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High-Frequency Normal Mode Propagation in Aluminum 
Cylinders

By Myung W. Lee and William F. Waite

Abstract

Acoustic measurements made using compressional-wave 
(P-wave) and shear-wave (S-wave) transducers in aluminum 
cylinders reveal waveform features with high amplitudes 
and with velocities that depend on the feature’s dominant 
frequency. In a given waveform, high-frequency features 
generally arrive earlier than low-frequency features, typical for 
normal mode propagation. To analyze these waveforms, the 
elastic equation is solved in a cylindrical coordinate system for 
the high-frequency case in which the acoustic wavelength is 
small compared to the cylinder geometry, and the surrounding 
medium is air. Dispersive P- and S-wave normal mode propa-
gations are predicted to exist, but owing to complex interfer-
ence patterns inside a cylinder, the phase and group velocities 
are not smooth functions of frequency. To assess the normal 
mode group velocities and relative amplitudes, approximate 
dispersion relations are derived using Bessel functions. The 
utility of the normal mode theory and approximations from a 
theoretical and experimental standpoint are demonstrated by 
showing how the sequence of P- and S-wave normal mode 
arrivals can vary between samples of different size, and how 
fundamental normal modes can be mistaken for the faster, but 
significantly smaller amplitude, P- and S-body waves from 
which P- and S-wave speeds are calculated.

Introduction

Acoustic transmission through soil is strongly influenced 
by the nature of the intergranular contacts (Santamarina and 
others, 2001). Crystalline solids such as gas hydrate form-
ing in the pore space of unconsolidated sediment can stiffen 
intergranular contacts or become load-bearing components of 
the sediment (Sloan and Koh, 2007), increasing the acous-
tic velocity through the sediment (Guerin and others, 1999; 
Helgerud and others, 1999; Lee and Waite, 2008; Petersen 
and others, 2007; Yuan and others, 1999). The dependence of 
acoustic velocity on pore-space gas hydrate content depends 
on the transmitted wave’s propagation mode (Yun and others, 
2006) and frequency (Bauer and others, 2005; Priest and oth-
ers, 2005), the hydrate morphology and degree of saturation 

within the pore space (Dvorkin and others, 2000; Kingston and 
others, 2008; Yun and others, 2005), as well as the porosity 
and lithology of the hydrate-bearing sediment itself (Guerin 
and Goldberg, 2005).

The gas hydrate and sediment test laboratory instrument 
(GHASTLI) (Winters and others, 2000) is one example of a 
laboratory system designed to investigate gas hydrate-bearing 
sediment, which can be found in marine and subpermafrost 
environments (Waite and others, 2004; Winters and others, 
2004; Winters and others, 2007). GHASTLI is instrumented 
with compressional- and shear-wave transducers for pulse 
transmission through gas hydrate-bearing soil samples. 
Because it is designed for triaxial measurements of soil 
strength, GHASTLI requires cylindrical samples with lengths 
between 2 and 2.5 times their diameter (American Society for 
Testing and Materials, 2003). Correctly identifying observed 
compressional- and shear-waveform arrivals in these relatively 
long, narrow cylinders is complicated by the appearance of 
multiple high-amplitude features in the measured waveform 
(Waite and others, 2004, 2008).

To identify the observed arrivals and isolate geometric 
controls on the waveform shape from porous media effects, we 
carried out a series of measurements on aluminum cylinders of 
varying length and diameter. Based on the relation between the 
velocity, frequency, and amplitude of the waveform features, 
we can identify the high-amplitude features using a normal 
mode approach.

Normal mode solutions for layered Earth models have 
been investigated extensively, and many theories are avail-
able (for example, Ewing and others, 1957; Brekhovskikh, 
1960; Aki and Richards, 1980). Many wave propagation 
theories in thin cylinders at low frequencies, such as for bar 
waves, have also been developed and extensively analyzed by 
Kolsky (1963) and Graff (1975). However, these theories are 
not applicable to high-frequency measurements on relatively 
long, thin, cylindrical samples. Here we present a theory to 
calculate normal mode velocities and amplitudes and compare 
these results with values measured on aluminum cylinders. We 
derive the amplitude and dispersion relation for normal mode 
velocities using a cylindrical coordinate system, assuming a 
solid cylindrical body of infinite length surrounded by air, with 
a radius exceeding the acoustic wavelength. 
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Measuring Waveforms in Aluminum 
Cylinders

In GHASTLI, compressional- and shear-wave acoustic 
waveforms are generated and measured using piezo-electric 
transducer crystals, hereafter referred to as “crystals,” 
mounted in cylindrical titanium endcaps (fig. 1A). Each end-
cap contains an axially positioned, disk-shaped shear-wave 
(S-wave) crystal. The compressional-wave (P-wave) crystal, 
which measures the waveform’s axial displacement, is an 
annular ring surrounding the S-wave crystal (fig. 1B), which 
measures radial displacements. The crystals are epoxied to 
the back of a 6.35-mm-thick titanium wear plate, the front of 
which is coupled to the aluminum cylinder with Panametrics 
shear-wave couplant.

A Panametrics Model 5800 Pulsar-Receiver generates 
the 50-volt pulse used to excite either the P- or S-crystal in 
one endcap. The pulse traverses the sample, is received by the 
corresponding P- or S-crystal in the second endcap, displayed 
on a Tektronix TDS-340 oscilloscope, and stored to disk. For 
each experimental setup, the signal generation and measure-
ment electronics are connected first to the P-crystals; then 
once the P-waveform has been recorded, the electronics are 
connected to the S-crystals to obtain the S-waveform. For both 
the P-crystal pairing and the S-crystal pairing, the waveform 
is essentially independent of which crystal in the pair is the 
signal transmitter and which is the receiver.

Measured waveform arrival times contain a system delay 
time that depends on the wiring configuration, endcap, and 
crystal pair. This delay, which is the time required for a signal 
to propagate through the electronics, crystals, and endcap wear 
plates, must be subtracted from the measured arrival times 
before the velocity of a given waveform feature through the 
sample alone can be calculated. These delay-corrected veloci-
ties are given in table 1. 

Figure 2 shows measured waveforms for 100-mm and 
200-mm nominal-length aluminum cylinders (actual lengths 
are 101.30 mm and 202.55 mm). The cylinders are 35 mm in 
diameter and surrounded by air. There are three distinct axial 
displacement features measured by the P-wave transducer for 
each aluminum cylinder 

To distinguish between features, the features are desig-
nated such that P100-3 indicates the third feature for the 100-
mm aluminum cylinder measured by the P-wave transducer. 
The measured group velocity and dominant frequency for each 
feature is listed in table 1.

The shear waveforms for the 100- and 200-mm-long 
cylinders (fig. 2) indicate the first, second, and third axial dis-
placement P-wave features are also transmitted and recorded 
by the S-wave crystals, though less efficiently. This generation 
and detection of axial displacements by S-wave transducer 
crystals results from their imperfect polarization in the radial 
direction (Ayling and others, 1995). This imperfect polariza-
tion can also cause P-wave crystals to generate and detect 
radial displacements.

Figure 1.  Measurement equipment. Within 
each endcap (A), the shear-wave (S-wave) and 
compressional-wave (P-wave) transducer crystals, 
shown schematically in (B), are epoxied to the inner 
surface of a wear plate that contacts the sample. The 
100-mm-long, 35-mm-diameter aluminum cylinder is 
shown here, with shear-wave couplant between the 
aluminum and the endcap wear plates. A C-clamp holds 
the system together.

For the purpose of deriving a tractable mathematical 
model of this system, the P- and S-wave signals are assumed 
to be generated from a point source on the cylindrical axis. For 
the annular P-wave crystals (fig. 1B), the validity of assum-
ing P-waves are generated and received on-axis is supported 
by the correspondence between the relative timing of P-wave 
features transmitted and received using the annular P-wave 
crystals, and those transmitted and received by the on-axis 
S-wave crystals (fig. 2). When modeling the S-wave signal, 
however, we must assume the S-wave’s radial motion is mea-
sured across the full diameter of the crystal.

A

B



Measuring Waveforms in Aluminum Cylinders    3

Table 1.  Velocities and dominant frequencies for normal mode arrivals in aluminum cylinders.

[DPNM and DSNM, dispersive P- and S-wave normal modes, respectively; * implies the two separate arrivals (body 
wave and fundamental normal mode) cannot be distinguished because of their similar velocities and relatively short 
sample lengths; PT, thin aluminum rod. Two measurement suites were run for this study: the 2006 measurements 
utilized transducer crystals with slightly higher frequency content than the crystal set used in the 2007 measure-
ments]

Diameter/
length (mm)

Year 
measured

Waveform
feature 

Velocity
(m/s)

Dominant
frequency

(MHz)

Waveform feature
identification

35/101.3 2006 P100-1* 6,360 0.78 Fundamental order DPNM
35/101.3 2006 P100-2 3,890 0.49 First-order DPNM
35/101.3 2006 P100-3 2,800 0.44 First-order DSNM 
35/202.55 2006 P200-1* 6,370 0.88 Fundamental order DPNM
35/202.55 2006 P200-2 4,840 0.59 First-order DPNM
35/202.55 2006 P200-3 3,910 0.79 Second-order DPNM
35/101.3 2006 SW100 3,190 0.76 Body S-wave 
35/101.3 2007 S100-1 3,150 0.46 Fundamental order DSNM
35/101.3 2007 S100-2 2,690 0.42 First-order DSNM
35/202.55 2007 S200-1 3,090 0.42 Fundamental order DSNM
35/202.55 2007 S200-2 2,740 0.41 First-order DSNM
25.4/202.55 2007 PT200-1 6,380 0.95 Fundamental order DPNM
25.4/202.55 2007 PT200-2 5,160 0.81 First-order DPNM

Figure 2.  Waveforms for 35-mm-diameter and 100-mm and 200-mm nominal-length aluminum cylinders 
surrounded by air at zero effective pressure. To account for the different system delay times when using 
the S-crystals rather than the P-crystals, the shear-transducer waveforms (green curves) were shifted 
left by 2.68 microseconds relative to the P-transducer signals (black curves). This shift aligns the first 
detectable transmission of energy in each waveform for a given sample, highlighting the correspondence 
between the relative arrival times of P-wave features in both signals. Because of the shift, however, the 
plotted arrival times for the shear-waveform features are not used to determine wave speeds.
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Theory

Identifying the waveform features listed in table 1 
requires a theoretical relation between each normal mode’s 
dominant frequency and group velocity. We derive that rela-
tion in three steps:
1.	 Derive a solution of the wave propagation equation for 

cylinders.

2.	 Derive the dispersion relation to obtain the normal mode 
phase velocity dependence on frequency.

3.	 Use the approximate phase velocity at high frequency to 
calculate the group velocity for each normal mode.
As an independent check on the normal mode approach, 

we also derive the relative amplitudes of the normal modes as 
well as of the P- and S-body waves.

Wave Equation Solution

Under the assumption of axial symmetry, differential 
equations for wave propagation within an infinitely long cylin-
der can be written using a cylindrical coordinate system (r, θ, 
z) as (for example, Biot, 1952; Lee and Balch, 1982):
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where Φ and Ψ are scalar potentials for P- and S-waves, 
respectively; Ur and Uz are radial and axial displacement, 
respectively; and α, β, and t are P-wave velocity, S-wave 
velocity, and time, respectively. The formal solution of equa-
tion 1 in the frequency domain can be written as follows when 
the P-wave source is located at the origin with the strength Vo, 
and the S-wave source is located at the origin with the strength 
So:
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where w is an angular frequency, c is the phase velocity, and 
Jn and Hn

( )2 are the order n Bessel function and order n Hankel 
function of the second kind, respectively. Note that uniformly 
expanding P- and S-wave source waves are assumed for the 
wave equation solution. 

We use two boundary conditions in the solution of equa-
tion 2: vanishing radial stress, prr= 0, and vanishing tangential 
stress, prz = 0 at the cylinder surface. Stresses are given by:
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 where l and m are the Lamé parameters.

Substituting boundary conditions into equation 3, the fol-
lowing matrix equation can be derived: 
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Phase Velocity

The dispersion relation, meaning the normal mode phase 
velocity dependence on frequency, is given by requiring the 
determinant of equation 4 to be zero (Ewing and others, 1957). 
The determinant is given by a a a a11 22 12 21− :

	 Δ = − +4 2 2 4
1 0 1k lJ la mJ ma J ma a  ( )[ ( ) ( ) / ]

						               (5) 
	
     2 2 2 2

1
2 2 2

0
2

12 2 2( ) ( )[( ) ( ) ( ) / ]k J ma k J la lJ la a− − +

in agreement with the equation shown by Graff (1975).
Using the small argument approximation of the  

Bessel functions in equation 5, we derive the low-frequency 
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dispersion relation in Appendix A, recovering the bar-wave 
velocity in a cylinder (Kolsky, 1963) and the Rayleigh surface-
wave dispersion relation for large-diameter cylinders (White, 
1965). The low-frequency corroboration with well-known 
wave behavior provides an important check on our theoreti-
cal derivation. As described in Appendix A, however, for the 
high-frequency range of interest here, our observed waveform 
features (fig. 2) are neither the bar waves nor the extensional 
mode waveforms described by Kolsky (1963) and Graff 
(1975).

For the frequencies and length scales of interest here, 
the dispersion relation for the dispersive P-wave normal 
mode (DPNM) is derived by requiring the determinant given 
in equation 5 to be zero and the P-wave normal mode phase 
velocity to be greater than α. This restriction forces l and m 
to be real numbers. There is no simple analytic solution for 
finding the zeroes of equation 5. The dispersion relation can 
be numerically calculated, however. The phase velocity of a 
P-wave normal mode, Ca, is given by ∆ = 0 and can be written 
as: 
 
 ( ) ( )[ ( )

( )
]
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* *1
2

4 2
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2

3

2
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1

1
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where l C* /= −1 2 2   and m C* /= −1 2 2  . Allowable 
phase velocities are those for which the left and right sides of 
equation 6 are equal for a given phase velocity. From equation 
6, the normal mode phase velocity depends on the acoustic-
wave frequency, the P- and S-wave speed of the sample, and 
the sample’s geometry.

Figure 3 shows an example of calculating phase velocity 
using equation 6. Figure 3A shows phase velocities for the first 
three P-wave normal modes in a 35-mm-diameter aluminum 
cylinder at two different frequencies, calculated by determin-
ing the locations of intersections of the left and right sides 
of equation 6. To develop the complete dependence of phase 
velocity on frequency, the process illustrated in figure 3A must 
be repeated for all frequencies in the range of interest. For the 
fundamental mode, the result is plotted in figure 3B. 

The form of equation 6 is not practical for computing 
normal mode phase velocities. For the sake of simplicity at 
high frequencies, the measured dispersion relation can be 
approximated by setting either J la1 0( ) =  or J la0 0( ) =  in 
equation 6 for the P-wave normal modes. When using the 
approximate dispersion relation, the phase velocity (Ca) of a 
dispersive P-wave normal mode (DPNM) at high frequency 
is given by incorporating the high-frequency approximation 
of the Bessel functions, J la al al0 2 4( ) / ( ) cos( / )= −  and 
J la al al1 2 3 4( ) / ( ) cos( / )= −   (Watson, 1966), yielding:
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

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2 2

2 2 2 2Λ ,			            (7)

with Λ  = +( / )3 4 n , if J la0 ( )  is set to zero, or 
Λ  = +( / )5 4 n , if J la1( ) is set to zero. Results from both 
approximations are given in figure 3B. The exact fundamental 
mode phase velocities calculated from equation 6 (solid curve) 
are close to the approximate solution derived from setting 
J la0 0( ) =  with n = 0 (dashed curve), and the approximation 
improves with increasing frequency. The approximation solu-
tion using J la1 0( ) =  with n = 0 (dotted curve) is much higher 
for all frequencies. The slope of the J la1 0( ) =  curve more 
closely approximates the slope of the exact solution, which is 
an important characteristic for estimating the group velocity.

Group Velocity

Group velocities (G) are determined from the phase 
velocity (Ewing and others, 1957) according to: 
 
		  G

d

dk
C k

dC

dk
= = +

 		           (8)
 
Using the equation 7 approximation, the P-wave normal mode 
group velocity, Ga, is: 
 
	 G

d

dk a
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= = − = −1 1
2 2

2 2

2

2

Λ Λ
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with Π  = a / .

The dispersion relation for the DPNM requires both Bes-
sel function approximations because the J la0 ( )  term in the 
determinant dominates the J la1( )  term in certain frequency 
ranges, the J la1( ) term dominates the J la0 ( )  term in other 
frequency ranges, and there are some frequency ranges for 
which neither term dominates.

S-wave normal mode phase velocities can be derived by 
requiring the normal mode phase velocity to be less than the 
P-wave velocity but greater than the S-wave velocity. This 
implies l is an imaginary number and m is a real number. 
Although l is imaginary, there exists a real solution for k. In 
contrast to the DPNM, the dispersion relation for dispersive 
shear-wave normal modes (DSNM) is better approximated 
using J

1
(ma) = 0, and this approximation is appropriate for fre-

quencies greater than about 0.4 MHz for the 35-mm-diameter 
aluminum cylinder.

Normal Mode Amplitude

Amplitude relations provide an independent check on 
the normal mode technique for characterizing the waveform 
features shown in figure 2. Amplitude relations are also par-
ticularly useful when differentiating between the fundamental 
normal modes and the body waves used to determine P- and 
S-wave speeds in materials. Normal mode amplitudes relative 
to each other can also be calculated from equations 2 and 4. 
With P- and S-wave sources at the origin, constants A and B in 
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equations 2 and 4 are given by: 
 A (k)
 A = (S1a22 − S2a12 ) / ∆ ≡ P

∆(k)             (10) 
A (k)

 B = (−S a + S a ) / ≡ S
1 21 2 11 ∆

∆(k)

In the following amplitude analysis, only P-waves are 
considered. Substituting from equations 4 and 5 into equation 
10: 
 A (k) = −V 2 (2k2 2− 2 )2 J (ma)H (2)(la)
 

P o 1 0

 
−  V 2 22 2 2

o 1 ( k 2 − 2 )lJ11(ma)H (2)
1 (la) / a

 
− V 2 2 4 2

o 4k   lH1 (la)[mJ0 (ma) − J1(ma) / a]          (11)
 
 

− 2iS0
2 2k(2k2 2− 2 )J1(ma)[mH 2

0 (ma)

 − H 2
1 (ma) / a]

 
 + 2iS 22 ( 2

0 k 2k  2−− 2 )H1(ma)[mJo(ma)

− J1(ma) / a]

Substituting A into the integral equation shown in equa-
tion 2, the potential for the P-wave solution is given by the 
following equation (for example, Pekeris, 1948; Ewing and 
others, 1957; Båth, 1968) in the lower half of the complex 
k-plane:
 ∞
Φ(k) = ∫

∞
A(k)J −ikz (2) −ikz

 0 (lr)e dk + Vo H0 (lr)e dk
−∞ ∫−∞

 
 = ∫  [A(k) J (llr) + V H (2) (lr)]e −ikzdk − 2 i∑ RP

0 o 0 n
       (12)

Branch cut

= ΦB + ΦDPNM

where Branch cut is a branch cut integration around the branch 
points k P

 =  /  and k =  /  ; Rn  is the residue of inte-
gration for a dispersive P-wave normal mode; ΦB  and ΦDPNM  
are the P-wave potentials for a body wave and a dispersive 
P-wave normal mode, respectively. 

The dispersive P-wave normal mode amplitude can be 
calculated by substituting the wave number, k, of interest into 
equation 12. The DPNM solution from the P-wave source is 
given by:

Figure 3. Numerical derivation of theoretical phase velocities for a 35-mm-diameter aluminum rod with an 
assumed P-wave velocity, α, of 6,380 m/s and S-wave velocity, β, of 3,180 m/s. A, For 0.585 and 0.589 MHz, the 
fundamental and first- and second-order normal mode phase velocities relative to a (radius of a cylinder) are, 
respectively, given by the first, second, and third intersections between the left and right hand sides of equation 6. 
B, Phase velocities of the fundamental order P-wave normal mode calculated from equation 6 are compared with 
those calculated from the approximate dispersion relations with n = 0.
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Φ
ΔDPNM

P
ikz

k solution of equation

iA k J lr e

k
=

−
∂ ∂

−

=

2 0
6

 ( ) ( )

/
]					                 ,       (13)

where ∆ is given in equation 5 and A
P
 is given in equation 11. 

Amplitude of P-Body Wave

The branch cut integrations shown in equation 12 yield 
body-wave motions inside the solid. The branch cut integra-
tion can be evaluated using the steepest descent method (for 
example, Morse and Feshbach, 1953; Båth, 1968; Greenfield, 
1978) if the observation point is in the far field, meaning the 
wave travels a distance much longer than its wavelength. 
Using Hankel functions, equation 12 can be written as: 

 ΦB
ikz

o
ikzA k J lr e dk V H lr e dk

A k

( ) ( ) ( ) ( )

[ (

( ) = +

=

−∞

∞ − −

−∞

∞

∫ ∫

∫

0 0
2

1

2
)) ( ) ( ( ) ) ( )] .( ) ( )H lr A k V H lr e dkikz

0
1

0 0
22+ + −

 

The integration using the steepest descent method yields: 
 

ΦB
o

i RiA k R

R

iV e

R
≈ +

−2 2( cos )cos( / ) / ‘


                        (14)

where k  = / ,  = −tan ( / )1 r z  and R z r= +2 2 .

The displacements can be written as:

U
r

i rA k R

R

rV e

Rr
B o

i R

=
∂
∂

≈
−

+
−Φ 2 2

2 2

   






 ( cos )sin( / ) / 

 
						             (15) 

U
z

i zA k R

R

zV e

Rz
B o

i R

=
∂
∂

≈
−

+
−Φ 2 2

2 2

   






 ( cos )sin( / )

.
/

 
 
The far-field solution shown in equation 14 requires the Bessel 
and Hankel function argument to be large: lr >> 1.  However, 
the geometry of our measurement does not satisfy the condi-
tion because the cylinder radius, a, and observation point 
radius, r, are both small. We can therefore only approximate 
the body-wave amplitude, and we do so by assuming the 
uniformly expanding source waveform can be calculated by 
making a and r large. In other words, we ignore the first term 
of equation 14, which yields the reflections from the cylinder 
boundaries. From equation 14, the body-wave amplitude for 
the P-wave can be approximated by:

Ur ≈ 0
      

U
V e

zz

i z

≈
−2 0



 /

                     and					          (16)

Normal Mode and Body-Wave Amplitudes for 
P-Waves

The discontinuous phase velocity that complicates the 
group velocity calculation is also a problem when using 

equation 13 to calculate normal mode amplitudes. Figure 4 
shows the wave number calculated using equation 6 for the 
fundamental and first-order DPNM over the measured range 
of dominant frequencies. Like the phase velocities shown in 
figure 3B, the relation between wave number and frequency is 
discontinuous. Using the same technique employed for  
figure 3B, the discontinuous exact solution can be approxi-
mated by setting J la0 0( ) .=

The approximation works well for the fundamental and 
first-order modes at high frequencies. Although the general 
trend of the approximation follows the exact relation, the 
approximate solution becomes less accurate with decreasing 
frequency. Numerical analysis indicates the approximation 
becomes worse as the order of the normal mode increases.

Equation 13 requires the phase velocity rather than the 
group velocity to compute normal mode amplitude. Based on 
figure 4, we assume the approximate phase velocities derived 
from J la0 0( ) =  with n = 0 and n = 1 are appropriate to quali-
tatively analyze amplitudes of the fundamental and first-order 
DPNM. A second option for approximating the phase velocity 
is to set J

1
(la) = 0, which, as discussed previously, and shown 

Figure 4.  Relation between wave number and frequency 
for fundamental and first-order normal modes for a 
35-mm-diameter aluminum cylinder. Approximate relation 
using J0(la) = 0 with n = 0 and 1 are also shown. The 
approximations improve with increasing frequency and 
decreasing order of the normal mode. 
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in figure 3B, appears to more accurately fit the slope of the 
exact phase velocity solution (equation 6). Because this slope 
is important in calculating the group velocity in equation 8, 
and since it is the group velocity, not the phase velocity, that 
is easily estimated from the measured waveform, using J

1
(la) 

= 0 for the approximation rather than J la0 0( ) =  is tempting. 
As demonstrated in figure 5, however, this approximation 
does not reflect the exact solution behavior for normal mode 
amplitudes. 

Figure 5 shows calculated amplitudes of the fundamental 
mode for a 100-mm-long, 35-mm-diameter aluminum cylinder 
using the exact solution, the J la0 0( ) = , and the J

1
(la) = 0 

approximations. The exact solution agrees well with the 
J la0 0( ) =  for frequencies away from the spectral holes at the 
phase-velocity discontinuities, but is generally at least an order 
of magnitude below the J

1
(la) = 0 approximation. There-

fore, all P-wave normal mode amplitudes in this paper are 

computed using J la0 0( ) .=  For comparison, the body-wave 
amplitude shown in figure 5 is calculated from equation 16. 
Figure 5 indicates the approximate normal mode amplitudes 
are larger than the body-wave amplitude for all frequency 
ranges. The amplitudes calculated from the exact solution are 
also larger than the body wave except near the spectral holes. 
This finding suggests body waves will likely be difficult to 
detect unless they arrive well in advance of the fundamental 
mode.

S-Wave Amplitude

As mentioned previously, to analyze the shear-wave 
normal mode, we consider phase velocities greater than b and 
less than a. Shear-wave propagation can be calculated using 
the same equations used for the P-wave propagation with the 
following constant:  
 
 B k

B k
V k ik l J la H la

J la H

S
o( )

( )
( ) [ ( ) ( )

( )

( )

(

≡ = −

−
Δ

2 22 2 2 2 2
1 0

2

0 1

   

22

2 4 2
1 1

2

2 2 4
1

4

4

)

( )

( )] /

( ( ) ( ) / ) /

(

la

V ik l J la H la a

S k lJ

o

o

Δ

Δ+

− {

 

  lla mH ma H ma a

k J la H ma

)[ ( ) ( ) / ]

( ) ( ) ( ) /

( ) ( )

( )

0
2

1
2

2 2 2 2
0 1

22

− +

− }  Δ

 
								      
						             (17) 
 
 

Using a similar argument for the P-wave, the S-body 
wave amplitude is approximated as:  
 
		  U

i S e

zr
o

i z

≈ −
−2 



 /

		         (18)

		  Uz ≈ 0 .

Discussion

To demonstrate the utility of the normal mode approach, 
we identify waveform features by comparing their group 
velocities and dominant frequencies (see table 1) to theoretical 
values for each normal mode. Body waves are identified on 
the basis of the arrival time and amplitude comparisons to the 
fundamental mode amplitudes. We begin with considering 
waveforms from cylinders of different length, but identical 
radii. Later in this report, we consider waveforms from 
cylinders of identical length but different radii.

Figure 5.  Calculated amplitude of the dispersive P-wave 
fundamental order normal mode (fundamental order DPNM) 
for a 35-mm-diameter, 100-mm-long aluminum cylinder. 
Between the spectral holes caused by discontinuities in the 
phase velocity near 0.65, 0.75, and 0.86 MHz. Setting J0(la) = 
0 in equation 13 provides a close approximation to the exact 
amplitude calculation.
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P-Wave Group Velocity

For the 35-mm-diameter aluminum cylinders, figure 6 
shows the measured group velocity with solid stars indicat-
ing the measured waveform features labeled in figure 2. Open 
stars denote group velocities calculated using equation 6 for 
the first-order normal modes P100-2 and P200-2 and the sec-
ond-order normal mode P200-3. Approximate group velocities 
derived from equation 9 are shown for the approximations 
J la0 0( ) =  (dotted curves) and J

1
(la) = 0 (solid curves). Most 

measured group velocities agree with those approximated by 
setting J

1
(la) = 0, implying for these cylinders that matching 

the phase velocity slope in figure 3B is more important than 
matching the phase velocity values when calculating group 
velocities.

There are some discrepancies between the exact group 
velocity calculations and the measured values they attempt to 
predict. Precise group velocity predictions using normal mode 
analysis are hampered by the complex frequency behavior of 

the phase velocity. In general, the phase velocity increases 
with decreasing frequency. The group velocity, however, 
generally decreases with decreasing frequency. The high-
frequency components of the wave, therefore, generally arrive 
earlier than the low-frequency components. However, for fre-
quencies between phase velocity jumps, for example between 
0.65 and 0.76 MHz, the group velocity at the high-frequency 
end is smaller than that at the low-frequency end. For com-
ponents with closely spaced frequencies, the low-frequency 
wave components can arrive earlier than higher frequency 
components.

This complex behavior makes precise group velocity 
predictions difficult because the measured group velocity is 
an averaged value based on all frequencies contained in each 
normal mode, whereas the calculated group velocities are 
evaluated at a single frequency. Considering the rapid varia-
tion of phase velocities with frequency shown in figure 3B, 
the discrepancy between the measured and calculated group 
velocities is not surprising.

For the purposes of correctly identifying measured 
waveform features, high-precision group velocity predictions 
are not necessary, and the approximation presented here can 
be used effectively. As an example, we compare waveform 
features P100-3 and P200-3 from figure 2. Considering P100-3 
first: in the 100-mm-long cylinder in figure 6, it is suggested 
that both P100-2 and P100-3 are first-order P-wave normal 
modes. However, there can only be one P-wave normal mode 
of each order in a given waveform. As we showed previously, 
P100-3 is more likely a dispersive shear-wave normal mode 
propagation (DSNM) rather than a P-wave normal mode.

The P200-3 arrival, like the P100-3 arrival, is the third 
high-amplitude feature in the waveform. Unlike P100-3, how-
ever, P200-3 has a relatively high frequency content in spite of 
its slow group velocity, and agrees with the predicted relation 
between dominant frequency and group velocity for a second-
order dispersive P-wave normal mode (DPNM).

To reiterate, in comparing the 100- and 200-mm-long  
cylinder waveforms, we find the high-amplitude feature arriv-
ing third in the short-cylinder waveform is not at all the same 
as the third arrival in the long-cylinder waveform. For the 
short cylinder, the arrival is a first-order S-wave normal mode, 
but in the long cylinder, the third arrival is a second-order 
P-wave normal mode. Correctly identifying high-amplitude 
features cannot be done on the basis of arrival sequence or 
dominant frequency alone.

S-Wave Group Velocity

Because complex acoustic interference patterns give rise 
to shear normal modes that occur later than the times shown in 
figure 2, a second set of waveforms were measured for three 
35-mm-diameter aluminum cylinders in 2007 (fig. 7A). An 
alteration of one endcap between the 2006 and 2007 measure-
ments slightly decreased the transducer output frequency. As 
shown in figure 7A, each cylinder has two dispersive S-wave 

Figure 6.  Group velocities for 35-mm-diameter aluminum 
cylinders. The velocities are normalized by the P-wave 
speed through aluminum, α. Calculated group velocities are 
plotted using the exact equation 6 (open stars), using the 
approximate solutions (dotted and solid lines) for the normal 
modes (n = 0 to 3), and using measured group velocities 
(solid stars).
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normal modes (DSNM), identified as S100-1, S100-2, S150-
1, S150-2, S200-1, and S200-2. The group velocities of the 
fundamental and first-order DSNM for 100- and 200-mm-long 
aluminum cylinders are shown in figure 7B, along with wave-
form feature P100-3 from figures 2 and 6. The group velocities 
of P100-3 and S100-2 follow the first-order DSNM curve. 
Therefore, the P100-3 shown in figure 2 is probably the axial 
component of the first-order DSNM propagation, designated 
as S100-2 in figure 7A.

P-Wave Amplitudes

Here we qualitatively compare amplitudes of waveform 
features in the frequency domain. The body-wave and DPNM 
amplitudes from a P-wave source in a 200-mm-long aluminum 
cylinder with a 35-mm diameter are plotted in figure 8. The 
shaded regions cover the dominant frequency ranges measured 
for the fundamental and first-order normal modes, and are 
centered on the predicted relative amplitude for that phase. 
Figure 8 indicates the fundamental and first-order normal 
modes have similar amplitudes, with the fundamental mode 

having a slightly higher amplitude than the first-order mode, 
in agreement with the measured waveforms shown in figure 2. 
The calculated amplitude of the body wave is much smaller 
than either normal mode.

Because the arrival times of the fundamental order 
DPNM are so close to those of the first arrival P-body wave 
for the 100- and 200-mm-long aluminum cylinders, the 
body wave is indistinguishable from the fundamental normal 
mode. Two consequences for these cylinders are (1) using the 
fundamental order DPNM as a proxy for the body wave in 
determining the P-wave speed in aluminum underpredicts the 
P-wave speed of 6,380 m/s by only 0.3 percent, and (2) the 
measured fundamental order DPNM is a mixture of normal 
mode and body-wave arrivals. The body-wave amplitude is 
much smaller than that of the fundamental order DPNM for 
these cylinders, but as the cylinder length decreases, the body-
wave amplitude varies as 1/(cylinder length), whereas the 
normal mode amplitude is independent of the cylinder length. 
Thus, the body wave becomes more distinct as the normal 
mode interference diminishes with decreasing cylinder length.

Figure 7.  Dispersive shear-wave normal mode analysis. A, Shear-wave waveforms for 35-mm-diameter 
aluminum cylinders (AL) of nominal length 100, 150 and 200 mm, all measured in 2007. S100-1, S150-1, and S200-1 
are fundamental order dispersive S-wave normal modes (DSNM) observed for 100-, 150- and 200-mm-diameter 
cylinders, respectively. Similarly, S100-2, S150-2, and S200-2 are the first-order DSNM. B, Measured and calculated 
group velocities for S100-1, S100-2, S200-2, and P100-3. P100-3 is likely the axial component of the first-order shear 
normal mode. Group velocities are normalized to the shear-wave speed in aluminum, β.
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S-Wave Amplitudes

Figure 9 shows the calculated radial amplitudes for vari-
ous arrivals for a 200-mm-long, 35-mm-diameter cylinder 
from an S-wave source. The shaded region spans the domi-
nant frequencies of the measured first-order and fundamental 
modes. In agreement with figure 7A, the radial displacements 
of the fundamental and first-order DSNM are similar. Because 
normal mode amplitude is independent of the cylinder length, 
the amplitude relations between the fundamental and first-
order DSNM remains similar for all three aluminum cylinders. 
The measured amplitude relation between the S-body wave 
and fundamental order DSNM for the 200-mm-long aluminum 
cylinder also agrees with the calculated relation. 

The shear crystal traces in figure 2 show the radial dis-
placement of the P-wave normal modes P100-1 and P100-2, 
indicating the radial amplitude of P100-2 is larger than that 
of P100-1. Figure 10 shows the calculated radial displace-
ment for fundamental and first-order DPNM, indicating the 

radial displacement of P100-2 is larger than that of P100-1, in 
qualitative agreement with the observed amplitude variation. 
Because the P-wave normal mode amplitude is independent 
of the length of the aluminum cylinder, the calculated and 
measured radial displacements of P200-2 are also larger than 
those of P200-1.

As was the case for P-waves, arrival times of the funda-
mental order DSNM and S-body wave are close. The 100-1, 
S150-1, and S200-1 waveforms in figure 7A are therefore mix-
tures of the fundamental normal mode and the body wave. In 
the 200-mm-long cylinder, however, a small amplitude event 
with high-frequency content arrives earlier than S200-1 and 
is separated from the fundamental order DSNM. We interpret 
this earlier arrival as the first arrival S-body wave. This wave-
form demonstrates how the nearly identical body-wave and 
fundamental DSNM-wave speeds mean the body wave can 
only separate from the fundamental mode in long cylinders. 
For the 200-mm-long cylinder, interpreting the largest feature, 
S200-1, as the body wave would underpredict the shear-wave 

Figure 8.  Predicted relative axial amplitudes for the P-body 
wave and fundamental and first-order P-wave normal modes 
in a 35-mm-diameter, 200-mm-long aluminum cylinder. 
Fundamental and first-order normal mode amplitudes are 
similar, and both are much larger than the body-wave 
amplitude.

Figure 9.  Predicted relative radial amplitudes of S-wave 
arrivals for a 35-mm-diameter, 200-mm-long aluminum 
cylinder. The fundamental and first-order normal modes 
have comparable amplitudes, and both are significantly 
larger than the S-body wave, in agreement with figure 7A.
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Figure 10.  Predicted relative radial amplitudes of the 
fundamental and first-order P-wave normal modes for a 
35-mm-diameter, 100-mm-long aluminum cylinder. In agreement 
with the shear-wave traces in figure 2, the first-order normal 
mode amplitudes are greater than the fundamental mode 
amplitudes.

speed of 3,180 m/s by 1 percent. As shown in figure 2, the 
high wave speed of P-waves relative to S-waves, and the close 
agreement between the P-body wave and fundamental normal 
mode, mean the P-body wave does not separate from the fun-
damental mode, even in the 200-mm-long cylinder.

P-Wave Group Velocity: Dependence on 
Cylinder Radius

Figure 11A compares measured waveforms in 35- and 
25.4-mm-diameter, 200-mm nominal-length aluminum 
cylinders. The waveforms, generated and measured with the 
P-wave crystals, contain two notable differences in the thin 
cylinder: (1) the first-order DPNM arrives more quickly than 
in the thick cylinder, and (2) the first-order DPNM is at least 
twice the amplitude of the fundamental mode.

The normal mode group velocities, compared with 
theoretical predictions in figure 11B, further exemplify the 
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107 control that sample geometry exerts on waveform structure. 
The horizontal axis in 11B has been nondimensionalized so 
results from cylinders of different radii can be compared. 
The normal mode approximations agree with the measured 
results, but it is the J

0
(la) = 0 approximation that works for the 

25.4-mm-diameter cylinder, whereas the J
1
(la) = 0 approxima-

tion is more appropriate for the 35-mm-diameter cylinder. As 
predicted by the normal mode approach, the complex internal 
reflection patterns that create these normal modes produce a 
much higher first-order normal mode amplitude relative to 
the fundamental mode in the thin cylinder (fig. 12), but nearly 
equal amplitudes in the thick cylinder (fig. 8).

Conclusions

Laboratory measured elastic waveforms in cylinders can 
contain large amplitude waveform features that can make it 
difficult to identify the nature of each arrival. Sample geom-
etry influences the group velocity and amplitude of each 
feature differently, meaning their arrival sequence and relative 
amplitudes within a waveform can all differ in samples of dif-
ferent size. These waveform features behave as normal mode 
propagations, which we identify and characterize using a wave 
propagation solution in a cylindrical coordinate system.

The primary challenge in correctly identifying the 
observed normal modes is coping with the discontinuous 
frequency dependence of their phase velocities. Identifying 
normal modes via amplitude and group velocity predictions 
can be accomplished by using Bessel functions to approximate 
the phase-velocity dependence on frequency. The accuracy of 
these approximations improves with increasing frequency as 
the situation more closely resembles a small wavelength signal 
traveling along the axis of a large, long cylinder. 

Two key findings from this study are:
1.	 P- and S-wave crystals each produce a combination 

of P- and S-wave normal modes. A waveform can 
therefore contain both P- and S-wave normal modes, 
with their arrival order depending on the sample 
geometry in a manner that is difficult to predict from 
a visual inspection of the waveform. These arriv-
als can be identified by analyzing amplitude and 
group velocities in the context of normal mode wave 
propagation.

2.	 Body waves, which travel at the P- and S-wave 
speeds generally sought after in acoustic measure-
ments, can be obscured by the relatively higher 
amplitude fundamental normal modes. When the 
cylinder is long, or the wave speed is low, the body 
wave can measurably separate from the fundamental 
mode. In these cases, the more easily observed fun-
damental mode may be mistaken for the body wave, 
leading to an underestimate of the P- or S-wave 
speed.
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Figure 11.  Normal mode dependence on cylinder radii. A, Measured waveforms in 25.4-mm-diameter (thin) and 
35-mm-diameter (thick) aluminum cylinders. B, Measured and calculated group velocities for fundamental and 
first-order P-wave normal modes. Horizontal axis is nondimensionalized so results from both cylinders can be 
compared. Though the J0(la) = 0 approximation best fits the thin cylinder normal modes (solid stars), J1(la) = 0 is a 
better approximation for the thick cylinder (open stars).
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This appendix derives two well-known equations using 
the formulas given in the main text; one is the velocity of bar 
waves and the other is the dispersion relation of the Rayleigh 
surface wave. Retaining the first term of power series of the 
Bessel functions, J la0 1( ) =  (Watson, 1966) and equation 5 at 
low frequencies can be approximated by:  
 
       2 2 2 2 2 2 2 2 2 2 4 2 22 2 2( )( )k l k m k l m− + − = −     (A-1)

Rejecting the solution m = 0, from which the shear-wave 
velocity can be derived (Kolsky, 1963), and casting A-1 in 
terms of Lame’s constants instead of velocities, equation A-1 
can be written as: 
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Rearranging equation A-2, the following phase velocity 
can be derived: 
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where E is Young’s modulus. Equation A-3 is the same as the 
bar-wave velocity, equation 3.58 shown in Kolsky (1963).

When a becomes large, the dispersion relation shown in 
equation 5 becomes: 
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If the phase velocity C is less than the S- and P-wave 
velocities, l and m become pure imaginary numbers as shown 
in equation 2. When l and m are purely imaginary and a 
becomes large, J la J ma J la J ma0 1 1 0( ) ( ) ( ) ( )≈ , and equation 
A-4 becomes: 
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This is an identical form of the Rayleigh wave dispersion rela-
tion given in White (1965).

It is important to note that the low-frequency correspon-
dence between our approach and those of Kolsky (1963), 
Graff (1975), and White (1965) does not extend to the fre-
quency range of interest to our laboratory work. The wave-
form features shown in figures 2, 7, and 11 are neither the bar 
waves, nor extensional-mode waveforms described by Kolsky 
(1963) and Graff (1975).

Bar waves are generated when the wavelength is much 
larger than the cylinder radius. For example, if P200-1 was a 
bar wave, the low-frequency component of the wave would 
arrive earlier than the high-frequency component, and the 
onset time would be near 40 microseconds. This does not 
agree with the observed onset time or wave-feature character-
istics. To eliminate the possibility of a bar-wave-type feature 
in our analysis, we restricted the wavelength of the body wave 
to be less than ~60 percent of the cylinder radius. 

Conventional extensional modes described by Kolsky 
(1963) and Graff (1975) are similar to the S-wave normal 
modes described here, but differ in key respects that can be 
traced to the manner in which our normal modes are defined. 
The normal modes described in this paper are defined as fol-
lows: the P-wave normal mode is defined as a guided wave 
with a phase velocity greater than the P-body wave velocity, 
α, and with a group velocity approaching α as the wave-
length approaches zero. Similarly, the S-wave normal mode 
is defined as a guided wave with a phase velocity greater than 
the S-body wave velocity, β, but less than α, and with a group 
velocity approaching β as the wavelength approaches zero.

The conventional extensional modes described by Kolsky 
(1963) and Graff (1975) approach the Rayleigh surface-wave 
velocity at high frequencies, but the S-wave normal mode 
defined here has a velocity that approaches β at high fre-
quencies and small wavelengths. This happens because the 
extensional-wave-phase velocity becomes less than β as the 
frequency increases, but the phase velocity is restricted to be 
greater than β for the S-wave normal modes in this report.

Appendix A.  Low-Frequency and Large Diameter Approximation



Publishing support provided by: 
Denver Publishing Service Center

For more information concerning this publication, contact:
Team Chief Scientist, USGS Central Energy Resources
Box 25046, Mail Stop 939
Denver, CO 80225
(303) 236-1647

Or visit the Central Energy Resources Team site at:
http://energy.cr.usgs.gov/



Lee and W
aite—

H
igh-Frequency N

orm
al M

ode Propagation in A
lum

inum
 Cylinders—

Scientific Investigations Report 2009–5142

Printed on recycled paper


