Skip Links

USGS - science for a changing world

Scientific Investigations Report 2009–5094

Prepared in cooperation with the Rock River Coalition

Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

By Paul F. Juckem

Thumbnail of and link to report PDF (10.4 MB)


A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales.

The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages.

Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers.

It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specific problems. Despite its limitations, the model serves as a framework for understanding the regional pattern of ground-water flow and as a starting point for a generation of more targeted and detailed ground-water models that would be needed to address emerging water-supply and water-quality concerns in the Rock River Basin.

For additional information contact:
Director, Wisconsin Water Science Center
U.S. Geological Survey
8505 Research Way
Middleton, Wisconsin 53562

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Juckem, P.F., 2009, Simulation of the regional ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin, Wisconsin: U.S. Geological Survey Scientific Investigations Report 2009-5094, 38 p.




Study Methods

Conceptual Model of the Ground-Water-Flow System

Hydraulic Properties of the Ground-Water-Flow System

Ground-Water Withdrawals

Simulation of the Regional Ground-Water-Flow System

Evaluation of Simulated Results of the Rock River Basin Model

Model Limitations



References Cited


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
URL: http:// /sir/2009/5094/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Thursday, 10-Jan-2013 19:34:05 EST