Part 1. Water Resources in the Pawcatuck River Basin

By Gardner C. Bent, Andrew M. Waite, and Peter E. Church

Characterizing ground- and surface-water resources in
the Pawcatuck River Basin of southwestern Rhode Island and
southeastern Connecticut requires an understanding of how
precipitation enters, flows through, and leaves the aquifers
and streams in the basin. Data to support this understanding
include climatological, hydrogeologic, groundwater, pond-
level, streamflow, and water-use data. These data also
are needed to develop and calibrate surface-water- and
groundwater-flow models that characterize and simulate
these flow processes.

Climate

Climatological data were available for the Pawcatuck
River Basin from several National Oceanic and Atmospheric
Administration (NOAA) National Weather Service (NWS)
stations in and near the basin and from two new stations
established by USGS for the present study. Data included
precipitation, air temperature, dew-point temperature, wind

Table 1-1.

speed, and solar radiation (table 1-1). Long-term data were
available from the NWS stations at Providence T.F. Green
Airport in Warwick, R.I. (PROVID; hourly data) and at the
University of Rhode Island in Kingston, R.I. (URI; hourly
data since 1998). NWS weather stations at the Newport and
Westerly Airports have collected data since the late 1990s.
The PROVID and NEWPORT stations are about 10 miles
(mi) to the northeast and about 11 mi to the east of the

basin, respectively, and the WESTERLY station is in the
southwestern part of the basin (fig. 1-1). The USGS stations
at the Fisherville Brook Wildlife Refuge (FBWR) and the
Narragansett Improvement Company (NIC) were established
in the northeastern and central parts of the basin, respectively
(fig. 1-1), to provide local climatological data for model
calibration. Data from the FBWR station were available
from November 22, 1999, through November 15, 2001, and
October 1, 2002, through December 15, 2004. Data from the
NIC station were available for the period December 15, 2002,
through December 15, 2004.

Types of climatological data collected at U.S. Geological Survey stations and compiled from National Oceanic and

Atmospheric Administration National Weather Service (NOAA-NWS) stations in and near the Pawcatuck River Basin, southwestern

Rhode Island and southeastern Connecticut, 2000-04.

[Locations shown in figure 1-1. USGS, U.S. Geological Survey; NWS, National Weather Service; IDLOC, identification attribute in the Watershed Data Man-
agement (WDM) database for the Hydrologic Simulation Program-FORTRAN (HSPF) model; FBWR, Fisherville Brook Wildlife Refuge; NIC, Narragansett
Improvement Company; URI, University of Rhode Island; PROVID, Providence; Y, yes; N, no]

NWS
USGS station  USGS station University of TF GreN:: i\irport Newpl\tl)vnvf\irport Westel\::’yvls\irport
Rhode Island
IDLOCN FBWR NIC URI PROVID NEWPORT WESTERLY
Time step Hourly Hourly Hourly Hourly Hourly Hourly
Begin date 11/22/1999 12/4/2002 9/30/1998 1/1/1960 7/1/1996 7/28/1999
End date 12/31/2004 12/31/2004 12/31/2004 12/31/2004 12/31/2004 12/31/2004
Precipitation Y Y Y Y Y Y
Air temperature Y Y Y Y Y Y
Dew-point temperature Y Y Y Y Y Y
Wind speed Y Y Y Y Y Y
Solar radiation Y Y Y Y N N
Potential evapotranspira- Y N N Y N N

tion computed
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Figure 1-1.
southeastern Connecticut.

Location of climatological stations in and near the Pawcatuck River Basin, southwestern Rhode Island and



Mean annual precipitation was 46.45 in. at the PROVID
station and 51.82 in. at the URI station for the 30-year period
1971 through 2000 (National Oceanic and Atmospheric
Administration, 2002a). Differences in total precipitation at
the two stations may reflect local weather patterns given that
mean annual precipitation ranged from 39.79 to 53.17 in. for
the same period at six NWS stations (including the PROVID
and URI stations) across the State. Mean monthly precipitation
is fairly uniform throughout the year, with the mean monthly
low of 3.17 in. at PROVID (3.31 in. at URI) in July and the
high of 4.43 in. at PROVID (5.11 in. at URI) in March for
the 30-year period. Snowfall generally occurs during the
months of November through April, but on occasion has
occurred in late October and early May (National Oceanic
and Atmospheric Administration, 2002b). The 30-year mean
annual snowfall at PROVID was 32.9 in., with 19.6 in. in the
months of January and February together. The mean annual
temperature was 51.1°F at the PROVID station (49.7°F at
URI) with the mean monthly low of 28.7°F (28.6°F at URI)
in January and the high of 73.3°F (70.7°F at URI) in July
for the 30-year period (National Oceanic and Atmospheric
Administration, 2002a).

During the study period 2000-04, mean annual
precipitation at the URI station was 52.08 in. (National
Oceanic and Atmospheric Administration, 2007), which
is very close to the long-term mean of 51.82 in/yr. March
2001 was the wettest month, with 12.29 in. of precipitation,
and October 2000 was the driest month, with 0.69 in. of
precipitation (fig. 1-2A). A 13-month dry spell occurred from
August 2001 through 2002 (fig. 1-2A) with only 38.93 in.
of precipitation, which represented a deficit of about 17.3 in.
based on the 1971-2000 normals. Mean annual snowfall was
33.1 in. at the URI station during 2000—04; this value is very
similar to the long-term mean of 32.9 in/yr at the PROVID
station. Mean annual temperature at the URI station for
2000-04 was 51.0°F, with January having the lowest mean
temperature of 28.1°F and August having the highest mean
temperature of 71.9°F. Monthly temperatures were similar to
the 1971-2000 normals (fig. 1-2B).

Geologic Setting

The geology of the Pawcatuck River Basin is
characterized by glacial deposits of variable thickness
overlying crystalline bedrock. Stratified sand, gravel, silt,
and clay (stratified glacial deposits), glacial till, and the
Charlestown Moraine compose the glacial deposits
(fig. I-2). Most of these materials are deposits from the last
two continental ice sheets that covered New England during
the middle and late Pleistocene. Most were laid down during
the advance and retreat of the last (late Wisconsinan) ice
sheet, which reached its maximum extent about 21,000 years
ago and was retreating northward through southern Rhode
Island by about 19,500 years ago (Stone and Borns, 1986;
Boothroyd and others, 1998). Postglacial Holocene deposits,
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consisting of flood-plain alluvium along rivers and streams,
organic peat, and muck (swamp deposits), are present in some
areas. Bedrock beneath the basin is predominantly granite and
granite gneiss of Late Proterozoic and Paleozoic age (Hermes
and others, 1994). The bedrock surface is irregular and is
characterized by preglacial, seaward-sloping, north-south-
trending valleys (Masterson and others, 2007).

Glacial till was deposited directly by glacier ice and is
characterized as an unsorted, unstratified, relatively compact
mixture of sand, silt, and clay with variable amounts of
stones, cobbles, and large boulders. Till blankets the bedrock
surface in most places, and underlies most upland areas and
extends beneath stratified glacial deposits in valleys. The
thickness of the till layer is variable geographically, but is
reported to average around 20 to 25 feet (ft) in the uplands
and less than 10 ft beneath stratified glacial deposits (Johnston
and Dickerman, 1985; Dickerman and others, 1990, 1997;
Dickerman and Bell, 1993; Masterson and others, 2007). Local
accumulations of till in drumlins and along some bedrock
hills may reach thicknesses of 80 ft (Johnston and Dickerman,
1985, Dickerman and others, 1990, 1997; Dickerman and Bell,
1993). In upland areas where till is absent, bedrock is exposed
at the land surface.

The Charlestown Moraine is a WSW-ENE trending,
hummocky linear ridge that forms the southern boundary or
surface-water divide between the Pawcatuck River Basin and
the South Coastal Basin (fig. [-2). The moraine represents
a long-term recessional position of the retreating glacier
(Schafer, 1965). The deposition of the moraine across the
valleys of preglacial south-flowing rivers diverted drainage
in the area and resulted in the southwesterly course of the
present-day Pawcatuck River (Masterson and others, 2007).
The moraine is a thick and complex mixture of sediments,
including sandy ablation till and intermixed sands and gravel.
The few lithologic logs available from the moraine indicate
that the western part of the moraine consists of material that is
more stratified and permeable than the material in the eastern
part (Friesz, 2004). Masterson and others (2007) report that
the glacial deposits are as much as 300 ft thick where the
moraine crosses the deepest bedrock valleys.

The stratified glacial deposits are glaciofluvial and
glaciolacustrine sands, gravel, silt, and clay. Stratified glacial
deposits in valleys and lowlands cover about 35 percent of
the basin (fig. I-2). The deposits were transported by meltwa-
ter streams that drained from the ice margin and commonly
flowed directly or indirectly into glacial lakes (Dickerman and
others, 1997). The deposits consist of multiple, sequentially
deposited packages of proximal, coarse-grained (gravel, sand
and gravel, and sand) sediments that grade into distal or lacus-
trine, fine-grained sediments (very fine sand, silt, and clay).
These packages represent the systematic northward retreat of
the ice sheet through the basin (Dickerman and others, 1997).
Proximal deposits commonly consist of ice-marginal deltaic
sequences. Lateral migration of depositional environments
and collapse at the ice margin resulted in vertical gradations
in grain size, such as sand and gravel overlying sand, or very
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Figure 1-2. Monthly (A) precipitation and (B) mean temperature at the National Oceanic and Atmospheric Administration
National Weather Service (NOAA-NWS) University of Rhode Island (URI) climate station in the Pawcatuck River Basin,
southwestern Rhode Island and southeastern Connecticut, 2000-04.



fine sand and silt overlying poorly sorted sand and gravel. The
stratified glacial deposits range in thickness from a few feet

at deposit margins to more than 100 ft, with typical ranges of
about 60 to 80 ft; thicknesses are generally greatest along the
axes of preglacial stream valleys (Dickerman and Ozbilgin,
1985; Johnston and Dickerman, 1985; Dickerman and others,
1990, 1997; Dickerman and Bell, 1993).

Groundwater

Aquifers in the Pawcatuck River Basin typically are
unconfined. Recharge occurs from precipitation in till and bed-
rock uplands and in areas of stratified glacial deposits; surface
runoff from uplands also may recharge stratified glacial depos-
its at their upland boundaries. Groundwater generally flows
from topographic highs in the uplands toward upland stream
channels and the stratified glacial deposits in valleys and low-
lands. The water table mimics topography; surface-water and
groundwater divides typically coincide, especially in uplands.
Groundwater levels and flow directions, especially in the sand
and gravel deposits, are strongly influenced by the locations
and elevations of streams, ponds, and wetlands that are the
discharge points for the groundwater-flow system (Winter and
others, 1998; Randall, 2001).

The geologic materials in the Pawcatuck River Basin
differ substantially with respect to their hydraulic properties,
which determine rates of groundwater flow and well yield. The
primary porosity of crystalline bedrock is extremely low, and
groundwater in bedrock flows through fractures and joints.
Thus, bedrock permeabilitites are low except in some highly
fractured zones, and supply wells in bedrock are usually small
and low-yielding. The permeability of glacial till also is low,
and it varies with till composition, structure, and process of
deposition. Because of its low permeability and small satu-
rated thickness, till is not a major aquifer, but it is an impor-
tant component of the groundwater-flow system in the basin
because it affects recharge to and discharge from underlying
aquifers (Dickerman and others, 1997). Stratified glacial
deposits with relatively high permeability and hydraulic con-
ductivity form the major aquifers in the basin.

Detailed descriptions of the groundwater-flow systems
in the Pawcatuck River Basin and its subbasins are in Allen
and others (1963, 1966); Gonthier and others (1974); Johnston
and Dickerman (1985); Dickerman and Ozbilgin (1985);
Dickerman and others (1990); Dickerman and Bell (1993);
Dickerman and others (1997); Friesz (2004); and Masterson
and others (2007). These studies provide hydrogeologic
information for the major glacial deposits in the basin and
include geologic cross sections, water-table maps, saturated-
thickness maps, transmissivity maps, aquifer tests, and other
information. The present study did not develop new water-
table, saturated-thickness, or transmissivity maps for the
model areas or the entire basin.
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Recharge

Groundwater recharge is the amount of precipitation
that infiltrates through the land surface and reaches the water
table. Generally, groundwater in the study area is recharged
from October through April when evapotranspiration is low.
From May through September, evapotranspiration generally
exceeds precipitation, resulting in little to no groundwater
recharge. During droughts, aquifers might not receive recharge
for an extended time period. Annual recharge rates can vary
substantially with annual precipitation. Groundwater recharge
in the Pawcatuck River Basin was estimated from streamflow
data by using the computer programs RECESS and RORA
(Rutledge, 1998). These programs use the recession-curve-
displacement method to estimate groundwater recharge
for each peak in streamflow during the period of record.
Streamflow records from 1942 through 2004 (63 years) for
three streamflow-gaging stations—the Pawcatuck River at
Wood River Junction (01117500), Wood River at Hope Valley
(01118000), and Pawcatuck River at Westerly (01118500)—
were used (fig. 1-3). The estimated average annual recharge
rates of 25.9, 27.6, and 25.8 in/yr for the three stations,
respectively, were similar. The recharge rates estimated from
streamflow also were similar to recharge rates estimated as
about 25 to 28 in/yr for sand and gravel deposits in southern
Rhode Island in other studies (Dickerman and others, 1997;
Barlow and Dickerman, 2001; Granato and others, 2003;
Friesz, 2004; Zarriello and Bent, 2004; Masterson and others,
2007). Therefore, on average, about 50 percent of the mean
annual precipitation in the Pawcatuck River Basin (51.82 in/yr
measured at the URI station) is lost through either evaporation
or plant transpiration. These estimated RECESS and RORA
recharge rates are basin-wide estimates that averaged different
recharge rates for areas of stratified glacial deposits, glacial
till, wetlands and ponds, and various land uses.

Water Levels

Groundwater levels in the Pawcatuck River Basin are
affected by many factors, including the amount of recharge;
surficial geology in the area of the well; lithology at the well,
particularly around the well screen; location of the well on a
hilltop, hill slope, or in a valley; thickness of the unsaturated
zone; and proximity of the well to surface-water bodies (such
as a stream, pond, or wetland). Currently (2009), the USGS
measures water levels in 19 wells (17 in Rhode Island and 2 in
Connecticut) in the basin (table 1-2 and fig. 1-4). Four of the
19 wells have continuous recorders and the remaining 15 wells
are measured monthly between the 20th day and the last day
of each month. During the study period (2000-04), water lev-
els in 4 of the 15 monthly wells also were measured continu-
ously from fall (October and November) 2002 through the end
of 2004. Seven of the 8 continuously monitored wells during
the study period were completed in sand and gravel deposits,
and the other well (NSN—77) was completed in till deposits
(fig. 1-5). Water levels in the monthly measured wells in sand
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Figure 1-3. Location of U.S. Geological Survey continuous streamflow-gaging stations and partial-record stations in the
Pawcatuck River Basin, southwestern Rhode Island and southeastern Connecticut.



Groundwater

Table 1-2. U.S. Geological Survey observation wells in which groundwater levels were measured in the Pawcatuck River Basin,
southwestern Rhode Island and southeastern Connecticut, 2000—2004.

[Locations shown in figure 1-4. USGS, U.S. Geological Survey; no., number; NGVD 29, National Geodetic Vertical Datum of 1929]
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Approximate

) ) Latit_ude Longi_tude altitude _ _
USGS stationno.  Station name  (decimal (decimal (feet above Aquifer material Measurement frequency
degree) degree) NGVD 29)
Rhode Island
412154071462901 WEW-522 41.3651 -71.7742 45 Sand and gravel Monthly 2000—fall 2002 and
continuous fall 2002-2004.
412424071423601 CHW-587 41.4068 -71.7095 90 Till Monthly.
412434071422401 CHW-586 41.4095 -71.7062 125 Till Monthly.
412718071415201  RIW-785 41.4551 -71.6973 85 Sand and gravel Monthly 2000—fall 2002 and
continuous fall 2002-2004.
412844071422802  RIW-600 41.4790 -71.7073 100 Sand and gravel Continuous.
412918071321001  SNW-6 41.4884 -71.5356 112 Sand and gravel Continuous.
412932071374302  RIW-417 41.4923 -71.6281 116 Sand and gravel Continuous.
412935071355701  SNW-1198 41.4932 -71.5987 112 Sand and gravel Monthly.
413126071455501 HOW-67 41.5240 -71.7648 335 Till Monthly.
413135071314201 EXW-278 41.5265 -71.5278 231 Till Monthly.
413252071323601 EXW-554 41.5479 -71.5428 155 Sand and gravel Monthly 2000—fall 2002 and
continuous fall 2002-2004.
413358071433801 EXW-475 41.5662 -711.7267 143 Sand and gravel Continuous.
413400071363101 EXW-238 41.5668 -71.6081 334 Till Monthly.
413423071431901 EXW-6 41.5732 -71.7215 133 Sand and gravel Monthly.
413505071452801 EXW-158 41.5848 -71.7573 315 Till Monthly.
413645071332901 WGW-206 41.6126 -71.5576 374 Till Monthly.
413907071465001 WGW-181 41.6520 -71.7801 380 Sand and gravel Monthly.
Connecticut
412931071514201  NSN-77 41.4920 -71.8612 520 Till Monthly 2000—fall 2002 and
continuous fall 2002-2004.
412746071510601  NSN-78 41.4964 -71.8506 325 Till Monthly.
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Figure 1-4. Location of U.S. Geological Survey groundwater observation wells in the Pawcatuck River Basin, southwestern

Rhode Island and southeastern Connecticut.



and gravel deposits typically fluctuated only a few feet to

7 ft (Socolow and others, 2001, 2002, 2003, 2004, 2005).
Water levels in the continuously monitored wells in sand and
gravel deposits fluctuated up to about 5 ft (fig. 1-5). Wells
measured monthly in till deposits have more variable water-
level fluctuations from a few feet up to 23 ft (Socolow and
others, 2001, 2002, 2003, 2004, 2005). The water levels in the
continuously monitored till-deposit well (NSN—77) fluctuated
up to about 11 ft (fig. 1-5).

Surface Water

The Pawcatuck River originates at the outflow of Worden
Pond in the southeastern part of the basin (fig. I-1). The drain-
age area at the outflow point is about 25.8 mi* and comprises
the drainage areas of the Chipuxet River, which is the main
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tributary into Worden Pond, a few small brooks that flow

into the pond, and the pond itself. The Pawcatuck River is a
low-slope river, dropping only about 90 ft in altitude from its
origin at Worden Pond to its outlet to the Atlantic Ocean; the
entire drainage area of the river is 303 mi?. It generally flows
east to west along the southern part of the basin. Several tribu-
taries that flow from north to south include (from east to west)
the Chipuxet River, Chickasheen Brook, Usquepaug-Queen
River, Beaver River, Meadow Brook, Wood River, Tomaquag
Brook, Ashaway River, and Shunock River (fig. I-1). Of the
eight dams on the main stem of the Pawcatuck River, seven
are less than or equal to 10 ft in height. The only dam higher
than 10 ft is the Horseshoe Falls Dam in the village of
Shannock in Richmond, R.I. Within the entire Pawcatuck
River Basin in Rhode Island are about 100 dams on tributaries
and the main stem of the river.

GROUND-WATER LEVEL, IN FEET BELOW LAND SURFACE

EXPLANATION

e \WEW-522 (SG)
e=e=R|W-785 (SG)
e R|\W-600 (SG)
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Figure 1-5. Groundwater levels in selected U.S. Geological Survey observation wells in the Pawcatuck River Basin, south-
western Rhode Island and southeastern Connecticut, 2000-04 (SG, sand and gravel; T, till).
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Streamflow

Streamflow data were collected at 18 of the 19 continu-
ous streamflow-gaging stations and 38 of the 40 partial-record
stations in the Pawcatuck River Basin during the study period
(tables 1-3 and 14, fig. 1-3). One continuous streamflow-
gaging station and 2 partial-record stations were not operated
and measured, respectively, during the study period. The
streamflow data at 18 of the 19 continuous streamflow-gaging
stations were needed to provide data for calibration of the
precipitation-runoff and groundwater models and for the
evaluation of their performance. The streamflow data from 35
of the 40 partial-record stations provided supplemental infor-
mation for evaluating the performance of the models across
the respective areal extents of the models.

Three of the continuous streamflow-gaging stations
in the Pawcatuck River Basin (table 1-3 and fig. 1-3) have
been operated since the early 1940s as part of the USGS
surface-water network for Rhode Island. The Pawcatuck
River at Wood River Junction (01117500), Pawcatuck River
at Westerly (01118500), and Wood River at Hope Valley
(01118000) stations have been operated since from October
1940, November 1940, and March 1941, respectively. Mean
annual streamflow from the Pawcatuck River Basin was about
577 ft¥/s (1.96 ft3/s/mi?) from 1942 through 2004 on the basis
of records for the Pawcatuck River at Westerly (01118500)
station (table 1-5).

During the study period (2000-04), mean annual stream-
flow was about 571 ft*/s (1.94 ft3/s/mi?) at the Pawcatuck
River at Westerly (table 1-5). Streamflow across the basin was
fairly uniform; streamflow at the Pawcatuck River at Wood
River Junction (01117500) and Wood River at Hope Valley
(01118000) stations averaged about 1.98 and 2.07 ft¥/s/mi?,
respectively, during the 2000—04 study period and about 1.96
and 2.15 ft*/s/mi? from 1942 through 2004. During the study
period of 2000-04, average annual streamflow was close to the

long-term average annual during the period 1942-2004. Dur-
ing the individual calendar years 2000, 2001, and 2004, annual
streamflow was close to normal, but in calendar year 2002, the
annual streamflow was about 30 to 32 percent below normal,
and in calendar year 2003, annual streamflow was about 23

to 26 percent above normal. From September 2001 through
October 2002, monthly streamflows at all three stations were
below the long-term (1942-2004) mean monthly streamflow,
except for May and June 2002 (fig. 1-6A—C). This period of
below-normal streamflow nearly coincided with the 13-month
dry spell from August 2001 through 2002 in which precipita-
tion was 17.3 in. below normal (fig. 1-2A).

Continuous Stations

Nine of the 19 continuous streamflow-gaging stations are
part of the USGS surface-water network for Rhode Island and
Connecticut (long-term stations) and were operated during
the entire study period (table 1-3 and fig. 1-3). Nine of the
remaining 10 stations (short-term stations) were installed and
operated for at least 2 years of the study period, generally
during the period 2002—-04. Streamflow data for these stations
are published annually in the Massachusetts-Rhode Island
Data Report (Socolow and others, 2001, 2002, 2003, 2004,
2005) and all streamflow data are available online at
http://waterdata.usgs.gov/ri/nwis/sw or http://waterdata.
usgs.gov/ct/nwis/sw through the USGS National Water
Information System (NWIS). At the nine short-term stations
operated for part of the study period, streamflow records (daily
mean discharge) were estimated by use of record-extension
techniques for the periods when the stations were not
operating. Streamflow records for each of the nine short-term
stations were related to concurrent daily mean streamflows
for at least one nearby index station. The list of index stations
used and the correlation coefficients describing the relations
between the short-term stations and the index stations are
listed in table 1-6.
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MONTHLY MEAN STREAMFLOW, IN CUBIC FEET PER SECOND

Part 1. Water Resources in the Pawcatuck River Basin

A 01117500 Pawcatuck River at Wood River Junction, Rl
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Figure 1-6. Mean monthly
streamflows for selected long-
term U.S. Geological Survey
streamflow-gaging stations in
the Pawcatuck River Basin,
southwestern Rhode Island
and southeastern Connecticut.
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30 Part 1. Water Resources in the Pawcatuck River Basin

Partial-Record Stations

To augment the data from the continuous streamflow-
gaging stations, miscellaneous streamflow data were collected
at 40 partial-record stations (table 1-4 and fig. 1-3), mostly
located on tributary streams to the major rivers within the
Pawcatuck River Basin. Periodic streamflow measurements
made at these stations, generally during base-flow conditions
(about 2 to 5 days after a precipitation event), were mainly
correlated with concurrent daily mean discharges represent-
ing natural-flow conditions at three nearby long-term index
stations—Beaver River at Usquepaug (01117468), Wood
River near Arcadia (01117800), and Pendleton Hill Brook
near Clarks Falls, Conn. (01118300)—to obtain a continuous
discharge record (table 1-6). Streamflows at each partial-
record station were measured 11 to 61 times during this study
and in past studies. Streamflow measurements at partial-record
stations are published in the Annual Water Resources Data
Reports for Massachusetts and Rhode Island (Socolow and
others, 2001, 2002, 2003, 2004, 2005) for the water years
(October 1 to September 30) in which the measurements were
made. The number of correlated streamflow measurements
depended on the availability of concurrent streamflow records
at the index station (table 1-6). For example, the Beaver River
at Usquepaug (0117468) station did not begin operation until
December 1974, so streamflow measurements made prior
to 1974 at partial-record stations were not included in this
analysis. Correlations were generally made for a wide range of
discharges (low flows through at least medium flows) at each
partial-record station.

A mathematical procedure developed by Hirsch (1982)
known as Maintenance of Variance Extension (MOVE.1)
was applied to logarithms of the measured streamflow at each
partial-record station and the same-day daily mean discharge
at the index stations. Scatter plots indicated which relations
between the log-transformed measured streamflow at each
partial-record station and the same-day log-transformed daily
mean discharges at each of the index stations were linear. Esti-
mated daily mean discharges for water years 200004 were
computed for each partial-record station from the streamflow
records for the selected index stations (based on a linear rela-
tion, a high correlation coefficient, and general drainage-area
size) (table 1-6) by the MOVE.1 procedure. The final daily
mean discharge at each partial-record station for water years
2000—04 was then computed by a weighted average of the
mean daily discharges for each index station. Each index-
station discharge was weighted on the basis of the mean
square error between the computed discharge and the mea-
sured discharge at the partial-record station.

The retransformation of the computed logs of discharges
into arithmetic units for each equation can create a bias.

This bias was evaluated by Duan’s smearing method (Duan,

1983); however, a bias-correction factor was not applied to the
retransformed log discharges because the overall bias among
index stations was generally small (less than a few percent).
The accuracy of this record-extension technique is
determined by the goodness-of-fit between the instantaneous
discharge measurements at the partial-record station and
the same-day daily mean discharge records at continuous
streamflow-gaging stations, the accuracy of the instantaneous
discharge measurements, the accuracy of the continuous-
discharge record, and the range of the flows measured at
the partial-record station. Because each of these factors can
introduce error, the extrapolated records for the partial-record
stations are considered estimates. Because most measurements
at the partial-record stations were made during low to moder-
ate flows, the estimates of daily discharge during high flows
could be poor.

Baseflow

Baseflow (groundwater discharge) is that part of stream-
flow that discharges from an aquifer to the stream channel
upstream from the measuring point. Groundwater discharges
to streams and is typically the principal component of stream-
flow 3 to 7 days after a peak in streamflow caused by periods
of precipitation or snowmelt. During most years, groundwa-
ter levels and baseflow decrease during the growing season.
Annual baseflow can vary significantly with annual precipita-
tion and long-term variations in groundwater storage.

Baseflow was estimated from streamflow by the com-
puter program PART (Rutledge, 1998), which uses an auto-
mated hydrograph-separation technique. Mean annual base-
flow from the Pawcatuck River Basin is estimated to be about
501 ft¥/s (about 87 percent of mean annual streamflow) on
the basis of analysis of streamflow records for the Pawcatuck
River at Westerly (01118500) station from 1942 through 2004
(table 1-5). Baseflow also was estimated for the Pawcatuck
River at Wood River Junction (01117500) and the Wood River
at Hope Valley (01118000) stations. The long-term mean
annual baseflows for these two stations were about 176 and
132 ft*/s (about 90 and 85 percent of the respective mean
annual streamflows) for 1942-2004. During the study period
(2000-04), mean annual baseflows for the stations Pawcatuck
River at Wood River Junction, Wood River at Hope Valley,
and Pawcatuck River at Westerly were 175, 126, and 484 ft*/s
(about 88, 84, and 85 percent of the respective mean annual
streamflows during 2000-04); these values are fairly close to
the long-term means for 1942-2004. During 2002, however,
baseflows were about 32 to 34 percent lower than the long-
term means, and in 2003, baseflows were 19 to 26 percent
higher than the long-term means.



Ponds and Wetlands

Numerous ponds throughout the Pawcatuck River Basin
make up about 2.7 percent of the area in the basin (fig. [-3).
During the period 2003-04, water levels were measured 1 to
2 times per month at 22 of the larger ponds across the basin
(table 1-7 and fig. 1-7). Water-level measurements were made
during 2000-02 for one pond (Glen Rock Reservoir). Water
levels for ponds in the basin generally fluctuated about 0.3 to
2.1 ft during the 1.5 years of miscellaneous measurements.
Several of the ponds were affected by water withdrawals for
irrigation and other regulations, specifically Yawgoo Mill
Pond, Hundred Acre Pond, Thirty Acre Pond, Barber Pond,
and Glen Rock Reservoir (table 1-7 and fig. 1-7). Water levels
in these ponds could be affected by these regulations, espe-
cially during the summer (June through August) and early fall
(September and October). Additionally, several unidentified
ponds may be affected by lowering of water levels in the fall
to kill weeds over the winter and then refilling of the pond in
the spring.

Wetlands make up a significant portion of the Pawcatuck
River Basin. Nonforested wetlands occupy about 2.3 percent
and forested wetlands about 12.5 percent of the basin.
Wetlands are mainly in the southern part of the basin along
the Pawcatuck River, with extensive areas upstream of the
Pawcatuck River at Kenyon (station 01117430) to Worden
Pond; around the north side of Worden Pond at the mouths of
the Chipuxet River, Chickasheen Brook, and the Usquepaug
River; and around Cedar Swamp Brook (south side of the
Pawcatuck River in Charlestown), Watchaug Pond, and
Chapman Pond (figs. I-3 and 1-7).

Water Withdrawals

Municipal groundwater withdrawals and irrigation were
the primary water uses in the basin during the study period
(2000—04). Municipal withdrawals averaged 7.18 Mgal/d
during the study period. Irrigation in the basin is mainly for
turf farms (4.40 mi?) and golf courses (0.76 mi?); irrigation for
vegetable farms (0.41 mi?) and tree nurseries (0.005 mi?) was
minor. Estimated agricultural (turf, vegetables, and tree nurser-
ies) and golf course irrigation withdrawals totaled 8.44 and
0.88 Mgal/d, respectively, on an average day of irrigation in
the basin during the study period. Unlike domestic water use,
irrigation can vary widely from day to day, season to season,
and among farms. Irrigation water use may be estimated from
climatic factors, but estimation may also be complicated by
limited data from turf farms and golf courses. It was estimated
that agricultural irrigation withdrawals occurred on average
about 68 days per year from May 1 through October 30, and
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golf course irrigation occurred on average about 140 days per
year from April 16 through November 15 during the study
period. If measured withdrawal data were available, they were
incorporated into the HSPF and MODFLOW models for cali-
bration. Irrigation withdrawals were estimated for unmetered
sites and unmetered periods from 1960 through 2004. The
irrigation data were estimated by using logistic regression to
predict the probability of irrigation on a specific day, an aver-
age 24-hr rate of irrigation, and an average rate per unit area
on the basis of data collected during 2000-04 (see below).

Municipal Withdrawals

During the study period, five major water suppliers in
the basin operated a total of 16 wells (fig. 1-8). The five water
suppliers’ total average withdrawals for 2000—04 were about
7.18 Mgal/d (table 1-8). Wild and Nimiroski (2004) reported
a total average withdrawal rate for these same suppliers of
about 6.77 Mgal/d for 1995-99; this value is about 6 percent
lower than the value during the study period. During the study
period, municipal withdrawals did not vary much from year to
year (table 1-8), but during all years, withdrawals were gener-
ally greater during May through September and especially
during July and August (fig. 1-9). These higher withdrawals
during the summer months may be a result of outdoor water
use and increases in summer population for communities
near the ocean. This pattern of greater municipal withdraw-
als during the summer months than during the rest of the year
was also documented in Rhode Island by Granato and Barlow
(2005, p. 32). The only major supplier whose summer with-
drawals decreased was the WSCB Well #1; this well supplied
a school, and the majority of students were not at the school
during most of May through August.

Nonmunicipal Withdrawals

Thirteen minor nonmunicipal suppliers were reported in
the basin in 1999 by Wild and Nimiroski (2004, p. 10, 22);
these wells withdrew an average of about 0.1 Mgal/d and
serviced only about 60 to 200 people each. These minor non-
municipal suppliers withdraw water from wells registered with
the Rhode Island Department of Environmental Management
(RIDEM) as serving 25 or more people for a minimum of 60
days. Wild and Nimiroski (2004) estimated that self-supply
withdrawals for domestic, commercial, industrial, and agricul-
tural use averaged about 2.3, 0.2, 0.5, and 1.4 Mgal/d during
1995-99 in the Pawcatuck River Basin.
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Figure 1-7. Location of U.S. Geological Survey pond-level stations in the Pawcatuck River Basin, southwestern Rhode

Island and southeastern Connecticut.
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Figure 1-8.
southwestern Rhode Island and southeastern Connecticut.

Location of major water-supply wells and wastewater treatment facilities in the Pawcatuck River Basin,



Water Withdrawals

Table 1-8. Water withdrawals for major water suppliers in the Pawcatuck River Basin, southwestern Rhode Island and
southeastern Connecticut, 2000-04.

[Locations shown in figure 1-8. Mgal/d, million gallons per day; Jan., January; Sept., September; Dec., December]

Average withdrawals

Average withdrawals

(Mgal/d) (Mgal/d)
Well
2000 2001 2002 2003 2004 Jan. 2000-Sept. 2004 Ja':::gg:l‘:ﬁ) dz)oo4

WSCA

Well #1 0.168 0.149 0.092 0.191 0.095 0.139 0.139
Well #2 0219 0.252 0312 0.198 0.192 0.241 0.235
Subtotal 0.387 0.401 0.404 0.389 0.286 0.380 0.374
WSCB

Well #1 0.457 0.432 0.404 0.410 0.428 0.424 0.426
WSM

Well #1 0.044 0.085 0.058 0.056 0.060 0.064 0.061
Well #2 0.344 0.353 0.347 0.346 0377 0358 0354
Well #3 0.057 0.096 0.067 0.065 0.069 0.075 0.071
Well #4 0.450 0.458 0.421 0.431 0.507 0.451 0.453
Well #5 0.759 0.830 0.886 0.969 0.966 0.882 0.882
Well #6 1.084 1.063 1.082 1.191 1.167 1121 1118
Subtotal 2.739 2.885 2.860 3.059 3.147 2.950 2.938
wsw

Well #1 0.052 0.056 0.063 0.057 0.053 0.057 0.056
WSsP

Well #1 0.807 0.882 0.764 0.788 0.629 0.781 0.774
Well #2 1.168 1,300 1.456 1.219 1.379 1310 1.304
Well #3 0.433 0.502 0.475 0.520 0.460 0.479 0.478
Well #4 0.198 0.138 0217 0.185 0212 0.192 0.190
Well #5 0.316 0.369 0.285 0.225 0273 0.299 0.293
Well #6 0.346 0.427 0.365 0.303 0.309 0.356 0.350
Subtotal 3267 3.617 3.561 3.240 3.263 3.417 3.390
TOTAL 6.902 7.391 7.292 7.156 7.177 7.228 7.184
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A Monthly rate water withdrawal patterns for major suppliers in the Pawcatuck River Basin, southwestern Rhode Island
and southeastern Connecticut, 2000-04.
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TOTAL WATER WITHDRAWALS RATE, IN MILLION GALLONS

B Monthly percentage water withdrawal patterns for major suppliers in the Pawcatuck River Basin, southwestern Rhode Island

and southeastern Connecticut, 2000-04.
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Figure 1-9. Monthly water withdrawal patterns for major suppliers in the Pawcatuck River Basin, southwestern
Rhode Island and southeastern Connecticut, 2000-04.



Agricultural Withdrawals

The Pawcatuck River Basin is estimated from GIS data
layers (1995) and aerial photographs (2002) to include about
4.82 mi? (3,082 acres) of irrigated agricultural land (turf farms,
vegetable farms, and tree nurseries). Turf farms are estimated
to account for about 4.40 mi? (2,815 acres) of the irrigated
agricultural land in the basin. Withdrawals from streams or
instream ponds are the sources of irrigation water for about
3.31 mi? (2,115 acres) of the turf farms; about 1.09 mi?

(700 acres) are irrigated from wells or ponds not directly con-
nected to streams. Vegetable farms were estimated to account
for about 0.41 mi* (264 acres) of the irrigated agricultural

land in the basin. Nearly all the vegetable farms, about

0.35 mi? (227 acres), were irrigated from water withdrawals on
streams or instream ponds, and only about 0.06 mi? (37 acres)
was irrigated from wells or ponds not directly connected to
streams. Tree nurseries were estimated to account for about
0.005 mi? (3.0 acres) of the irrigated agricultural land, and all
were irrigated from instream ponds.

During each year, an estimated 40 to 50 percent of the
turf-farm area is kept fallow (Vicky Drew, U.S. Department
of Agriculture, Natural Resources Conservation Service,
oral commun., 2005). Most turf farms irrigate the remaining
active areas of turf. Irrigation-withdrawal data were collected
by direct measurement at 11 turf-farm sites, at 2 of which
groundwater was withdrawn and at 9 of which surface water
was withdrawn from the basin (table 1-9). At two turf farms,
irrigation-withdrawal data from two measured withdrawal
points had to be combined into one data set, because the
areas irrigated by withdrawal at the two points could not be
determined individually. As a result of the two combined sites,
data were available only for 9 separate turf-farm sites in the
basin. Data were collected for either three or five irrigation
seasons (May through October) during 2000-04. These
withdrawals were measured continuously and totaled hourly
by an impeller flowmeter installed between the pump and the
irrigation nozzles.

The turf farms where irrigation data were collected
covered a total area of about 2.08 mi? (1,329 acres) or about
47 percent of the turf-farm land in the basin. The total area of
turf farms where irrigation data were collected includes the
areas that were fallow during part of the study, because the
fallow areas were changed during the year and from year to
year. When they were irrigated, the metered turf farms applied
an average of 3,399 gal/d/acre (table 1-9). On an average
day, withdrawal rates at the turf farms tended to increase
from about 0800 hours and continue to about 1300 hours,
after which withdrawal rates decreased steadily through the
remainder of the day (fig. 1-10). A wide range of withdrawal
rates per unit area was measured among the turf farms over the
average 24-hour period. Site AUQ8A was generally operated
differently than the other turf farms; withdrawals increased
during the early evening hours, remained steady through the
early morning hours, and then decreased during the day
(fig. 1-10). This unusual pattern may be a result of the fact

Water Withdrawals 37

that an electric pump was used to withdraw groundwater at
this site, probably because electric pumps are quieter than the
diesel engine pumps used at most other sites. Operation of

the electric pump during the nighttime also may be preferred
because of lower electricity rates. The nine turf-farm sites
averaged about 31 days of irrigation during the May-through-
October irrigation seasons for 2000—04, but the number of
days of irrigation varied among sites and years from 0 days
(one farm in 2003) to 75 days (one farm in 2001) per year. The
number of days of irrigation in any season was likely depen-
dent on climatic factors, such as precipitation and temperature,
and on other factors, such as soil moisture, grass type, and
planned harvest time. During some years, turf farms left fields
fallow; during summer 2003, when conditions were wetter, a
few turf farms did not irrigate at all.

Golf-Course Withdrawals

Eleven golf courses are currently (2009 ) in the
Pawcatuck River Basin, of which 10 are completely in the
basin and 1 is partially in the basin. The total in-basin area of
greens and fairways for the 11 golf courses was about
0.89 mi? (572 acres). All 11 golf courses irrigate their greens,
and 9 of the 11 golf courses irrigate their fairways, for a total
of 0.76 mi? (487 acres) of irrigated area. Withdrawals for
irrigation at the golf courses come from surface-water (streams
or instream ponds) or groundwater sources; groundwater
withdrawals may be directly from wells or from ponds that
have been filled with water from wells.

The two golf courses in the basin where irrigation
data were collected covered a total area of about 0.19 mi?
(124 acres), or about 25 percent of the irrigated golf-course
area in the basin. Irrigation data were collected at one course
that used direct stream withdrawals (GUQ2A and GUQ2B)
and at another course that filled a pond from groundwater
withdrawals (GMB2A) (table 1-9). Groundwater-withdrawal
data were also collected at a third golf course (GP2A), of
which only a few fairways and green were in the basin.
Average withdrawals at the three metered golf courses were
1,756 gal/d/acre during the irrigation period of April 16
through November 15 for the 4 years of the study (table 1-9).
Water-withdrawal rates per unit area for all three golf courses
were similar. Although the withdrawal rates per unit area for
these three metered golf courses were similar, they may not
represent the general withdrawal rates or patterns at the other
golf courses in the basin.

On an average day, metered withdrawal rates at the two
golf courses dependent on groundwater sources (GMB2A and
GP2A) were generally at their highest from about 2200 hours
until about 0600 hours and at their lowest from about 0700
hours through about 2100 hours (fig. 1-11). The golf course
dependent on surface-water sources (GUQ2A and GUQ2B—
two metered withdrawal sites at the same course) had a
distinctly different average daily water-withdrawal rate than
the two courses dependent on groundwater sources; the high-
est withdrawal rates occurred from 0400 through 0900 hours.
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Figure 1-10. Average 24-hour irrigation-withdrawal rates for metered turf farms in the Pawcatuck River Basin,
southwestern Rhode Island and southeastern Connecticut, 2000-04.

The different patterns for the groundwater and surface-water
withdrawals may be a result of the fact that the electric pumps

at the groundwater-withdrawal sites were outfitted with timers.

Nighttime pumping may be preferred for the groundwater
withdrawal golf courses because of lower electricity rates. The
surface-water site is dependent on diesel-engine pumps that
can be loud and have to be turned on manually. Golf courses
were irrigated 62 days (one course in 2004) to 208 days (one
course in 2002) per year during 2000-04.

At a fourth golf course (GUQI1A), surface-water with-
drawals were estimated by linear interpolation between abrupt
drops and rises in the observed streamflow hydrograph for a
USGS station about 3,300 ft downstream of the withdrawal
point. The difference between the interpolated and observed
hydrograph during these periods was assumed to represent
withdrawals. The estimated average water withdrawal at this
site, 1,238 gallons per day per acre (gal/d/acre), was about
29 percent lower than the average water withdrawal mea-
sured at the other three golf courses (1,756 gal/d/acre) during
either 2000—04 or 200204 (table 1-9). This difference in
average water withdrawals per day per acre may be a result
of the estimation method used, which did not include time
periods during which abrupt drops and rises in the hydrograph
were not noticeable. During these periods, which may have
coincided with the irrigation of greens only, withdrawals
may have been low enough not to have noticeably affected
the hydrograph at the downstream USGS streamflow-gaging

station. Additionally, from April 16 through July 16, 2002, the
downstream USGS streamflow-gaging station was not operat-
ing. During this period, water withdrawals likely would have
occurred, because at the other surface-water-withdrawal golf
course (GUQ2A and GUQ2B—two metered withdrawal sites
at the same course), 39 days of withdrawals were measured
from May 7 through July 16, 2002. Even though water with-
drawals could be estimated for the period of April 16 through
July 16, 2002 at site GUQ1A, withdrawals were estimated for
323 other days during 2000—04 (table 1-9). This number of
days of surface-water withdrawals compared well with the 337
days of measured surface-water withdrawals at golf course site
GUQ2A and GUQ2B for the same time period excluding April
16 through July 16, 2002.

Groundwater-withdrawal data measured at golf-course
site GP2A averaged a little more than 247,000 gallons per
year per acre (gal/yr/acre) for the period 1994-2004
(table 1-10). This 11-year average water-withdrawal rate
compares reasonably well to the average groundwater-
withdrawal rates per year per acre for the two groundwater
sites (GMB2A and GP2A) during 2002-04 (table 1-9). During
the 11 years, yearly groundwater withdrawals rates per year
per acre ranged from 39 percent less to 36 percent more than
the 11-year-average withdrawal rate. This wide range of yearly
groundwater withdrawals likely is the result of climatic factors
during each of the years (table 1-10).
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Figure 1-11. Average 24-hour irrigation-withdrawal rates for metered golf courses in the Pawcatuck River Basin, south-
western Rhode Island and southeastern Connecticut, 2000-04.

Table 1-10. Annual groundwater withdrawals at golf course GP2A partially located in the Pawcatuck River Basin, southwestern
Rhode Island and southeastern Connecticut, 1994-2004.

[NOAA-NWS, National Oceanic and Atmospheric Administration National Weather Service; URI, University of Rhode Island; gal, gallons; yr, year;
ac, acres; yd, yards; in., inches; --, not applicable; /, per]

Total precipitation

Total groundwater  Groundwater  Groundwater Re:_';':l:;v‘(’:::ry from April 16 through Rank of yearly

Year withdrawals withdrawals  withdrawals wi?h drawals from November 15 at thg precipitatio_n from

(gal/yr) (gal/yr/ac) (gal/yr/yd) highest to lowest NOAA-NV\:iSn-.l;JRI station lowest to highest
1994 21,583,000 336,236 3,473 2 18.94 1
1995 15,577,000 242,670 2,507 7 27.09 5
1996 9,640,000 150,179 1,551 11 34.82 10
1997 14,164,000 220,657 2,279 8 27.61 6
1998 16,874,000 262,876 2,715 5 36.33 11
1999 17,851,000 278,096 2,873 3 26.59 3
2000 11,419,000 177,894 1,838 10 34.27 8
2001 21,618,000 336,781 3,479 1 24.76 2
2002 17,471,000 272,176 2,812 4 31.04 7
2003 12,158,707 189,417 1,957 9 34.47 9
2004 16,141,046 251,457 2,598 6 26.90 4
Minimum 9,640,000 150,179 1,551 -- 18.94 -
Maximum 21,618,000 336,781 3,479 -- 36.33 -
Average 15,863,341 247,131 2,553 -- 29.35 -

Median 16,141,046 251,457 2,598 - 27.61 -




Predicting Turf-Farm and Golf-Course Irrigation

Logistic-regression equations were developed to predict
the probability of irrigation on a specific day at turf farms and
golf courses from 1960 through 2004, so water withdrawal
estimates were available for long-term model analyses. Sepa-
rate equations were developed for turf farms (includes vegeta-
ble farms and tree nurseries), golf courses with surface-water
withdrawals, and golf courses with groundwater withdrawals.
The three separate equations for predicting water withdraw-
als were needed because of differences in the number of days
of withdrawals per year (table 1-9), withdrawal rates per day
per acre (table 1-9), and 24-hour irrigation patterns at the nine
turf farms (fig. 1-10) and three golf courses (fig. 1-11). The
approach of developing separate equations for turf farms and
golf courses with surface-water and groundwater withdraw-
als differed from that of a previous study for the Usquepaug-
Queen River Basin (Zarriello and Bent, 2004), because the
additional data collected in this study revealed different and
more detailed patterns.

The equations were developed from irrigation-withdrawal
data measured during 2000—04 or 2002—04 and antecedent
precipitation and potential evapotranspiration rates that served
as potential explanatory variables for these time periods. The
rates were determined from climatic data collected at the
FBWR station. The equations were developed with the step-
wise-logistic regression procedure in SAS (SAS Institute, Inc.,
1989, 1995). Explanatory climatic variables tested included
total rainfall and potential evapotranspiration rates during
the previous 2, 5, 10, 15, and 20 days. Correlated explana-
tory variables were not used during the stepwise-regression
analysis because colinearity between independent variables
can result in erroneous results (Helsel and Hirsch, 1992).
Explanatory variables for sequences of data collected during
closely overlapping time intervals—for example, rainfall in
the previous 2 days and in the previous 5 days—tended to be
correlated and were not used together in the analysis. Other
climatic variables were dropped from the stepwise regression
or only marginally added to the goodness-of-fit as indicated
by the chi-squared values and Akaike Information Criterion
(AIC) values.

Irrigation withdrawals at turf farms were made only from
May 1 through October 31 in any year; for this reason, data
from November 1 through April 30 were omitted from the
analysis. Irrigation data were available for three turf-farm sites
for 2000-04 and for eight other turf-farm sites for 2002—-04.
Several days of data were missing for the three turf-farm sites
for which data were collected in 2000 and 2001. Turf-farm
irrigation occurred on 373 of the 920 days used in the analysis
during the 5-year period (table 1-11). Irrigation at turf farms
differed with respect to the number of days of withdrawals and
the amount withdrawn in any one year. The logistic-regression
analysis determined that the best equation for estimating the
probability of turf-farm irrigation on any day from May 1
through October 31 (P) was based on total potential evapo-
transpiration during the previous 5 days (PET5) and total

Water Withdrawals M

precipitation during the previous 2 days (PREC2) and the
previous 20 days (PREC20). The probability (P) of irrigation
occurring on a specific day at turf farms is given by

he (exp (-2.1149 + 5.1917 (PET5) — 0.7777(PREC2) — 0.5877 (PREC20))
1+ (exp (-2.1149 + 5.1917(PETS) — 0.7777 (PREC2) — 0.5877(PREC20))

(M

Results of the analysis of maximum likelihood estimates for
equation (1) are presented in table 1-11.

Irrigation withdrawals at golf courses were made only
from April 16 through November 15 in any year; for this
reason, data from November 16 through April 15 were omitted
from the analysis. Irrigation data were available for one golf
course with surface-water withdrawals for 2000-04 and for
two golf courses with groundwater withdrawals for 2002—04.
Separate logistic-regression equations for estimating the
probability of irrigation on any day were developed for golf
courses with surface-water withdrawals and golf courses with
groundwater withdrawals. Two separate equations were devel-
oped because the golf course with surface-water withdraw-
als irrigated on only 374 of the 1,075 days between April 16
and November 15 during the 5-year period, whereas the golf
courses with groundwater withdrawals irrigated on 472 of
568 days during 2002—-04.

For golf courses irrigated with surface-water withdraw-
als, the logistic-regression analysis determined that the best
equation for estimating the probability of irrigation on any
day from April 16 through November 15 (P) was based on
total potential evapotranspiration during the previous 5 days
(PETS) and total precipitation during the previous 5 days
(PRECS) and the previous 20 days (PREC20). The probability
(P) of irrigation occurring on a specific day at golf courses
with surface-water withdrawals is given by

» (exp (-2.1590 + 4.3063 (PET5) — 1.4975( PRECS) — 0.1506 (PREC20))
1+ (exp (-2.1590 + 4.3063( PETS) — 1.4975 (PRECS) — 0.1506 (PREC20))

@

Results of the analysis of maximum likelihood estimates for
equation (2) are presented in table 1-11.

For golf courses irrigated with groundwater withdraw-
als, the logistic-regression analysis determined that the best
equation for estimating the probability of irrigation on any
day from April 16 through November 15 (P) was based on
total potential evapotranspiration during the previous 20 days
(PET20) and total precipitation during the previous 5 days
(PRECS). The probability (P) of irrigation occurring on a
specific day at golf courses with groundwater withdrawals is
given by

_ (exp(-0.9898 +1.9531(PET20) - 0.6466 (PRECS))
1+ (exp (-0.9898 +1.9531(PET20) - 0.6466 (PRECS))

©)

Results of the analysis of maximum likelihood estimates for
equation (3) are presented in table 1-11.
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Equation 1 for turf farms and equations 2 and 3 for golf
courses yield the probability of irrigation on a specific day at
turf farms for May 1 through October 31 and at golf courses
for April 16 through November 15 as a value between 0 and
1.0; the closer the value is to 1.0, the greater the likelihood
of irrigation. For turf farms, a probability of 0.40 provided
the best cutoff value for estimating observed irrigation: if the
estimated probability of turf-farm irrigation on a day is equal
to or greater than 0.40, then irrigation was assumed to have
occurred, but if the probability is less than 0.40, then irriga-
tion was assumed not to have occurred. At the 40-percent
probability, the equation correctly estimated turf-farm irriga-
tion about 78 percent of the time and balanced the sensitivity'
and specificity? of the equation more closely than at the other
probabilities (appendix 1, table A1-1). For golf courses with
surface-water withdrawals, a probability of 0.36 provided
the best cutoff value for estimating observed irrigation. At
the 36-percent probability, the equation correctly estimated
golf-course surface-water irrigation about 79 percent of the
time and balanced the sensitivity and specificity of the equa-
tion more closely than at the other probabilities (appendix 1,
table A1-2). For golf courses with groundwater withdrawals, a
probability of 0.80 provided the best cutoff value for estimat-
ing observed irrigation. At the 80-percent probability, the
equation correctly estimated golf-course groundwater irriga-
tion about 80 percent of the time and balanced the sensitivity
and specificity of the equation more closely than at the other
probabilities (appendix 1, table A1-3).

Each of the individual logistic-regression equations
was used to estimate the specific days of irrigation for turf
farms, surface-water-supplied golf courses, and groundwater-
supplied golf courses. The turf-farm equation was used
to estimate the specific dates of irrigation for unmetered
withdrawal sites (29 turf farms, 8 vegetable farms, and 1 tree
nursery). The groundwater-supplied golf-course equation
was used to estimate the specific days of irrigation for six
unmetered groundwater golf courses, with a total of nine
different withdrawal sites. The surface-water-supplied golf-
course equation was used to estimate the specific days of
irrigation for one unmetered surface-water golf course, and
the specific days of irrigation at golf course GUQ1A from
April 16 through July 16, 2002, when no streamflow data
were available for the downstream streamflow-gaging station.
After the specific days of irrigation were estimated for the
study period (2000—04) by each equation, the appropriate
average hourly water-withdrawal rate per acre was multiplied
by the number of acres to be irrigated to estimate the hourly
withdrawal rate for each unmetered site.

! Sensitivity: The ratio of correctly classified events (days of irrigation) to
the total number of events (days of irrigation).

2 Specificity: The ratio of correctly classified nonevents (days of no irriga-
tion) to the total number of nonevents (days of no irrigation).
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Water-withdrawal data were also estimated for all turf
farms, vegetable farms, tree nurseries, and golf courses
using the appropriate logistic regression equations in the
Pawcatuck River Basin for the period of 1960-99, so that
water-withdrawal estimates were available for model analyses
during 1960-2004. It was assumed that the irrigation rate,
irrigated acres, type of withdrawal (surface- or groundwater),
and locations of withdrawals for the period of 1960-99
were the same as those used 2000-04 because metered
water use data were not available during the earlier period.
To estimate the water withdrawals during this period using
the logistic-regression equations, precipitation and potential
evapotranspiration data from the PROVID climate station
were adjusted by the differences between data from the
FBWR and PROVID climate stations for the 2000—04 study
period, because climatic data were not available for FBWR
for 1960—99. During 2000-04, daily precipitation and
potential evapotranspiration data at the FBWR climate station
were 9.9 percent higher and 8.5 percent lower, respectively,
than at the PROVID climate station. Thus, PROVID daily
precipitation data were multiplied by 1.099 and PROVID
daily potential evapotranspiration data were multiplied by
0.915 to adjust for climatic conditions in the Pawcatuck River
Basin. The adjusted antecedent-precipitation and potential-
evapotranspiration explanatory variables were then used in
the appropriate logistic-regression equations to estimate the
days of irrigation for 1960—99. On the basis of the appropriate
hourly water withdrawal rate per acre and the acreage of
each turf farm, vegetable farm, tree nursery, and golf course,
the hourly withdrawal rate for each withdrawal point was
estimated during the irrigation seasons for the period of
1960-99.

Wastewater Discharge and Return Flow

The withdrawals of most major and minor production
wells are returned to the basin through onsite septic systems.
Withdrawals from domestic self-supply wells are also mostly
returned to the basin through onsite septic systems. Wild and
Nimiroski (2004, p. 40) reported 11 Rhode Island National
Pollutant Discharge Elimination System (NPDES) sites
discharging an average return flow of about 1.7 Mgal/d in the
Pawcatuck River Basin during 1995-99. Wild and Nimiroski
(2004, p. 42) also reported average return flows of about
2.8 Mgal/d from two wastewater-treatment facilities in
the southwestern part of the basin during 1995-99
(fig. 1-8). The wastewater from these two facilities discharges
near the mouth of the Pawcatuck River below the Pawcatuck
River at Westerly (01118500) streamflow-gaging station.

The wastewater-treatment facility in the southeastern part of
the basin, which services parts of one town and a university,
discharges return flow into the Atlantic Ocean.
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