (Stallard 2001) 
and has contributed to an understanding of the 
dynamics of cloud forest hydrology, extending previous 
work conducted on Hawaii (Scholl et al., in press) and 
detailing the relative importance of orographic and 
convective precipitation regimes to forested mountain 
watersheds (M. Scholl (USGS), J.B. Shanley (USGS), 
J.P. Zegarra (University of Puerto Rico in Mayaguez), 
and T.B. Coplen (USGS), 2008, “A new explanation 
for the stable isotope amount effect using NEXRAD 
echo tops:  Luquillo Mountains, Puerto Rico,”written 
commun.).  Extensive work on mass wasting has teased 
out the importance of several factors affecting 
landslides, including rainfall intensity and duration, 
historical land use, and road construction (Larsen and 
Simon 1993, Larsen and Parks 1997, Larsen and 
Torres-Sanchez 1998, Larsen et al. 1999, Larsen and 
Santiago-Román 2001, Gellis et al. 2006).  Studies of 
weathering and solute fluxes have been performed in 
the Icacos watershed, which has one of the highest 

documented chemical weathering rates of granitic rocks 
in the world (Brown et al. 1995, 1998; White and Blum 
1995 a and b; Dong et al. 1998; Murphy et al. 1998; 
White et al. 1998; Schulz and White 1999; Turner et al. 
2003; Buss et al. 2004, 2005, 2008; Fletcher et al. 
2006; Chabaux et al. 2008).  Analyses of sediment and 
solute concentrations in the Luquillo WEBB rivers and 
soil porewaters have revealed that fluxes are dominated 
by storm effects (Peters et al. 2006, Kurtz et al. 2004), 
indicating that climate change–related perturbations in 
storm patterns would seriously affect sediment and 
solute fluxes from the Luquillo WEBB watersheds.  
Luquillo WEBB studies have also evaluated methane 
emissions from reservoirs (Joyce and Jewell 2003) and 
mercury and methylmercury deposition (Shanley, Mast, 
et al. 2008). 
 
In addition to funding research at individual sites, 
projects in the WEBB program have developed models, 
tools, and theories to help understand and quantify 
hydrologic and biogeochemical processes in small 
watersheds.  For example, the program has spurred the 
development and application of watershed models such 
as the Precipitation Runoff Modeling System (PRMS; 
Leavesley et al. 2005), the Water, Energy, and 
Biogeochemical Model (WEBMOD; Webb et al. 2006), 
and GSFLOW (Markstrom et al. 2008), which is the 
new USGS surface/groundwater interactions model that 
couples the USGS groundwater flow model 
MODFLOW with PRMS.  The program also has 
provided a forum for development and testing of 
methods, such as flux computations (Aulenbach and 
Hooper 2001, 2006), water-quality sampling (Peters 
1994), and dry deposition (Cappellato and Peters 1995). 
The WEBB program also has stressed the need for 
watershed comparison studies, especially amongst the 
five WEBB watersheds.  Some of the key comparative 
studies published include: (1) a principal-component 
analysis used to identify the statistical relations between 
hydrologic conditions and the net exports of major 
cations, anions, and silica at the five sites (Webb et al. 
2003); (2) a mass-balance comparison of water and 
major-solute fluxes monitored at the five watersheds 
between 1992 and 1997 (Peters et al. 2006); and (3) a 
comparison of mercury and methylmercury deposition, 
cycling, and transport in the WEBB watersheds 
(Shanley, Mast, et al. 2008).   
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What Are Some of the Future Directions 
for the WEBB Program?   
 
Federal science priorities in general, and USGS science 
priorities in particular, have become refocused on 
climate change issues, in part because of the recent 
release of the Intergovernmental Panel on Climate 
Change (IPCC) 4th Assessment Report.  A wealth of 
data has been collected in the last 18 years at the WEBB 
watersheds, and historical data are available for many of 
the sites prior to the establishment of the WEBB 
program.  The data are being analyzed through an 
intersite comparison study to examine the effects of 
climatic trends and variations in temperature and 
precipitation, in water storage and fluxes, and in 
nutrient and major solute cycling in the five watersheds.  
 
During the next 5 years, WEBB research plans to take 
advantage of the gradients in climate, land use, and 
basin physical characteristics inherent to the five 
WEBB sites.  Water availability under changing climate 
is a key issue, with potential effects on agriculture, 
industry, and quality of drinking water.  To study the 
effects on water availability, plans are to evaluate the 
response of runoff, groundwater flow, and 
evapotranspiration to variations in climate, and to 
conduct hydrologic modeling under various climate 
change scenarios, thereby putting site results in a 
regional context.  The hydrologic and chemical 
responsiveness of catchments to climate change and 
atmospheric deposition of pollutants are strongly 
influenced by water residence times.  Residence times 
could be quantified through a multi-tracer (CFCs, 
tritium, water isotopes) approach that permits 
characterization of slow, medium, and fast flow 
pathways through the catchments; the temporal 
variability of stream-water residence times can also be 
assessed with respect to climate change/variability and 
compared among sites.  Trends in climate, runoff, and 
streamwater chemistry will be evaluated with the 
objective of establishing the response of runoff and 
chemistry to climate.  However, climate variability often 
is large and can obscure climate change signals, so 
developing models that account for short-term 
variability will be important for detection of long-term 
trends.  Carbon and nitrogen cycles can exert strong 
feedbacks on climate (positive and negative), and 
quantification of carbon and nitrogen fluxes and 
associated processes is planned as an important 
component of WEBB research in the future.  
 

Complementing the hydrologic and biogeochemical 
data obtained from the WEBB sites since 1991 is an 
important priority for the program, helping put the 
WEBB record of environmental change in an extended 
historical context.  There are several ways to extend the 
WEBB records of environmental change.  The first is to 
make full use of the data available from other, earlier 
and concurrent, Federal (or State/local) agency 
investigations (e.g. ARS, LTER, and FS data).  In 
addition to extending our temporal knowledge of the 
WEBB sites, this would also add richness to the data 
available.  It would be most useful to have all the 
Federal program data for the WEBB watersheds easily 
accessible through the Internet, preferably from some 
common web interface.  Secondly, dendrochronological 
studies could be conducted to further extend the 
historical records of hydrologic and biotic response to 
climatic effects.  These studies might also provide 
information on historical pest infestations and other 
environmental changes.  Similarly, lake/pond sediment 
cores could be obtained, dated, and analyzed to also 
obtain a record of environmental change at least over 
the last century, documenting the temporal variations in 
flow and sediment transport, in chemical fluxes, and in 
biotic abundances (e.g. pollen, diatom species, and 
individual counts).     
  
Indeed, the study of climatic effects in the WEBB 
program could be further strengthened by increasing the 
monitoring of biota and biological processes in the 
WEBB watersheds.  One avenue of future research, 
mentioned in the statement provided above by the 
WEBB site coordinators, could be to provide a better 
understanding of the effects and feedbacks of changing 
vegetative-cover distribution on evapotranspiration and 
water/sediment budgets, as well as on nutrient and 
solute cycling.  Another avenue could be to examine the 
climatic effects of changing water/sediment budgets and 
nutrient cycling on aquatic invertebrate distributions 
and (or) on amphibian distributions.  Because of their 
sensitivity to climate and water quality effects, and their 
limited ability to migrate, these populations (along with 
plant distributions) could be of value in assessing 
climatic effects and general ecosystem health in the 
WEBB watersheds.  Monitoring and research on 
evapotranspiration and water availability for ecological 
needs are two of the key monitoring and research 
components (along with streamgaging and groundwater 
depletion) often mentioned for the National water 
census envisaged in the 2008 USGS Science Strategy 
plan.  Because of their potential scope, however, these 
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efforts to link biological, hydrological, and geochemical 
process research and monitoring will require increased 
interdisciplinary collaboration in the USGS as well as 
continued partnering with Federal and State agencies, 
university researchers, and NSF programs.  The 
increased use of remote sensing technologies, 
geographic information system (GIS) modeling, habitat 
modeling, and watershed modeling can provide 
valuable help in developing a monitoring program for 
the WEBB watersheds. 
 
In assessing ecosystem health, trends, and natural 
variability in its watersheds, the WEBB program has an 
opportunity to utilize and develop further the series of 
ecosystem indicators advanced by the Heinz Center in 
its recent 2008 report “The State of the Nation’s 
Ecosystems” (Heinz Center 2008). The 108 indicators 
outlined by the Heinz Center can be grouped into four 
categories: (1) extent and pattern indicators, such as 
area of wetlands, length of streams, and proximity to 
residential areas; (2) chemical and physical 
characteristics, such as nutrient loads delivered, soil 
erosion, dissolved oxygen, and contaminant levels; (3) 
biological component indicators, such as threatened and 
endangered species, biodiversity, and percentage of 
non-native species; and (4) ecosystem goods and 
services, such as amount of timber harvested, water 
withdrawals, pollination services, and outdoor 
recreation services.  The Heinz Center indicators are 
also grouped into a set of core national indicators and 
six sets of ecosystem-specific indicators (coast and 
oceans, farmlands, forests, freshwaters, grasslands and 
shrublands, and urban and suburban landscapes).  The 
WEBB program could focus on a few of the Heinz 
Center indicators and might benefit from adding other 
indicators that may better characterize the WEBB 
watersheds.  
 
The need for ecohydrology studies was described 
several years ago by Hunt and Wilcox (2003 a and b), 
who wrote in the context of coupled ecological–
groundwater–surface-water processes: “There are few 
studies that have linked the abiotic effects that 
hydrologists know well to the ecological community 
that the public holds dear.  Without understanding the 
ecohydrology, we will never truly answer these 
important societal questions” (2003 a, p. 289).  The 
authors were referring to the need to understand 
ecohydrologic processes so as to better protect the biota 
(including humans) that depend on water to survive; 
they were also referring to the need to better understand 

and quantify the role of biotic processes on water 
quality and quantity. The need to holistically integrate 
our understanding of biological and hydrological 
processes has long been at the core of USGS researcher 
Tom Winter’s “aquatic continuum concept” (Winter 
2004) and its variants (e.g., the “Wetland Continuum.” 
Euliss et al. 2004).  The need continues today, and few 
programs within the USGS have tried to address it. 
 
Monitoring the seasonal timing of key ecosystem 
functions in the WEBB watersheds can be expected to 
be highly relevant in helping to understand climate 
effects and feedbacks on biota and water resources.  
The National Phenology Network, a recently 
established, collaborative, interagency, and citizen-
scientist network (Betancourt et al. 2007, 2005), could 
provide some help in this effort and could also benefit 
from some of the climate effects research and 
monitoring conducted in the WEBB program.  In 
general, a better understanding of process response 
times and system lags in the watersheds could be 
developed that would allow improved adaptive 
management for these and other small watersheds in the 
face of climate and land-use change.  These lags and 
response times occur on a wide variety of time scales, 
not just on seasonal scales, but often across yearly and 
decadal time scales and longer, affecting biologic and 
hydrologic responses and landscape evolution.  
Improved understanding and modeling of processes and 
response times in small research watersheds could lead 
to important advances in managing our larger National 
landscape.  The small size of the WEBB watersheds 
uniquely lends itself to the elucidation of system 
processes and response times. 
 
New and developing watershed-modeling tools, such as 
the USGS integrated groundwater and surface-water 
modeling code GSFLOW and related advances in 
temperature modeling of watershed biotic habitats, have 
great promise for helping foster an improved 
understanding of the biologic, hydrologic, and 
geochemical processes controlling water, sediment, and 
nutrient transport.  Coupled modeling of 
physiochemical, hydrological, and biological processes 
and the development of forecasting and scenario 
analysis tools based on such coupling have been 
suggested as among the highest priorities in a recent 
(December 3–4, 2008) USGS-sponsored multipartner 
workshop that focused on the science priorities for a 
proposed National Climate Change and Wildlife 
Science Center (Haseltine and Jones 2008).  The 
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development of modeling, geographic information 
system, and remote sensing tools that not only help 
couple a variety of biologic, hydrologic, and 
physicochemical processes, but also help translate 
process-research findings from small watershed studies 
into larger regional contexts and assessments will be 
invaluable in helping forecast the effects of climate 
change and changing land use.  Implementing a 
strengthened monitoring and research plan for the 
WEBB watersheds in a nationally consistent framework 
would be a step towards this goal.  
  
Establishing new indicators for ecosystem health in the 
WEBB watersheds and continuing current efforts in 
process research, monitoring, and modeling will 
contribute to a better understanding and quantification 
of ecosystem services (e.g., as defined in the 2005 
Millenium Ecosystem Assessment synthesis report) in 
the watersheds.  This work will help build scenario 
analyses to forecast the effects of climate change and 
land-use change on these and similar watersheds around 
the Nation.  Most importantly, the WEBB program can 
help communicate to the public the importance of small 
watershed research programs and their relevance in 
preserving and managing ecosystem health and services 
for society. 
   
Although some of the science directions and next steps 
described in our paper can be initiated with existing 
resources in the WEBB program, additional resources 
would be required to adequately implement our science 
vision.  Close collaborations with other Federal 
watershed research and monitoring efforts, such as the 
U.S. Forest Service Experimental Forest program (e.g. 
Lugo et al. 2006), the Agricultural Research Service 
experimental watershed program (e.g. Moran et al. 
2008), and the National Science Foundation LTER 
program (e.g. Hobbie et al. 2003), are also key to 
implementation of this vision. 
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