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Abstract 
Fluvial transport of sediment into the Chesapeake Bay 

estuary is a persistent water-quality issue with major implica-
tions for the overall health of the bay ecosystem. Accurately 
and precisely estimating the suspended-sediment concentra-
tions (SSC) and loads that are delivered to the bay, however, 
remains challenging. Although manual sampling of SSC 
produces an accurate series of point-in-time measurements, 
robust extrapolation to unmeasured periods (especially high-
flow periods) has proven to be difficult. Sediment concentra-
tions typically have been estimated using regression relations 
between individual SSC values and associated streamflow 
values; however, suspended-sediment transport during storm 
events is extremely variable, and it is often difficult to relate 
a unique SSC to a given streamflow. With this limitation for 
estimating SSC, innovative approaches for generating detailed 
records of suspended-sediment transport are needed. 

One effective method for improved suspended-sediment 
determination involves the continuous monitoring of 
turbidity as a surrogate for SSC. Turbidity measurements 
are theoretically well correlated to SSC because turbidity 
represents a measure of water clarity that is directly influenced 
by suspended sediments; thus, turbidity-based estimation 
models typically are effective tools for generating SSC 
data. The U.S. Geological Survey, in cooperation with the 
U.S. Environmental Protection Agency Chesapeake Bay 
Program and Virginia Department of Environmental Quality, 
initiated continuous turbidity monitoring on three major 
tributaries of the bay—the James, Rappahannock, and North 
Fork Shenandoah Rivers—to evaluate the use of turbidity 
as a sediment surrogate in rivers that deliver sediment to the 
bay. Results of this surrogate approach were compared to the 
traditionally applied streamflow-based approach for estimating 
SSC. Additionally, evaluation and comparison of these two 
approaches were conducted for nutrient estimations.

Results demonstrate that the application of turbidity-
based estimation models provides an improved method 
for generating a continuous record of SSC, relative to the 
classical approach that uses streamflow as a surrogate for SSC. 

Turbidity-based estimates of SSC were found to be more 
accurate and precise than SSC estimates from streamflow-
based approaches. The turbidity-based SSC estimation models 
explained 92 to 98 percent of the variability in SSC, while 
streamflow-based models explained 74 to 88 percent of the 
variability in SSC. Furthermore, the mean absolute error of 
turbidity-based SSC estimates was 50 to 87 percent less than 
the corresponding values from the streamflow-based models. 
Statistically significant differences were detected between 
the distributions of residual errors and estimates from the two 
approaches, indicating that the turbidity-based approach yields 
estimates of SSC with greater precision than the streamflow-
based approach. 

Similar improvements were identified for turbidity-based 
estimates of total phosphorus, which is strongly related to 
turbidity because total phosphorus occurs predominantly in 
particulate form. Total nitrogen estimation models based on 
turbidity and streamflow generated estimates of similar qual-
ity, with the turbidity-based models providing slight improve-
ments in the quality of estimations. This result is attributed 
to the understanding that nitrogen transport is dominated by 
dissolved forms that relate less directly to streamflow and 
turbidity. Improvements in concentration estimation resulted 
in improved estimates of load. Turbidity-based suspended-
sediment loads estimated for the James River at Cartersville, 
VA, monitoring station exhibited tighter confidence 
interval bounds and a coefficient of variation of 12 percent, 
compared with a coefficient of variation of 38 percent for the 
streamflow-based load.

Introduction
Elevated suspended-sediment concentrations (SSC) 

are major water-pollution concerns in the Chesapeake Bay 
watershed, as they are in many sensitive ecosystems through-
out the world. Nationwide, siltation ranked second on the 
U.S. Environmental Protection Agency’s (USEPA) 305b list 
of stressors causing stream impairments (U.S. Environmental 
Protection Agency, 2002). The Chesapeake Bay (hereafter 
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referred to as the bay), the Nation’s largest estuary, has been 
degraded through declines in water-quality conditions and 
loss of habitat. Excess sediment has an adverse effect on 
the living resources and associated habitat of the bay and its 
watershed. The bay was listed as an impaired water body in 
1998 under the Clean Water Act because of excess nutrient 
and sediment levels (Chesapeake Bay Program, 2008). The 
USEPA Chesapeake Bay Program (CBP) needs information 
with which to evaluate current conditions and assess progress 
toward meeting sediment-reduction goals.

Background

The detrimental effects of sediment transport are apparent 
in the terrestrial environments that serve as sediment sources 
and in the aquatic environments to which the sediments are 
delivered. Terrestrial effects of soil erosion (the source of 
most fluvial sediments) include the erosion of surficial soil, 
loss of soil nutrients, degradation of soil structure, reduction 
of tillable land, and the ultimate reduction of agricultural 
productivity (Walling and Collins, 2000). The effects of 
excessive sedimentation to the aquatic systems receiving 
the eroded sediments range from ecological degradation 
to economic expenses. Ecologically, suspended sediments 
harm aquatic ecosystems by decreasing light penetration 
into the water column (reducing photosynthesis), smothering 
benthic habitats, delivering excess nutrients, and potentially 
delivering soil-bound contaminants, such as phosphorus and 
bacteria (Christensen, 2001; Davies-Colley and Smith, 2001). 
Furthermore, toxic materials, including pesticides, metals, and 
radionuclides, may adsorb strongly to sediment particles; thus, 
introduction of excessive amounts of sediment to a water body 
from source areas where such materials are present may lead 
to toxic conditions for the biota that use the resource (Meade 
and Parker, 1984).

Economically, accelerated transport of suspended 
sediments increases the costs of water treatment for human use 
and may decrease profits from waterways used for recreational 
purposes because people typically perceive sediment-laden or 
turbid water as less desirable for recreation than clearer waters 
(Davies-Colley and Smith, 2001). Also, sediment accumula-
tion within channels increases streambed elevation, leading to 
more damaging and life-threatening floods as the stormflow 
carrying capacity of the channel is decreased (Meade and 
Parker, 1984). Yet another economic cost related to sediment 
is the increased maintenance needs of structures within 
waterways carrying elevated sediment concentrations; most 
reservoirs in the United States trap at least half of the sediment 
transported by the impounded river, with larger dams trapping 
virtually the entire sediment load carried by the river (Meade 
and Parker, 1984). The reduction of reservoir capacity as sedi-
ment accumulates introduces multiple expenses: an aggrading 
reservoir may no longer serve the intended purpose, and the 
costs of maintenance may be compounded by contaminated 
sediments, preventing removal or making sediment removal 

extremely costly. The cost of sediment-transport related dam-
ages is estimated to range from $20 to $50 billion annually in 
North America (Pimentel and others, 1995; Osterkamp and 
others, 1998, 2004). Globally, erosion of soils and sediment 
transport are major issues, most notably in developing nations 
where the demands on marginal farmland and water resources 
are greatest (Walling and Collins, 2000).

Previous Studies

Given the consequences of elevated SSC and the need for 
accurate and precise data to aid management strategies aiming 
to reduce the problems associated with accelerated erosion 
and sediment transport, the scientific community has sought 
to understand and characterize the fluvial transport of sedi-
ment. Understanding and managing movement of suspended 
sediment has been challenging, however, because sediment 
transport is highly variable in time, across landscapes, and 
within stream channels. In order to quantify suspended-
sediment transport within a stream channel at a given point 
in time, personnel must be onsite sampling with specialized 
equipment and proper methods during the sediment transport 
event. This effort can be especially difficult because most 
sediment transport is triggered and sustained by stormflow 
events (Wolman and Miller, 1960). Previous studies have dem-
onstrated that as much as 98 percent of a river’s sediment load 
can be transported during just 10 percent of the time of record, 
and as much as 60 percent of the load can be discharged in 
only 1 percent of the time of record (Meade and others, 1990). 
Thus, monitoring programs must quantify sediment transport 
during stormflow events, which generally is the time when the 
fewest data are collected. 

Although manual sampling of SSC can produce an 
accurate series of point-in-time measurements, robust extrapo-
lation to the many unmeasured periods (especially high-flow 
periods) has proven difficult because of the inherently 
complex nature of suspended-sediment transport. A funda-
mental link exists between streamflow and sediment transport 
because the runoff responsible for increasing streamflow is 
typically responsible for a large portion of the soil erosion 
that contributes to sediment transport. This relation has been 
used in traditional methods for calculating sediment transport; 
however, suspended-sediment transport during stormflow 
events is extremely variable, and relating a unique concentra-
tion to a given streamflow is difficult. As a result of the 
variability in sediment transport, using streamflow as the sole 
predictor of suspended-sediment concentration may provide 
results with large error terms when applied without regard 
for the complex nature of the relation and the underlying 
fundamental concepts (Walling, 1977). For example, Horowitz 
(2003) found that for multiple watersheds in the United States 
and Europe ranging from less than 385 square miles (mi2) to 
greater than 385,000 mi2, high sediment concentrations are 
often underpredicted and low sediment concentrations are 
often overpredicted, partly as a result of the differing relation 
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between SSC and streamflow on the rising and falling limbs 
of the stormflow hydrograph (often referred to as hysteresis). 
Although short-duration studies applying the rating curve 
method are subject to the largest errors, longer-duration stud-
ies calculating annual suspended-sediment loads (SSL) have 
been reported to have errors as high as 280 percent (Walling, 
1977). In addition to the potential for large error terms 
associated with transport estimates generated in this fashion, 
some studies have documented the inability to detect statisti-
cally significant correlations between streamflow and SSC. 
For example, Christensen and others (2002) identified that 
only four of their eight study stations actually had significant 
correlations between suspended sediment and streamflow.

Furthermore, studies that use discrete water-quality 
samples will generally suffer from several challenges that are 
inherent to discrete sampling, including:

•	 A relatively limited number of samples are used to 
develop interpretations.

•	 The delay between sample collection and reporting 
laboratory results, especially when the objective is to 
detect violations of a water-quality standard and(or) to 
protect public health, may expose the public to unnec-
essary risks.

•	 Detailed understanding of in-stream variability (diurnal 
patterns, for example) is difficult to develop.

•	 The time and cost associated with collecting represen-
tative water-quality samples can be considerable.

•	 Sampling designs for loading studies, which usually 
require targeted storm-runoff sampling, conflict with 
sampling designs for trend analyses, which typically 
require fixed-frequency sampling.

With the current limitations of discrete water-quality sampling 
and the challenges associated with predicting suspended- 
sediment levels solely from streamflow, innovative approaches 
for generating detailed records of SSC are needed. 

A potentially more effective technology for improved 
suspended-sediment determination involves the continuous 
monitoring of turbidity as a surrogate for SSC. Turbidity 
measurements are well correlated to SSC because turbidity 
is an optical measure of water clarity, and the presence of 
suspended particles directly influences this measurement. 
Using turbidity values as a surrogate for estimating SSC is 
not new, but until recently, technological limitations have 
made this approach largely unreasonable. As early as 1977, 
Walling described this surrogate approach using turbidity and 
demonstrated a sharp reduction in suspended-sediment predic-
tion error using a turbidity-sediment relation relative to a 
streamflow-sediment approach. In the earlier-mentioned study 
by Christensen and others (2002), which demonstrated poor 
correlation between suspended-sediment concentrations and 
streamflow, all of their research stations demonstrated signifi-
cant correlations between SSC and turbidity measurements. 

The development of continuous turbidity records to estimate 
SSC is now inherently more feasible because of technical 
improvements to in situ water-quality sensors and data 
telemetry. Continuous turbidity measurement has become a 
common field approach because it provides more detailed 
and more precise information on sediment transport than 
was previously possible (Christensen and others, 2000; 
Christensen, 2001).

Purpose and Scope

Efforts by CBP and the U.S. Geological Survey (USGS) 
to quantify sediment transport to the bay from major tributar-
ies have traditionally relied on streamflow-based regression 
methods, such as the seven-parameter ESTIMATOR model 
introduced by Cohn and others (1992). This streamflow-based 
model incorporates variables to explain flow dependence, 
seasonal variability, and trends over time. In recognition of 
previous successful use of continuous turbidity monitoring 
and surrogate approaches to estimating concentrations of 
suspended sediment, the USGS, in cooperation with the 
CBP and the Virginia Department of Environmental Quality 
(VA DEQ), began an evaluation of the use of a turbidity-based 
approach to estimate sediment transport to the bay. The 
purpose of this report is to present a comparison of turbidity-
based and streamflow-based estimates of suspended-sediment 
concentrations in three major tributaries to the bay: the James, 
Rappahannock, and North Fork Shenandoah Rivers. Specifi-
cally, the objectives of this investigation were to:

1.	 Evaluate the use of turbidity as a surrogate for esti-
mating SSC in the James, Rappahannock, and North 
Fork Shenandoah Rivers, each of which drain into 
the Chesapeake Bay; and

2.	 Compare two methods of estimating SSC: turbidity-
based and streamflow-based regression models.

These study objectives were expanded to include the 
evaluation of turbidity-based models to estimate nutrient 
concentrations, specifically total nitrogen (TN) and total 
phosphorous (TP).

Study sites for this project were identified primarily on 
the basis of existing water-quality data that indicated which 
of the major rivers in Virginia had the greatest suspended-
sediment transport to the bay. Based on the available 
long-term data, the James, Rappahannock, and North Fork 
Shenandoah Rivers were selected for this study (Langland and 
others, 2004). To enhance the efficiency of this data collection, 
continuous water-quality monitors were collocated with an 
existing water-quality sampling and streamgaging station on 
each river—the James River at Cartersville, VA (USGS station 
number 02035000), Rappahannock River near Fredericksburg, 
VA (USGS station number 01668000), and North Fork 
Shenandoah River near Strasburg, VA (USGS station number 
01634000; fig. 1).
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Figure 1.  Chesapeake Bay watershed and the James River near Cartersville, Virginia, Rappahannock River near 
Fredericksburg, Virginia, and North Fork Shenandoah River near Strasburg, Virginia, basins.
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In late 2003 and early 2004, the USGS initiated a 
continuous water-quality monitoring effort on the James and 
Rappahannock Rivers with the intent of generating a time-
series dataset for use in the estimation of SSC and nutrient 
concentrations. The network was expanded to a third river, 
the North Fork Shenandoah River, in 2006. This effort was 
augmented by ongoing discrete sample collection in support  
of the USGS Chesapeake Bay River Input Monitoring  
(RIM) Program.

Multivariate regression models to estimate SSC and 
nutrients were constructed using the datasets generated 
by the continuous water-quality monitoring and discrete 
sample-collection activities. Additionally, streamflow-based 
estimation models were generated using the ESTIMATOR 
program, which is the approach currently used for estimating 
nutrient and sediment concentrations and loads transported 
to the bay from its major tributaries. These two approaches 
for generating estimates of SSC and nutrients were compared 
using graphical, statistical, and hypothesis testing methods to 
determine if either provides greater accuracy or precision.

Description of Study Area

The James River watershed encompasses 10,200 mi2, 
making it the third-largest tributary basin in the bay watershed. 
Originating in the Appalachian Mountains near the West 
Virginia–Virginia border, the James River flows through 
the Valley and Ridge, Blue Ridge, Piedmont, and Coastal 
Plain Physiographic Provinces before flowing into the bay in 
southeastern Virginia. The drainage area of the James River at 
Cartersville monitoring station encompasses over 60 percent 
(6,252 mi2 ; Hayes and Wiegand, 2006) of the James River 
basin, has a long-term annual mean streamflow of 7,082 cubic 
feet per second (ft3/s), and a median annual suspended-solids 
yield of approximately 9.1 x 104 kilograms per square mile 
(kg/mi2; U.S. Geological Survey, 2007). Dominant 
land uses in the drainage area for this monitoring station are 
forest (80 percent) and agriculture (16 percent; Belval and 
Sprague, 1999). 

The Rappahannock River is the fourth largest tributary in 
the bay watershed, draining an area of 2,800 mi2. Originating 
in the Blue Ridge Physiographic Province, the Rappahannock 
River flows through the Piedmont and Coastal Plain Physio-
graphic Provinces before entering the bay. The drainage area 
of the Rappahannock River near Fredericksburg monitoring 
station encompasses 57 percent (1,595 mi2) of the Rappahan-
nock River basin (Hayes and Wiegand, 2006) and has a 
long-term annual mean streamflow of 1,686 ft3/s and a 
median annual suspended-solids yield of approximately  
1.4 x 105 kg/mi2 (U.S. Geological Survey, 2007). Dominant 
land uses in the drainage area for this monitoring station are 
forest (61 percent) and agriculture (36 percent; Belval and 
Sprague, 1999).

The North Fork Shenandoah River, a branch of the 
Shenandoah River, drains 1,034 mi2 of the 3,058 mi2 

Shenandoah River watershed (Hayes and Wiegand, 2006). 
The Shenandoah River flows through the Valley and Ridge 
Physiographic Province and into the Potomac River near 
Harpers Ferry, WV. The drainage area of the North Fork 
Shenandoah River near Strasburg monitoring station encom-
passes 74 percent (770 mi2) of the North Fork Shenandoah 
River Basin (Hayes and Wiegand, 2006) and has a long-term 
annual mean streamflow of 608 ft3/s and a median annual 
suspended-solids yield of approximately 4.2 x 104 kg/mi2 

(U.S. Geological Survey, 2007). Dominant land uses in the 
drainage area for this monitoring station are forest (59 percent) 
and agriculture (38 percent; Johnson and Belval, 1998).

Approach and Methods
The study approach relied on continuous water-quality 

data collected by an in-situ water-quality monitoring device, 
discrete water-quality data collected using manual sample-
collection methods, and statistical analyses performed using 
various computing platforms for generation and evaluation of 
estimation models. 

Continuous Monitoring of Water Quality 

YSI 6920 multiparameter water-quality monitoring 
sondes (manufactured by YSI, Inc.) were selected for field 
deployment. These particular instruments were selected 
because the equipment seemed sufficiently rugged for the task 
and because YSI water-quality monitors were already being 
used for the collection of field data in several ongoing studies. 
Using the YSI 6920, the field parameters of water temperature, 
specific conductance, pH, and turbidity were measured at 
15-minute intervals. The YSI 6136 turbidity sensor was used 
for turbidity measurements. This turbidity sensor uses near-
infrared wavelengths with 90-degree detector geometry and  
is calibrated using formazin-based standards; therefore, 
data are expressed in formazin nephelometric units (FNUs; 
Anderson, 2005).

The water-quality monitors were deployed in such a way 
that the data recorded by the instruments would be representa-
tive of the stream cross section being monitored and not just 
the single point where the monitor was deployed. Because of 
specific site conditions, different deployment approaches were 
required for each of the study sites. At the James River and 
North Fork Shenandoah River monitoring stations, bridges 
were used as monitoring platforms. A water-quality monitor 
was suspended from the bridge and configured to make water-
quality measurements approximately 1–2 feet below the water 
surface. Weights were added to the bottom of the water-quality 
monitor to ensure that the monitor remained underwater 
during high-velocity stormflow events. A 2-foot-long section 
of schedule 80 polyvinyl chloride piping with 1-inch holes 
drilled into the lower section of the pipe was used to shield the 
monitor from debris during flood events while still permitting 
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a flow-through environment and good contact between the 
monitor and the river water. A braided steel cable was used 
to connect the water-quality monitor to the bridge, and all 
the supporting electronics were installed in a weather-proof 
box that was attached to the topside of the bridge. Using this 
approach, the water-quality monitor was securely deployed 
into a portion of the river that responded uniformly to various 
flow conditions; an example of this type of deployment is 
presented in figure 2.

At the Rappahannock River monitoring station, no bridge 
was available to use as a monitoring platform. Various bank-
mounted deployment systems were considered; however, none 
of these were used because of the concern that water-quality 
conditions at the edge of the river might not be representative 
of the average water-quality conditions throughout the cross 
section of the river. Consequently, a buoy-mounted system 
was developed to permit measurements from the approximate 
center of the streamflow. An estuarine monitoring buoy from 
Apprise Technology, Inc., was modified with minor welding 
work to allow the monitoring equipment to be deployed on the 

outside of the buoy (fig. 3). The buoy was moored in the river 
to a portion of exposed bedrock. Using this setup, the water-
quality monitor was deployed approximately 1.5 feet below 
the water surface, under all flow conditions. The particular 
monitoring buoy used had a hollow internal cylinder that held 
all the necessary electronics for data logging. During a high-
flow event, the buoy was damaged beyond repair. In June 2007 
the water-quality monitor was relocated, and a new approach 
of directly attaching the monitor to a large, stable boulder was 

employed. Data from the old 
monitor location were compared 
with data from the new monitor 
location, and data were found to 
be similar. 

The water-quality monitors 
were programmed to make 
measurements of water tempera-
ture, specific conductance, pH, 
and turbidity every 15 minutes. 
These data were then stored in 
a Campbell Scientific CR10 
data logger and transferred by 
telephone modem every 3 hours 
to the USGS Virginia Water 
Science Center (VA WSC), or 
the data were stored on a Sutron 
Satlink II and transferred hourly 
to the VA WSC by Geostationary 
Operational Environmental 
Satellites (GOES). Upon arrival 
at the USGS office, the data were 
processed by a quality-control 
data-review program to screen 
possible problems with the data, 
and then data were made avail-
able to the public on the National 
Water Information System Web 
site (NWISWeb; http://waterdata.
usgs.gov/nwis/rt).

Approximately every 
4 weeks, the water-quality moni-
tors were serviced in the field 
to clean the sensors, evaluate 
the quality of the data collected, 
and recalibrate the instrument 

(if necessary). This monitor servicing was performed in 
accordance with the USGS guidelines for the operation and 
maintenance of continuous water-quality monitors (Wagner 
and others, 2000). Because these guidelines were followed, 
only a summary of the maintenance steps are presented 
here. In all cases, parameters were measured before and 
after the instrument was cleaned of any silt, debris, algae, or 
bio-film that may have accumulated. The differences before 
and after this cleaning were used to determine the need for, 
and the magnitude of, corrections for instrument fouling. 
Following this fouling check, calibrations of the pH, specific 

Figure 2.  A typical bridge-mounted deployment of a continuous water-quality monitoring station.

SUBMERGED WATER-QUALITY MONITOR

SUPPORT AND COMMUNICATIONS CABLES

ON-BRIDGE EQUIPMENT ENCLOSURE

Figure 2.  A typical bridge-mounted deployment of a continuous water-quality monitoring station.
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conductance, and turbidity sensors were checked using known 
standards. Discrepancies between the known values of the 
check standards and the readings from the sonde were used to 
determine whether the data needed to be corrected for a drift in 
instrument calibration. Following the fouling and calibration 
checks, any sensor out of tolerance was recalibrated (Wagner 
and others, 2000). After the maintenance visit, any necessary 
data corrections were made, the database was updated with the 
corrected data, and  the original values were archived.

In addition to the monthly monitor maintenance, the 
entire water-quality record for each parameter was reviewed 
and finalized at the end of each water year1. This annual 
review involved evaluation of all the fouling and calibration 
drift checks, screening the data for anomalous values, and 
rating the quality of the record as excellent, good, fair, or poor. 
These ratings were determined on the basis of the corrections 
that had been applied to the record, and the criteria used for 
the ratings were those provided by Wagner and others (2000). 

Collection of Discrete Water-Quality Samples

In addition to the continuous water-quality monitoring 
at each sampling site, discrete water-quality samples were 
collected at these sites. These discrete water-quality samples 
were collected as part of a joint effort by USGS, VA DEQ, 
and the CBP to understand sediment and nutrient inputs to the 
bay from major tributaries in Virginia. These discrete samples 
were collected during a broad range of environmental condi-
tions through scheduled monthly sampling and targeted storm 
sampling.  

1 Water year is the period October 1 through September 30 and is identified 
by the year in which the period ends.

The discrete water-quality samples were collected using 
standard USGS sampling protocols for the collection of 
representative water-quality samples (U.S. Geological Survey, 
1998). These protocols for representative sampling involve 
the collection of depth- and width-integrated water-quality 
samples, and the use of isokinetic samplers when required by 
the water depth or velocity. Water-quality samples were sent 
to the USGS Kentucky Sediment Laboratory for analysis of 
SSC using analytical methods from Sholar and Shreve (1998). 
Nutrient analyses were performed by the Virginia Division 
of Consolidated Laboratory Services. All results from these 
two laboratories were reviewed and quality assured by USGS 
VA WSC staff before the data were entered into the USGS 
database (http://va.water.usgs.gov/chesbay/RIMP/index.html).

Generation of Turbidity-Based  
Regression Models

Using data from the continuous water-quality monitors 
and from laboratory analysis of the discrete samples, multi-
variate turbidity-based SSC estimation models were generated 
such that the general form of the model was:

1
0 1

ˆ ˆ ˆ ˆ[ ( ) ( )... ( ) ]j j k kSSC f f turbidity f x f x    −= + + + ,	 (1)

where
	 SSC	 is suspended-sediment concentration, in 

milligrams per liter;
	

1f −
	 is the inverse of the transformation selected 

for the response variable (SSC);
	

ˆ
i 	 are coefficients estimated by ordinary least 

squares;
	 0̂ 	 is a constant;
	 f 	 is the transformation function selected for 

the explanatory variables (such as natural 
logarithm or square root);

	 1̂ 	 describes the relation between SSC and 
turbidity;

	
...j kx x 	 are additional site-specific explanatory 

variables (such as streamflow, water 
temperature, and specific conductance) 
evaluated for inclusion using best-subsets 
regression;

	
ˆ ˆ...j k  	 describe the relations between concentration 

and ...j kx x ; and
	  	 is residual error, assumed to be normally 

distributed with zero mean and variance
2
 .

Figure 3.  The monitoring buoy deployed in the 
Rappahannock River.

MODIFICATION FOR 
SONDE ATTACHMENT

Figure 3.  The monitoring buoy deployed in the Rappahannock River.
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Turbidity-based estimation models were developed and 
compared using SAS (version 9.1.3) for Windows and JMP 
7.0 software (SAS Institute, Cary, NC). Multivariate models 
were generated using best-subsets regression, which ranks all 
2k possible regressions (where k is the number of explanatory 
variables evaluated) according to user-specified statistics; Mal-
lows’ Cp was used in this study. Selecting a model with the 
smallest Mallows’ Cp value provides a compromise between 
explaining the most variance possible in the response through 
incorporation of all relevant regressors and minimizing the 
variance of the estimates by minimizing the number of regres-
sors (Helsel and Hirsch, 2002). Additionally, the adjusted R2 
was used to evaluate the proportion of variability explained 
by the models selected by the best-subsets procedure. R2, 
or coefficient of determination, is a measure of the fraction 
of the variability in the response variable explained by the 
model, and the adjusted R2 is a similar measure corrected for 
the number of explanatory variables in the model (Helsel and 
Hirsch, 2002). This adjustment is necessary to determine an 
accurate measure of explained variability in multiple regres-
sion because R2 will increase with each additional explanatory 
variable, regardless of explanatory power (Helsel and Hirsch, 
2002). The additional explanatory variables evaluated for 
inclusion in the turbidity-based model include streamflow 
and water-quality parameters (water temperature and specific 
conductance) that were measured at the same temporal scale 
as turbidity and have the potential to explain variance induced 
by processes related to sediment transport. Variables selected 
by the best-subsets regression procedure were evaluated for 
multicollinearity and to ensure that sound reasoning existed 
for inclusion of the variables. Multicollinearity occurs 
when one explanatory variable is closely related to one or 
more other explanatory variables and results in errors in the 
estimation of model coefficients (Helsel and Hirsch, 2002; 
Montgomery and others, 2006). Each variable was tested for 
multicollinearity using the variance inflation factor (VIF; 
Marquardt, 1970), calculated as:

2

1
(1 )j

j

VIF
R

=
−

where
	 jVIF 	 is the variance inflation factor for the jth 

variable, and
	

2
jR 	 is the coefficient of determination ( 2R ) of a 

regression of the jth variable on all other 
explanatory variables.

Ideally, 1VIF ≅  for all explanatory variables, indicating the 
absence of multicollinearity ( 2

jR = 0), but 10jVIF > ( 2
jR > 0.9) 

indicates serious problems with multicollinearity (Helsel and 
Hirsch, 2002; Montgomery and others, 2006). This threshold 
value ( 10jVIF > ) is used in this study because the purpose of 
the models is to generate estimates of concentration; multicol-
linearity is of lesser concern when the model is used only for 
estimations, and interpretations of the model coefficients are 

not made (Helsel and Hirsch, 2002; Montgomery and oth-
ers, 2006). Furthermore, the concern over multicollinearity is 
reduced when estimates are generated from the same range 
of explanatory variables as is used in the specification of the 
model, as is the case in this study (Helsel and Hirsch, 2002; 
Montgomery and others, 2006).

Transformations of the explanatory and response vari-
ables were required to generate normally distributed residual 
errors (residuals = observed concentration – estimated concen-
tration) with approximately constant variance (homoscedastic-
ity) because these are assumptions inherent in linear regression 
(Helsel and Hirsch, 2002). Logarithmic (natural log) and 
square-root transformations were investigated; logarithmic 
transformations are commonly applied for turbidity-based 
estimations of SSC (Christensen and others, 2000; Rasmussen 
and others, 2005, 2008; Miller and others, 2007), and the 
square-root transformation is another commonly applied 
transformation for right-skewed hydrologic data (Helsel and 
Hirsch, 2002). The natural logarithm was used in this study 
instead of the base-10 logarithm because the natural logarithm 
is used by the ESTIMATOR and LOADEST applications. 
A transformation-bias-correction procedure was applied 
to the re-transformed estimates of SSC. In the case of the 
logarithmic transform, re-transforming estimates into original 
units produces estimates of the geometric mean concentration 
(which approximates the median concentration), rather than 
estimates of the mean concentration. This bias typically results 
in underestimating the mean concentration, which must be 
corrected using a bias-correcting procedure. The Duan (1983) 
smearing factor, which “smears” the average estimation error 
over all estimates, was used to correct transformation bias in 
the turbidity-based models in this study. The Duan smearing 
factor, as presented by Helsel and Hirsch (2002), is the mean 
of the re-transformed residuals when a log-based transforma-
tion is used; thus, bias-corrected concentration estimates are 
computed from natural-logarithm-transformed data as:

1

exp[ ]
ˆ ˆexp[ ]

n

i
i

D

e
c y

n
== •
∑

where
	 ˆDc 	 is the smeared, or bias-corrected, estimation 

of concentration;
	 exp 	 is the inverse of the natural-logarithm 

function;
	 ŷ 	 is the re-transformed estimate of 

concentration from the turbidity-based 
model;

	 ie 	 are the residual errors; and 
	 n 	 is the number of observations in the turbidity-

based estimation model.

The same factor is applied to all values to be corrected.
In the case of non-logarithmic transformations, such as 

the square-root transformation used in this study, applica-
tion of the Duan smearing correction requires the use of 

,                               (2)
,                       (3)
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spreadsheet software or scripting programs when a large 
number of observations are used to specify models because 
the correction for a single value is calculated using all of the 
residuals from the model specification dataset. For example, 
the smearing correction for the square-root transformation is 
calculated as:

2

1

ˆ( )
ˆ

n

i
i

D

y e
c

n
=

+
=

∑

where
	 ˆDc 	 is the smeared, or bias-corrected, estimation 

of concentration;
	 ŷ 	 is the re-transformed estimate of 

concentration from the turbidity-based 
model;

	 ie 	 are the residual errors; and 
	 n 	 is the number of observations in the turbidity-

based estimation model.

The Duan approach corrects only the transformation 
bias. Potential bias in the coefficient estimations resulting 
from sample error was expected to be negligible (sample error 
goes to zero with large samples), and final estimations were 
graphically evaluated for the presence of bias. 

The determination of which transformation to apply at 
each site was made through assessment of the distribution 
of residual errors, relation between the residuals and each 
explanatory variable in the model, and the relation between 
the residuals and the estimated values. When both transforma-
tions provided equally acceptable residuals, the analysis was 
expanded to directly compare the error in the estimates of 
SSC, and consequently instantaneous SSL, provided by each 
transform. This comparison was accomplished using the sum 
of squared errors (SSE), mean squared error (MSE), and mean 
absolute error (MAE) for the re-transformed and bias-
corrected estimates. The SSE, MSE, and MAE are expressions 
of the error of the estimates in concentration units (milligrams 
per liter), calculated as:

2

1

n

i
i

SSE e
=

= ∑

2

1

1 n

i
i

MSE e
n =

= ∑
 

1

1 n

i
i

MAE e
n =

= ∑

where
	 n	 is the number of observations used in the 

regression,
	 ie 	 is the residual error of the ith estimate, and
	 ie 	 is the absolute value of the ith residual (e). 

Evaluating these statistics for instantaneous SSL provides 
error measures that give greater weight to concentration errors 
at high streamflow. Concentration errors during high stream-
flow are the critical errors to minimize because the majority of 
the SSL is transported during periods of elevated streamflow. 
Instantaneous SSL was computed using the equation presented 
by Porterfield (1972):

inst w sSSL Q C k= × ×

where
	 instSSL 	 is the instantaneous suspended-sediment load, 

in tons per day;
	 wQ 	 is the instantaneous streamflow, in cubic feet 

per second;
	 sC 	 is the concentration of suspended sediment, in 

milligrams per liter; and
	 k 	 is a coefficient based on the unit of 

measurement of water discharge, which 
equals 0.0027 in this instance. 

Streamflow-Based Regression Models

The seven-parameter log-linear ESTIMATOR model 
developed by Cohn and others (1992) is used by the RIM 
Program to estimate loads of sediment at multiple sites on 
tributaries of the bay, including the three sites used in this 
study. The ESTIMATOR model is a streamflow-based model 
that estimates the natural logarithm of sediment concentration 
using the model:

2
0 1 2

2
3 4 5

6

ˆ ˆ ˆln( ) ln( / ) [ln( / )]
ˆ ˆ ˆ( ) ( ) sin(2 )
ˆ cos(2 ) ,

c c

c c

c q q q q

t t t t t

t

  

   

  

= + +

+ − + − +

+ +

where
	 ln	 is the natural-logarithm function;
	 c	 is measured SSC, in milligrams per liter;
	 q	 is measured daily-mean streamflow, in cubic 

feet per second;
	 t	 is time, in decimal years;
	 q

c
,t

c
	 are centering variables for streamflow and 

time, respectively;
	

ˆ
i 	 are coefficients estimated by ordinary least 

squares;
	 0̂ 	 is a constant;
	 1̂ , 2̂ 	 describe the relation between concentration 

and streamflow;
	 3̂ , 4̂ 	 describe the relation between concentration 

and time, independent of flow;
	 5̂ , 6̂ 	 describe seasonal variation in concentration 

data; and
	  	 is residual error, assumed to be normally 

distributed with zero mean and variance 
2
 .

,                             (4)

,                               (7)

, and                        (6)

,                                 (5)

,                          (8)

(9)
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The adjusted maximum likelihood estimator (AMLE) 
is used to assign a concentration value to those samples with 
observed concentration values below the detection limit to 
eliminate sample bias in the estimation of model coefficients 
(Cohn, 1988). This model estimates the natural logarithm of 
concentration; thus, the estimated concentrations are subject 
to re-transformation bias when transformed back into original 
units. This bias is corrected using the Bradu and Mundlak 
(1970) minimum variance unbiased estimator as described by 
Gilroy and others (1990). 

For the purpose of estimating nutrient and suspended-
sediment loadings to the bay, the ESTIMATOR model is 
typically run on a 9-year moving window of data, as described 
by Yochum (2000). This 9-year period of data was used to 
generate the streamflow-based concentration estimates for the 
James, Rappahannock, and North Fork Shenandoah Rivers for 
the comparison in this study. For this study, streamflow-based 
models also were generated using the same data period that 
was used to generate the turbidity-based estimation models. 

Comparison of Turbidity-Based and  
Streamflow-Based Estimates of Suspended-
Sediment Concentrations

The turbidity-based approach was compared with two 
iterations of the streamflow-based approach: one model 
generated from the 9-year dataset used by the CBP and a 
second model generated from a dataset containing only the 
data collected during the period of the dataset used to generate 
the turbidity-based model. Using the 9-year dataset allowed a 
comparison of overall approaches, and using the two models 
built using the same period of data allowed a direct compari-
son of the models.

Comparison of the accuracy of estimates from the 
streamflow-based and turbidity-based estimation models 

was achieved through measures of the difference between 
estimated and observed concentrations for those observations 
included in each of the three estimation models. Multiple plots 
of the residuals of the re-transformed bias-corrected estimates 
from both approaches were evaluated, and SSE, MSE, and 
MAE values were compared. Comparison of the precision of 
the two approaches was achieved using a squared-ranks test 
for equal variance (Conover, 1980) on the estimates and the 
residuals of the re-transformed bias-corrected estimates of 
SSC; estimates and residuals with lesser variance are more 
precise than those with greater variance. The squared-ranks 
test for equal variance is a non-parametric test in which the 
variance of two populations is compared using the absolute 
deviations from the means of the populations (Conover, 1980). 
These deviations are then ranked, and the ranks are squared 
for calculation of the test statistic. This test can be constructed 
as a two-tailed test of the null hypothesis that the variances of 
the two populations are the same, or as a one-tailed test of the 
null hypothesis that the variance of one population is greater 
than the variance of the other population. The one-tailed test is 
used in this study to test the null hypothesis that the variances 
of the streamflow-based estimates and errors are greater than 
those from the turbidity-based model.

Water-Quality Monitoring Data

Continuous water-quality monitoring was initiated on dif-
ferent dates for each site depending on instrument deployment 
requirements (table 1). Although there were no long-term gaps 
in monitoring, short periods of data are missing as a result 
of instrument malfunction, ice, or fouling. These periods of 
missing data typically span less than 1 week and cause the 
records to be less than 100 percent complete.  

Table 1.  Summary of continuous water-quality monitoring data at the monitoring stations at the James River near 
Cartersville, Rappahannock River near Fredericksburg, and North Fork Shenandoah River near Strasburg, Virginia.

[°C, degrees Celsius; FNU, formazin nephelometric units; µS/cm, microsiemens per centimeter]

Period of 
record

Parameter
Percentage of 

record complete
Minimum Maximum Median

James River at Cartersville, VA

12/11/2003
to

9/30/2007

Water temperature (°C) 96 0.0 34.8 16.6
Turbidity (FNU) 92 0.0 720 5.7
Specific conductance (µS/cm) 96 43 412 139

Rappahannock River near Fredericksburg, VA

3/4/2004
to

9/30/2007

Water temperature (°C) 93 0.0 34.4 17.0
Turbidity (FNU) 79 0.0 1,316 5.6
Specific conductance (µS/cm) 88 42 146 87

North Fork Shenandoah River near Strasburg, VA

2/3/2006
to

2/3/2008

Water temperature (°C) 96 0.0 31.4 16.9
Turbidity (FNU) 88 0.0 660 1
Specific conductance (µS/cm) 94 119 467 363
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Width- and depth-integrated samples of SSC were 
collected at each monitoring station to represent the range 
of hydrologic conditions observed during the monitoring 
period. The observed range of turbidity and streamflow was 

adequately sampled, as demonstrated by the distribution of 
sampled points on the cumulative distribution frequency 
(CDF) plots of the continuous turbidity and streamflow data 
(fig. 4). 

Figure 4.  Cumulative distribution frequency plot of continuous turbidity and streamflow measurements with sampled 
points at (A) James River at Cartersville, Virginia, (B) Rappahannock River near Fredericksburg, Virginia, and (C) North 
Fork Shenandoah River near Strasburg, Virginia.
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Turbidity-Based Models
Site-specific turbidity-based SSC estimation models were 

developed for each site using the aforementioned procedures 
and datasets. Model specification is site-specific because the 
distribution of observed SSC and water-quality parameter data 
varies in response to watershed characteristics and hydrologic 
regime during the period of study. 

James River at Cartersville, Virginia

The best-subsets regression procedure was used to rank 
potential formulations of the turbidity-based estimation model 
for the James River at Cartersville (table 2). Only models 
with a smaller Mallows’ Cp than the single-variable (turbidity 
only) model are presented, and a single-variable model using 
streamflow as the explanatory variable did not outperform 
the single-variable turbidity model. The top-ranked model 
(according to Mallows’ Cp) for both the natural-logarithm and 
square-root transformations included transformed turbidity, 

streamflow, and water temperature. All coefficients were 
significant at the 0.05 α-level with attained significance levels 
(p-values) less than 0.05 (table 3). There were no problems 
with multicollinearity according to the specified criteria 
(table 3; fig. 4). Partial residual plots reveal that each transfor-
mation provides a model with residuals having approximately 
constant variance (fig. 5), as is required to meet the assump-
tion of normally distributed residuals in linear regression 
(Helsel and Hirsch, 2002). 

These two models (natural-logarithm and square-root 
transformations) were evaluated to determine which trans-
formation provided estimates of SSC and SSL with the least 
amount of error. The values of SSE, MSE, and MAE (table 4) 
were calculated using the residuals of the re-transformed 
bias-corrected estimates for each model, and these calculations 
were compared. The magnitude of errors is greater for the 
natural-logarithm transformed model than for the square-root 
transformed model, as indicated by the error statistics. With 
greater error in the estimates from the natural-logarithm 
model, the square-root model was selected as the best possible 
estimation model for this dataset. 

Table 2.  Results of best-subsets regression for turbidity-based suspended-sediment concentration 
estimation models for the monitoring station at the James River at Cartersville, Virginia.

[ln, natural logarithm; Q, streamflow; WT, water temperature; SC, specific conductance; √, square root]

Explanatory variables Mallows’ Cp1 Adjusted coefficient of 
determination

Natural-logarithm transformation models

ln(Turbidity) ln(Q) ln(WT) 3.00 0.925
ln(Turbidity) ln(SC) ln(Q) ln(WT) 5.00 0.924

ln(Turbidity) ln(Q) 8.23 0.918
ln(Turbidity) ln(SC) ln(Q) 9.98 0.917

ln(Turbidity) ln(SC) ln(WT) 33.82 0.889
ln(Turbidity) ln(SC) 34.94 0.888

ln(Turbidity) 37.08 0.885
ln(Q) 63.88 0.854

Square-root transformation models

√(Turbidity) √(Q) √(WT) 3.55 0.971
√(Turbidity) √(SC) √(Q) √(WT) 5.00 0.971

√(Turbidity) √(SC) √(Q) 7.56 0.970
√(Turbidity) √(Q) 8.28 0.969

√(Turbidity) 43.39 0.953
√(Q) 164.14 0.901

1Mallows’ Cp values are only comparable for models using the same transformation.
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Table 3.  Details of top-ranked turbidity-based suspended-sediment concentration estimation 
models for the monitoring station at the James River at Cartersville, Virginia.

[<, less than; N/A, not applicable; ln, natural logarithm; Q, streamflow; WT, water temperature; √, square root]

Variable
Model  

coefficient (β)
p-value

Variance 
inflation 

factor

Number of 
observations

Adjusted 
coefficient of 
determination

Natural-logarithm model

Intercept –6.125 <0.0001 N/A

69 0.925
ln(Turbidity) 0.545 <0.0001 5.21

ln(Q) 0.799 <0.0001 5.44

ln(WT) 0.199 0.0086 1.10

Square-root model

Intercept –3.514 <0.0001 N/A

69 0.971
√(Turbidity) 0.825 <0.0001 7.52

√(Q) 0.044 <0.0001 7.91

√(WT) 0.336 0.0114 1.18

Table 4.  Sum of squared errors (SSE), mean squared error 
(MSE), and mean absolute error (MAE) for turbidity-based 
suspended-sediment concentration (SSC) and instantaneous 
suspended-sediment load (in parentheses) estimations using 
the natural-logarithm transformation model and the square-
root transformation model for the monitoring station at the 
James River at Cartersville, Virginia.

Statistic
Natural-logarithm 

model
Square-root 

model

SSE 220,492 (6.5 x 109) 66,265 (1.2 x 109)

MSE 3,196 (9.5 x 107) 960 (1.8 x 107)

MAE 23.2 (2.8 x 103) 14.3 (1.4 x 103)
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Figure 5.  Partial residual plots for turbidity-based suspended-sediment concentration estimation models using square-root and natural-
logarithm transformations for the James River at Cartersville, Virginia.
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Figure 5.  Partial residual plots for turbidity-based suspended-sediment concentration estimation models using
square-root and natural-logarithm transformations for the James River at Cartersville, Virginia.
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Rappahannock River near  
Fredericksburg, Virginia

The results of the best-subsets regression procedure were 
used to rank potential formulations of the estimation model 
for the Rappahannock River near Fredericksburg monitoring 
station (table 5). Only models with a smaller Mallows’ Cp 
than the single-variable (turbidity only) model are listed in 
table 5, and a single-variable model using streamflow as the 
explanatory variable did not outperform the single-variable 
turbidity model. 

Evaluation of partial residual plots for the models 
containing the natural-logarithm transformed variables 
revealed undesirable patterns in the residuals, indicating 
non-constant variance (fig. 6); therefore, only the models 
containing square-root transformed variables were considered 
for use. Two of the top-ranked square-root transformed models 
included water temperature; however, this variable was not 
statistically significant (for α = 0.05) in either case, so these 
models were deemed unacceptable. The details about the 
highest-ranked model with acceptable variables in terms of 
significance, multicollinearity, and residual distributions are 
given in table 6 and figure 6. 

Table 5.  Results of best-subsets regression for turbidity-based suspended-sediment concentration estimation models for the 
monitoring station at the Rappahannock River near Fredericksburg, Virginia.

[ln, natural logarithm; Q, streamflow; WT, water temperature; SC, specific conductance; √, square root]

Explanatory variables Mallows’ Cp1 Adjusted coefficient of  
determination

Natural-logarithm transformation models

ln(Turbidity) ln(Q) ln(WT) 4.97 0.863
ln(Turbidity) ln(SC) ln(Q) ln(WT) 5.00 0.866

ln(Turbidity) ln(Q) 8.97 0.848
ln(Turbidity) ln(SC) ln(Q) 9.67 0.849

ln(Turbidity) 14.57 0.830
ln(Q) 56.09 0.711

Square-root transformation models

√(Turbidity) √(SC) √(Q) √(WT) 5.00 0.929

√(Turbidity) √(SC) √(Q) 6.28 0.925

√(Turbidity) √(Q) √(WT) 9.97 0.920

√(Turbidity) √(Q) 11.47 0.916

√(Turbidity) 25.64 0.893
√(Q) 47.74 0.859

1Mallows’ Cp values are only comparable for models using the same transformation.

Table 6.  Details of top-ranked turbidity-based suspended-sediment concentration estimation model for the 
monitoring station at the Rappahannock River near Fredericksburg, Virginia.

[N/A, not applicable; √, square root; <, less than; SC, specific conductance; Q, streamflow]

Variable
Model  

coefficient (β)
p-value

Variance inflation 
factor

Number of  
observations

Adjusted coefficient  
of determination

Square-root model

Intercept –15.807 0.005 N/A

50 0.925
√(Turbidity) 0.774 <0.0001 6.22

√(SC) 1.426 <0.0001 1.61

√(Q) 0.105 0.0121 6.96
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Figure 6.  Partial residual plots for turbidity-based suspended-sediment concentration estimation models using square-root and natural-
logarithm transformations for the Rappahannock River near Fredericksburg, Virginia.
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Figure 6.  Partial residual plots for turbidity-based suspended-sediment concentration estimation models using
square-root and natural-logarithm transformations for the Rappahannock River near Fredericksburg, Virginia.
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North Fork Shenandoah River near  
Strasburg, Virginia

The best-subsets regression procedure was used to 
rank potential formulations of the estimation model for the 
North Fork Shenandoah River near Strasburg monitoring 
station (table 7). Only models that ranked higher than the 
single-variable (turbidity only) model are listed in table 7, 
and in the case of the square-root transformation, the single-
variable model using streamflow as the explanatory variable 
did not outperform the single-variable turbidity model. In the 
best-subsets results for the natural-logarithm transformation, 
however, the single-variable model using streamflow as the 
only explanatory variable ranked above the single-variable 
model using turbidity as the only explanatory variable.

The natural-logarithm transformation did not produce 
any satisfactory estimation models because all possible 
formulations had problems with significance of variables and 
non-constant variance in the residuals. Each of the multivariate 
models using the square-root transformation were unsatisfac-
tory because of multicollinearity, non-significant variables, 
or non-constant variance in the residuals. These results likely 
can be attributed to the small sample size used to specify the 
model because the variance of parameter estimates increases 
with decreased sample size, leading to elevated VIF values 

and issues with detecting significance (O’Brien, 2007). The 
single-variable (turbidity only) model using the square-root 
transformation was determined to be an acceptable model and 
was used as the estimation model for this site; the coefficients 
and summary statistics for this model are given in table 8, with 
the partial residual plots shown in figure 7.

Streamflow-Based Models
Two versions of the streamflow-based model were 

generated for each station. One used the data period used for 
generation of the turbidity-based model, and a second version 
of the model was generated using data from the 9-year period 
(water years 1999 through 2007), as is used by the CBP 
for estimates at the RIM Program stations. The parameter 
coefficients (βs) and coefficient of determination (R2) for each 
model formulation are given in table 9. The streamflow-based 
ESTIMATOR model is applied consistently by the RIM 
Program at all monitoring stations in the bay watershed using 
all seven explanatory variables regardless of their statistical 
significance. The estimation model therefore may include 
explanatory variables that do not explain a significant amount 
of the variability in SSC. An evaluation of the goodness of the 
fit of these models is presented later in this report.

Table 7.  Results of best-subsets regression for turbidity-based suspended-sediment concentration estimation 
models for the monitoring station at the North Fork Shenandoah River near Strasburg, Virginia.

[ln, natural logarithm; SC, specific conductance; Q, streamflow; WT, water temperature; √, square root]

Explanatory variables Mallows’ Cp1 Adjusted coefficient of 
determination

Natural-logarithm transformation models

ln(Turbidity) ln(SC) ln(Q) 3.70 0.921
ln(Turbidity) ln(SC) ln(Q) ln(WT) 5.00 0.919

ln(Turbidity) ln(Q) 5.72 0.909
ln(Turbidity) ln(Q) ln(WT) 7.38 0.906

ln(Turbidity) ln(WT) 18.86 0.858
ln(Q) 19.29 0.856

ln(Turbidity) 20.25 0.852

Square-root transformation models

√(Turbidity) √(SC) √(Q) √(WT) 5.00 0.993
√(Turbidity) √(SC) √(Q) 5.71 0.992

√(Turbidity) √(SC) √(WT) 23.77 0.985
√(Turbidity) √(SC) 23.85 0.985
√(Turbidity) √(Q) 28.80 0.984

√(Turbidity) √(Q) √(WT) 30.76 0.983
√(Turbidity) √(WT) 32.33 0.982

√(Turbidity) 32.37 0.982
√(Q) 183.67 0.931

1Mallows’ Cp values are only comparable for models using the same transformation.
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Table 8.  Details of turbidity-based suspended-sediment concentration estimation model for 
the monitoring station at the North Fork Shenandoah River near Strasburg, Virginia.

[√, square root; N/A, not applicable]

Variable
Model 

coefficient 
(β)

p-value
Variance  

inflation factor
Number of 

observations

Adjusted 
coefficient of 
determination

Square-root model

Intercept 0.510 0.0294 N/A
27 0.982

√(Turbidity) 1.159 <0.0001 N/A

Figure 7.  Partial residual plots for turbidity-based suspended-sediment concentration estimation model for the 
North Fork Shenandoah River near Strasburg, Virginia.
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Comparison of Turbidity-Based  
and Streamflow-Based Suspended-
Sediment Concentration Estimates

Comparison of the two methods for estimating SSC 
focused on the precision and accuracy of the estimates by 
testing for differences in the variance of the estimates and 
associated residual errors and comparing the estimated values 
to the observed values. One-way squared-ranks tests for 
homogeneity of variance were used to test the null hypothesis 
that the variance of the estimates and residuals from the 
streamflow-based models was greater than the variance of  
the values generated by the turbidity-based models. The 
squared-ranks tests revealed significantly greater variance  
(less precision) in the estimates generated with the  
streamflow-based model for all comparisons (p-values < 0.01; 
table 10). All squared-ranks tests on the residuals revealed 
significantly greater variance (less precision) in the residuals 
from the streamflow-based models than from the turbidity-
based models, except for the study-period streamflow-based 
model at the North Fork Shenandoah River. The lack of 
significance for the test on residuals when a significant result 
was obtained on the test of the estimates may be attributed to 
the smaller dataset used for this comparison.

Three measures of uncertainty were calculated to 
describe the accuracy of each of the models, SSE, MSE, and 

MAE, with these values given in table 11. To allow compari-
son, these values were calculated using the re-transformed 
bias-corrected estimates of SSC associated with those 
observations that were included in all three models. In every 
instance, the accuracy of the turbidity-based SSC and SSL 
estimations is greater than the accuracy of the corresponding 
streamflow-based estimations, with the exception of the SSL 
estimations at the North Fork Shenandoah River. The error 
statistics for SSL for the turbidity-based and study-period 
streamflow-based models at the North Fork Shenandoah River 
are nearly identical (MSE of the turbidity-based estimation is 
slightly higher than the streamflow-based MSE), but error in 
the estimates of SSL from the 9-year streamflow-based model 
are greater than the error terms for the estimations from the 
other two models.

In addition to the aforementioned statistics, graphical 
evaluations of the data were performed to compare the 
accuracy of each approach. Plots of observed SSC and 
estimated SSC (fig. 8) were generated to depict how accurately 
the models replicate the observed concentrations. A perfect 
estimation model would generate estimates along the 1:1 line; 
departures from this line indicate error in the estimations. 
At each of the three sites, the turbidity-based estimates have 
a greater degree of accuracy than the streamflow-based 
estimates, exhibited by a generally tighter fit along the 1:1 line 
than the streamflow-based estimates. This result becomes 
more apparent as SSC values increase, where departures of 
the streamflow-based estimates from the 1:1 line increase 

Table 9.  Coefficients for streamflow-based suspended-sediment concentration estimation models generated for the monitoring 
stations at the James River near Cartersville, Rappahannock River near Fredericksburg, and North Fork Shenandoah River near 
Strasburg, Virginia.

[ln, natural logarithm; q, streamflow in cubic feet per second; qc, centered streamflow (streamflow – mean streamflow); t, decimal time; tc, centered decimal 
time (decimal time – mean decimal time); sin, sine function; cos, cosine function; π, pi]

Dataset
Coefficient (p-value)

Number of  
observations

Adjusted 
coefficient of 
determinationIntercept ln (q / qc) [ln (q / qc)]

2 (t – tc) (t – tc)
2 sin(2πt) cos(2πt)

James River near Cartersville, VA

9-year 
window

2.776 
(<0.01)

1.583 
(<0.01)

0.077 
(0.03)

–0.022 
(0.38)

0.012 
(0.33)

–0.015 
(0.85)

–0.0422 
(<0.01)

195 0.851

Study 
period

3.125
(<0.01)

1.624 
(<0.01)

0.078 
(0.17)

0.039 
(0.54)

–0.002 
(0.98)

–0.206 
(0.05)

–0.504 
(<0.01)

80 0.883

Rappahannock River near Fredericksburg, VA

9-year 
window

2.480
(<0.01)

1.182 
(<0.01)

0.170 
(<0.01)

–0.063 
(0.06)

0.009 
(0.65)

–0.019 
(0.85)

–0.530 
(<0.01)

174 0.781

Study 
period

2.555
(<0.01)

1.165 
(<0.01)

0.232 
(0.17)

–0.115 
(0.26)

–0.098 
(0.37)

0.132
 (0.40)

–0.484 
(<0.01)

72 0.791

North Fork Shenandoah River near Strasburg, VA

9-year 
window

1.518
(<0.01)

1.258
(<0.01)

0.430
(<0.01)

–0.106
(<0.01)

0.006
(0.70)

0.152
(0.22)

–0.346
(<0.01)

124 0.742

Study 
period

2.091
(<0.01)

1.572
(<0.01)

0.218
(0.03)

0.249
(0.39)

–0.117
(0.88)

0.020
(0.92)

–0.687 
(<0.01) 31 0.878
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Table 10.  P-values for one-way squared-ranks tests on the variance of estimates 
and residuals comparing turbidity-based models to two streamflow-based models 
for the monitoring stations at the James River near Cartersville, Rappahannock River 
near Fredericksburg, and North Fork Shenandoah River near Strasburg, Virginia.

Streamflow-based p-values
 (using 9-year dataset)

Streamflow-based p-values  
(using study-period dataset)

James River near Cartersville 

Estimates <0.01 <0.01
Residuals <0.01 <0.01

Rappahannock River near Fredericksburg

Estimates <0.01 <0.01
Residual <0.01 <0.01

North Fork Shenandoah River near Strasburg

Estimates <0.01 <0.01
Residual <0.01 0.645

Table 11.  Error statistics for turbidity-based and streamflow-based estimates of suspended-
sediment concentrations and instantaneous suspended-sediment load (in parentheses) 
for the monitoring stations at the James River near Cartersville, Rappahannock River near 
Fredericksburg, and North Fork Shenandoah River near Strasburg, Virginia.

[n, number of observations/estimations used to compute statistics; SSE, sum of squared errors; MSE, mean 
squared error; MAE, mean absolute error]

Turbidity-based  
error statistics

Streamflow-based  
error statistics  

(using 9-year dataset)

Streamflow-based  
error statistics  

(using study-period dataset)

James River near Cartersville (n = 67)

SSE 57,551 (9.5 x 108) 377,496 (6.6 x 109) 566,794 (1.3 x 1010)

MSE 846 (1.4 x 107) 5,634 (9.9 x 107) 8,460 (2.0 x 108)

MAE 13 (1.2 x 103) 36 (3.6 x 103) 38 (4.1 x 103)

Rappahannock River near Fredericksburg (n = 49 )

SSE 115,565 (2.5 x 108) 1,077,044 (4.0 x 109) 836,820 (2.8 x 109)

MSE 2,358 (5.1 x 106) 21,980 (8.1 x 107) 17,078 (5.8 x 107)

MAE 25 (6.2 x 102) 56 (2.1 x 103) 50 (1.8 x 103)

North Fork Shenandoah River near Strasburg (n = 27)

SSE 9,241 (3.9 x 108) 1,017,429 (1.6 x 109) 134,158 (3.9 x 108)

MSE 342 (1.5 x 107) 37,683 (5.8 x 107) 4,969 (1.4 x 107)

MAE 9 (1.4 x 103) 68 (2.7 x 103) 30 (1.4 x 103)

greatly. Additionally, the departures from the 1:1 line for the 
streamflow-based models at the Rappahannock River indicate 
bias resulting in increased underestimation as SSC concentra-
tions increase. Large errors in the estimation of SSC at these 

higher values are of great concern because the majority of the 
sediment load is transported during the short periods of time 
when concentrations are in this upper range; thus, accurately 
characterizing these periods is critical.
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Figure 8.  Observed suspended-sediment concentration and estimated suspended-sediment concentration for the turbidity-
based model and two streamflow-based models for (A) James River at Cartersville, Virginia, (B) Rappahannock River near 
Fredericksburg, Virginia, and (C) North Fork Shenandoah River near Strasburg, Virginia.

Exceedance-probability plots of the absolute value of the 
residuals for each model show that divergence in the distribu-
tion of residuals from the turbidity- and streamflow-based 
models generally occurs between the 20- and 30-percent 

exceedance levels (fig. 9). At the 10-percent exceedance  
level, the residual error in the streamflow-based estimates is 
1.5 to more than 10 times the residual error in the turbidity-
based estimates.
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Figure 8.  Observed suspended-sediment concentration and estimated suspended-sediment concentration
  for the turbidity-based model and two streamflow-based models for (A) James River at Cartersville, Virginia, 
  (B) Rappahannock River near Fredericksburg, Virginia, and (C) North Fork Shenandoah River
  near Strasburg, Virginia.
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Figure 9.  Percentage of exceedance 
plots of the absolute value of residuals 
from the turbidity-based suspended-
sediment concentration model and the 
two streamflow-based suspended-
sediment concentration models for  
(A) James River at Cartersville, 
Virginia, (B) Rappahannock River 
near Fredericksburg, Virginia, and  
(C) North Fork Shenandoah River near 
Strasburg, Virginia.
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Comparison of Turbidity-Based 
and Streamflow-Based Nutrient 
Concentration Estimates

After the main objectives of this study were completed, 
additional analysis of the data indicated that the methods 
developed for SSC estimation also applied well to estimation 
of nutrients. Other investigators have successfully generated 
estimation models for nutrients and other chemical constitu-
ents using continuous water-quality data (Christensen and 
others, 2000, 2002; Rasmussen and others, 2005, 2008; Miller 
and others, 2007). The objective of this additional analysis 
was to demonstrate the applicability of this approach in major 
tributaries of the bay and to compare this approach with the 
streamflow-based estimation approach typically used for 
estimation of nutrient transport in these tributaries.

The approach for data collection and analysis used at 
monitoring stations at the James and Rappahannock Rivers 
was the same as the approach used for generation of the SSC 
estimation models. The approach was not attempted at the 
North Fork Shenandoah River station because of the smaller 
nutrient dataset available for this station. Nutrient samples 
were collected concurrently with the SSC samples; thus, the 

nutrient dataset is representative of conditions observed during 
the period of study (fig. 4). Nutrient analyses were conducted 
by the Virginia Department of Consolidated Laboratory 
Services in Richmond, VA; this effort focused on the total 
phosphorus (TP) and total nitrogen (TN) analyses. The same 
continuous water-quality and streamflow datasets were used 
for generation of the nutrient estimation models as were used 
in the SSC estimation models. 

The TP and TN estimation models were selected 
from the best-subsets regression procedure and subsequent 
residual evaluation for the two monitoring stations (tables 12 
and 13). These estimation models were the highest ranked 
(lowest Mallows’ CP) models with acceptable residuals and 
summary statistics. The nutrient estimation models explain 
83–94 percent of the variability in the nutrient concentrations, 
depending on the site and nutrient species, as indicated by the 
adjusted R2 values.

The variance explained by the streamflow-based TP 
estimation models ranged from approximately 57–85 percent, 
according to the adjusted R2 values (table 14). For the two 
monitoring stations investigated, the model using the study 
period dataset explained a greater portion of the variability in 
TP than the model generated using the 9-year window dataset, 
presumably because these smaller datasets contained less 
variability in the TP concentrations.

Table 12.  Details of turbidity-based estimation models for total phosphorus for the monitoring 
stations at the James River at Cartersville and Rappahannock River near Fredericksburg, Virginia.

[N/A, not applicable; √, square root]

Variable
Model  

coefficient (β)
p-value

Variance 
inflation 

factor

Number of 
observations

Adjusted 
coefficient of 
determination

James River at Cartersville 

Intercept –0.5883 0.042 N/A

61 0.942

√Turbidity 0.0268 <0.001 7.94

√Streamflow 0.0007 0.006 7.43

√Water temperature 0.0149 0.003 1.35

√pH 0.2217 0.035 2.03

Rappahannock River near Fredericksburg

Intercept –0.5473 0.026 N/A

42 0.851
√Turbidity 0.0197 0.004 8.59

√Streamflow 0.0031 0.006 9.08

√Specific conductance 0.0631 0.012 1.83
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Table 13.  Details of turbidity-based estimation models for total nitrogen for the monitoring stations at 
the James River at Cartersville and Rappahannock River near Fredericksburg, Virginia.

[N/A, not applicable; √, square root]

Variable
Model  

coefficient (β)
p-value

Variance 
inflation 

factor

Number of 
observations

Adjusted 
coefficient of 
determination

James River at Cartersville

Intercept 0.5481 <0.001 N/A
61 0.847

√Turbidity 0.0419 <0.001 1

Rappahannock River near Fredericksburg

Intercept 0.0421 0.906 N/A

42 0.834
√Turbidity 0.0510 <0.001 1.72

√Water temperature –0.074 <0.001 1.08

√Specific conductance 0.0961 0.014 1.79

Table 14.  Coefficients for streamflow-based total phosphorus estimation models for the monitoring stations at the James River at 
Cartersville and Rappahannock River near Fredericksburg, Virginia.

[ln, natural logarithm; q, streamflow in cubic feet per second; qc, centered streamflow (streamflow – mean streamflow); t, decimal time, tc, centered decimal 
time (decimal time – mean decimal time); sin, sine function; cos, cosine function; π, pi]

Dataset
Coefficient (p-value) Number of 

observations

Adjusted 
coefficient of 
determinationIntercept ln (q / qc) [ln (q / qc)]

2 (t – tc) (t – tc)
2 sin(2πt) cos(2πt)

James River at Cartersville

9-year 
window

–2.623
(<0.01)

0.412 
(<0.01)

0.234 
(<0.01)

–0.072 
(<0.01)

–0.019
(<0.01)

–0.065 
(0.20)

–0.107 
(0.04)

224 0.575

Study 
period

–2.768
(<0.01)

0.766 
(<0.01)

0.224 
(<0.01)

–0.004 
(0.91)

–0.091 
(0.02)

–0.172 
<0.01)

–0.299
(<0.01)

73 0.849

Rappahannock River near Fredericksburg

9-year 
window

–3.276
(<0.01)

0.635 
(<0.01)

0.105 
(<0.01)

–0.032 
(0.04)

0.009 
(0.13)

–0.176 
(<0.01)

–0.254
(<0.01)

196 0.759

Study 
period

–3.047
(<0.01)

0.690 
(<0.01)

0.199
(<0.01)

0.054
(0.36)

–0.154 
(0.01)

0.030 
(0.74)

–0.282
(<0.01)

65 0.837

Comparison of TP estimations from the streamflow-based 
models and the turbidity-based models revealed that greater 
accuracy was achieved using the turbidity-based model at 
each of the two monitoring stations, as indicated by the fit of 
the estimates around the 1:1 line in figure 10. Additionally, 
the streamflow-based models tend to underestimate TP, but 
there is no indication of bias in the turbidity-based estimates 
of TP. Error statistics, MSE, SSE, and MAE, calculated from 
the re-transformed and bias-corrected estimates of TP and 
instantaneous TP load further exemplify the greater accuracy 
of the turbidity-based approach (table 15). Also, a significant 
difference in the variance of the estimates and residuals 
from the turbidity-based and streamflow-based models, as 

demonstrated by the squared-ranks test (table 16), indicates 
that the turbidity-based model provides estimates of TP with 
greater precision than the streamflow-based model. 

Overall, these results demonstrate that the turbidity-based 
approach generates estimates of TP that are more accurate 
and precise than those estimated using the streamflow-based 
approach. This result is likely attributable to the characteristics 
of phosphorous transport because the majority of phosphorous 
transported in these rivers is in particulate form (fig. 11) and 
turbidity is a better estimator of particulate material than 
streamflow, as demonstrated by the results presented for  
SSC estimation.
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Figure 10.  Observed total phosphorus and estimated total phosphorus for the turbidity-based model and 
two streamflow-based models for (A) James River at Cartersville, Virginia, and (B) Rappahannock River near 
Fredericksburg, Virginia.
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Figure 10.  Observed total phosphorus and estimated total phosphorus for the turbidity-based model
  and two streamflow-based models for (A) James River at Cartersville, Virginia, and (B) Rappahannock
  River near Fredericksburg, Virginia.
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Table 15.  Error statistics for turbidity-based and streamflow-based estimates of 
total phosphorus concentration and instantaneous load (in parentheses) for the 
monitoring stations at the James River at Cartersville and Rappahannock River near 
Fredericksburg, Virginia.

[n, number of observations/estimations used  to compute statistics; SSE, sum of squared errors;  
MSE, mean squared error; MAE, mean absolute error]

Turbidity-based  
error statistics

Streamflow-based   
error statistics  

(using 9-year dataset)

Streamflow-based  
error statistics  

(using study-period dataset)

James River at Cartersville (n = 61)

SSE 0.055 (626.3) 0.370 (4,568.6) 0.164 (1,868.7)

MSE 0.001 (10.3) 0.006 (74.9) 0.003 (30.6)

MAE 0.019 (1.2) 0.044 (3.6) 0.030 (2.4)

Rappahannock River near Fredericksburg (n = 42)

SSE 0.191 (124.4) 0.376 (1,135.7) 0.276 (718.7)

MSE 0.005 (3.0) 0.009 (27.0) 0.007 (17.1)

MAE 0.035 (0.6) 0.046 (1.3) 0.039 (1.1)

Table 16.  P-values for one-way squared-ranks tests on the variance of estimates 
and residuals for turbidity-based and streamflow-based total phosphorus 
estimation models for the monitoring stations at the James River at Cartersville 
and Rappahannock River near Fredericksburg, Virginia.

[<, less than]

Streamflow-based  p-values  
(using 9-year dataset)

Streamflow-based  p-values  
(using study-period dataset)

James River at Cartersville

Estimates <0.01 <0.01

Residuals <0.01 0.119

Rappahannock River near Fredericksburg

Estimates  0.02 <0.01

Residuals <0.01 <0.01



Comparison of Turbidity-Based and Streamflow-Based Nutrient Concentration Estimates    27

Figure 11.  Total phosphorus concentrations and percent particulate phosphorus for the James River at Cartersville, 
Virginia, and Rappahannock River near Fredericksburg, Virginia.
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Figure 11.  Total phosphorus concentrations and percent particulate phosphorus for the James River at Cartersville, Virginia,
and Rappahannock River near Fredericksburg, Virginia.

The streamflow-based TN estimation models were not as 
efficient at explaining variability as the streamflow-based TP 
estimation models; the TN estimation models explained only 
about 60–68 percent of the variability in TN (table 17). As 
with the TP estimation models, the streamflow-based model 
generated using the study-period dataset explained a greater 
portion of the variance in TN than did the model specified 
using the 9-year window dataset, likely because the shorter 
dataset contains less variability in the TN concentrations.

Results of the comparison of TN estimates from the 
streamflow-based model and from the turbidity-based model 
indicate that both methods provide similar results, with the 
turbidity-based approach providing only slightly improved 
accuracy (fig. 12). Although the fit of the streamflow-based 

TN estimates at the James River at Cartersville monitoring 
station is comparable to the fit of the turbidity-based estimates, 
a slightly better fit is observed in the turbidity-based estimates 
at the Rappahannock River monitoring station. 

Comparison of the magnitude (absolute value) of the 
residuals at each site is shown in figure 13, where points 
plotting above the 1:1 indicate greater error in the streamflow-
based estimates and points below the 1:1 line indicate greater 
error in the turbidity-based estimates. Although not as appar-
ent in figure 12, the magnitude of residuals at the James River 
monitoring station tends to be less for the turbidity-based 
estimates, and the magnitude of residuals at the Rappahan-
nock River monitoring station tends to be greater for the 
streamflow-based estimates. These findings are supported 

Table 17.  Coefficients for streamflow-based total nitrogen estimation models for the monitoring stations at the James River at 
Cartersville and Rappahannock River near Fredericksburg, Virginia.

[ln, natural logarithm; q, streamflow in cubic feet per second; qc, centered streamflow (streamflow – mean streamflow); t, decimal time; tc, centered decimal 
time (decimal time – mean decimal time); sin, sine function; cos, cosine function; π, pi]

Dataset
Coefficient (p-value)

Number of 
observations

Adjusted 
coefficient of 
determinationIntercept ln (q / qc) [ln (q / qc)]

2 (t – tc) (t – tc)
2 sin(2πt) cos(2πt)

James River at Cartersville

9-year 
window

–0.670
(<0.01)

0.404
(<0.01)

0.084
(<0.01)

–0.014
(0.15)

–0.001
(0.75)

–0.061
(0.09)

–0.078
(0.03)

222 0.618

Study 
period

–0.622
(<0.01)

0.407
(<0.01)

0.101
(<0.01)

–0.017
(0.61)

–0.035
(0.30)

–0.107
(0.05)

–0.119
(0.03) 77 0.677

Rappahannock River near Fredericksburg

9-year 
window

–0.328
(<0.01)

0.360
(<0.01)

0.031
(<0.01)

–0.018
(0.18)

–0.003
(0.65)

–0.002
(0.97)

0.024
(0.64)

194 0.596

Study 
period

–0.292
(<0.01)

0.330
(<0.01)

0.036
(0.08)

–0.005
(0.91)

0.013
(0.80)

0.009
(0.90)

0.107
(0.20)

74 0.627
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Figure 12.  Observed total nitrogen and estimated total nitrogen for the turbidity-based model and two 
streamflow-based models for (A) James River at Cartersville, Virginia, and (B) Rappahannock River near 
Fredericksburg, Virginia.
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Figure 12.  Observed total nitrogen and estimated total nitrogen for the turbidity-based model and two
streamflow-based models for (A) James River at Cartersville, Virginia, and (B) Rappahannock River
near Fredericksburg, Virginia.
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Figure 13.  The absolute value of residuals from the turbidity-based total nitrogen estimation model and 
absolute value of residuals from the two streamflow-based total nitrogen estimation models for (A) James 
River at Cartersville, Virginia, and (B) Rappahannock River near Fredericksburg, Virginia.
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Figure 13.  The absolute value of residuals from the turbidity-based total nitrogen estimation model and absolute
value of residuals from the two streamflow-based total nitrogen estimation models for (A) James River at
Cartersville, Virginia, and (B) Rappahannock River near Fredericksburg, Virginia.
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Table 18.  Error statistics for turbidity-based and streamflow-based estimates of total nitrogen 
concentration and instantaneous load (in parentheses) for monitoring stations at the James 
River at Cartersville and Rappahannock River near Fredericksburg, Virginia.

[n, number of observations/estimations used to compute statistics; SSE, sum of squared errors; MSE, mean 
squared error; MAE, mean absolute error]

Turbidity-based  
error statistics

Streamflow-based  
error statistics  

(using 9-year dataset)

Streamflow-based  
error statistics  

(using study-period dataset)

James River at Cartersville (n = 61)

SSE 1.28 (7,105.4) 2.30 (1,5606.0) 2.21(13,699.6)

MSE 0.021 (116.5) 0.038 (255.8) 0.036 (224.6)

MAE 0.106 (4.8) 0.146 (7.5) 0.143 (7.4)

Rappahannock River near Fredericksburg (n = 42)

SSE 2.04 (1,691.3) 6.52 (8,008.4) 7.06 (10,899.3)

MSE 0.049 (40.3) 0.155 (190.7) 0.168 (259.5)

MAE 0.177 (2.5) 0.276 (4.7) 0.27 (5.0)

Table 19.  P-values for one-way squared-ranks tests on the variance of 
estimates and residuals for turbidity-based and streamflow-based total 
nitrogen estimation models for the monitoring stations at the James River 
at Cartersville and Rappahannock River near Fredericksburg, Virginia.

Streamflow-based 
p-values (using  
9-year dataset)

Streamflow-based   
p-values (using  

study-period dataset)

James River at Cartersville

Estimates 0.789 0.063

Residuals 0.035 0.022

Rappahannock River near Fredericksburg

Estimates 0.766 0.250

Residuals 0.078 0.095

by the error statistics for the models at each site, which also 
demonstrate less error (greater accuracy) in the turbidity-based 
estimates compared to the streamflow-based estimates of TN 
and instantaneous TN load (table 18). 

The squared-ranks test performed on the TN estimates 
and residuals at each site yielded mixed results, with most 
outcomes failing to detect significant differences in the 
precision of the two estimation approaches (table 19). The 
exception to this lack of significance is that the variance of the 
residuals from the turbidity-based TN estimation at the James 
River monitoring station is significantly less than that of the 

streamflow-based estimation models. The results of the test of 
residuals at the Rappahannock River monitoring station are 
not significant using the significance level established for this 
study (α-level = 0.05).

The finding that there is generally no major difference 
in the accuracy and precision of TN estimates from turbidity-
based and streamflow-based approaches is reasonable because 
nitrogen transport is dominated by dissolved species. This 
results in generally low percent-particulate values, which are 
not well represented by these methods (fig. 14). 
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Limitations and Challenges of the 
Turbidity-Based Method

Although the turbidity-based approach of estimating 
suspended-sediment and nutrient concentrations provides 
greater accuracy and precision than the traditional streamflow-
based approach, the method is not without limitations. These 
limitations range from data collection challenges to limitations 
in the tools available for data analysis.

Collection of continuous water-quality data, such as 
turbidity, presents challenges similar to those associated 
with operating continuous-record streamgages, as well as 
challenges unique to continuous water-quality sensors. As 
with streamgages, consideration must be given to site-specific 
conditions to ensure the water-quality monitor and associated 
components are adequately protected from high water, high 
velocities, and any associated debris, while maintaining 
acceptable in-stream performance. Unlike streamgages, 
sensors on continuous water-quality monitors (particularly 
optical turbidity sensors) are susceptible to fouling by biologi-
cal growth, siltation, and entangled debris. These effects 
may be minimized through careful sensor placement and 
other creative solutions, but ultimately, successful operation 
of continuous water-quality monitors requires flexibility in 
staffing to perform unscheduled site maintenance when such 
fouling occurs. These episodes of sensor fouling create a 
data-analysis challenge because discarded data from fouled 
sensors result in data gaps that must be addressed prior to 
data analysis. Resolving data gaps requires consideration of 
study objectives and effects on end products (such as loads 
and yields). In some circumstances, filling in missing periods 
of data using the existing data as a guide may be acceptable; 
in other cases, using an alternative method to make inferences 

about conditions during gaps in the continuous water-quality 
monitor data may be necessary.

Application of methods using continuous water-quality 
data for the estimation of constituent loadings has one 
apparent major limitation—methods and tools for estimating 
loads and associated variance require further development. 
Currently available tools, such as ESTIMATOR, LOADEST 
(Runkel and others, 2004), and the turbidity threshold sam-
pling (TTS) software developed by Lewis and Eads (2008), do 
not contain the functionality required to calculate the variance 
of loads estimated from concentration-estimation models 
using transformations of the response variable other than the 
natural-logarithm. This is a major limitation; this study has 
demonstrated that estimation models using natural-logarithm 
transformations may not produce the best possible concentra-
tion estimates, and in some circumstances, models using the 
natural-logarithm transformation do not meet the assumptions 
of linear regression. This limitation is a result of the lack of 
development of statistical methods for estimating the variance 
of loads generated from models using non-logarithm trans-
formations (C.G. Crawford, D.L. Lorenz, and G.E. Schwarz, 
U.S. Geological Survey, oral commun., 2008). Derivation of 
the statistical methods and development of a tool for applica-
tion of such procedures would require a concerted effort. 
The statistical methods for calculation of the variance of load 
estimates using natural-logarithm transformations developed 
by Gilroy and others (1990) require calculation of the variance 
and covariance of all variables, which is a computationally 
intensive process available in software packages designed for 
load estimation. A similar effort would be required to develop 
these procedures for use with non-logarithm transformations. 
A further limitation of LOADEST for use with continuous 
water-quality data is that the finest temporal resolution achiev-
able is hourly; with continuous water-quality data typically 

Figure 14.  Total nitrogen concentration and percent particulate nitrogen for the James River at Cartersville, Virginia, 
and Rappahannock River near Fredericksburg, Virginia.
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Figure 14.  Total nitrogen concentration and percent particulate nitrogen for the James River at Cartersville, Virginia, and
Rappahannock River near Fredericksburg, Virginia.
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collected at 15-minute intervals, software capable of using 
data at this resolution is needed. The TTS software package 
was developed by investigators working in flashy headwater 
streams and was designed for use with data collected at 
10-minute intervals (Lewis and Eads, 2008).

Potential Applications of Turbidity-
Based Estimation Models

Continuous turbidity data and estimations of constituent 
concentrations based on continuous turbidity data represent 
an accurate and temporally dense dataset that can provide 
a valuable tool for resource managers, policy makers, 
academics, and others to apply to a wide range of water-
resource problems. As demonstrated by this investigation, 
these data can be used to effectively estimate sediment and 
nutrient concentrations; in addition, effective turbidity-based 
estimation models may be generated for other particulate 
or particulate-associated constituents such as bacteria and 
sediment-bound contaminants. These estimation models 
may provide the foundational data needed for process-level 
transport studies, watershed modeling, time-series analysis, 
trend analysis, total maximum daily load (TMDL) studies, 
public health investigations and warning systems, and many 
additional applications at scales ranging from individual best 
management practice (BMP) structures to large rivers.

One possibility for applying turbidity-based estimation 
models in public health matters is the development of real-
time beach-closure programs. Currently, most beach-closure 
programs operate on a lag, typically 24 hours, because of the 
incubation time required for bacteria analysis (Francy and 
Darner, 2002; Francy and others, 2006). Coupling realtime 
turbidity measurements with turbidity-based bacteria estima-
tion models can provide a means for basing beach-closure 
decisions on current conditions, rather than on conditions from 
the previous day (Francy and Darner, 2002; Francy and others, 
2006). This approach could greatly reduce beachgoers risk of 
exposure to pathogens and potentially reduce the economic 
impact of beach closures in resort areas as periods of risk 
would be more accurately defined.

Another possible application of turbidity-based estima-
tion models, when coupled with real-time data collection, 
is for the detection of changing or impaired water-quality 
conditions. Real-time water-quality alone may be used to 
detect changes in, or impairments from, those measured 
parameters. Furthermore, estimation models may be coupled 
with those data to detect changes in, or impairments from, 
constituents that can be effectively estimated. In addition 
to these methods for instantaneous detections, frequency 
distributions of measured parameters or estimated constituents 
may be used to detect impairments when impairment criteria 
are based on exceeding a given value for a given period of 
time, or to detect change over time. Such changes over time 
may be in the form of declining water quality in response to 

detrimental near-stream or landscape-level activities, or in 
the form of improving water-quality conditions in response to 
BMP implementation or stream-restoration activities.

Many investigations seek to quantify the total mass of 
a constituent transported by a river of interest in order to 
determine the loading to receiving waters (such as the bay) 
or to assist in the development of TMDLs for regulatory 
purposes. Using concentration estimates generated from 
regression models on continuous water-quality data to estimate 
constituent loading is an obvious application of the data. 
This study has demonstrated that these models are capable of 
estimating constituent concentrations and instantaneous loads 
with greater precision and accuracy than streamflow-based 
approaches, and summed load estimates based on these 
concentration estimates will also have greater accuracy and 
precision than those based on streamflow. 

Total monthly and annual suspended-sediment loads  
for water year 2007 have been estimated for the James River  
at Cartersville monitoring station using streamflow- and  
turbidity-based concentration estimation models presented 
earlier in this report. These estimations were generated to 
demonstrate the load estimation application and the improve-
ment over the streamflow-based approach. Current software 
packages do not permit the use of transformations other 
than natural logarithm for the response variable; thus, the 
turbidity-based estimation model using the natural-logarithm 
transformation (table 3) was used in the LOADEST program 
to estimate turbidity-based loads. Although the natural-
logarithm model was determined to provide estimates of SSC 
with greater error than the square-root transformed model, 
the natural-logarithm model was found to be an acceptable 
model because the assumptions of linear regression were not 
violated. Hourly turbidity, water temperature, and streamflow 
values were extracted from the 15-minute-interval datasets for 
use in LOADEST. Short periods (approximately 8 hours or 
less) of missing values for all parameters were estimated as the 
average of nearest neighbors. The turbidity dataset contained 
two periods of missing data that were longer in duration, 
occurring as a result of biological fouling during extended 
periods of low streamflow and turbidity. Because no storm 
event occurred during these periods, resulting in negligible 
sediment transport, these periods were assigned estimated 
turbidity values equal to the 25th percentile of the observed 
turbidity dataset; graphical analysis of the resulting dataset 
indicated that this was a reasonable approximation. Finally, 
all turbidity values equal to zero were assigned a value of 0.1 
to permit the use of the natural-logarithm transform. These 
modifications to the dataset are not expected to adversely 
alter the load estimates. The streamflow-based estimates of 
SSL were calculated using the 9-year-window model in the 
ESTIMATOR program. 

Results of the load estimation procedures demonstrate 
that although the streamflow- and turbidity-based methods 
typically generate similar estimates of SSL, the turbidity-based 
approach provides estimates of load with reduced uncertainty 
(fig. 15), which is expected given the results of the comparison 
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of concentration models and instantaneous SSL. This reduced 
uncertainty is quantified by the mean monthly coefficient of 
variation (CV), or standard error of prediction as a percentage 
of the load. The CV is 38 percent for the streamflow-based 
load estimates and 12 percent for the turbidity-based load 
estimates. These results are consistent with those presented 
by Miller and others (2007) for a similar analysis on the 
Anacostia River in Maryland. The improved precision in the 
turbidity-based loads is a direct effect of the improved preci-
sion in the turbidity-based concentration estimates. With the 
square-root transformed model generating SSC estimates with 
even less uncertainty than the natural-logarithm transformed 
model, uncertainty in load estimations is expected to be further 
reduced if a tool could be developed for use with such models. 

The reduction of uncertainty in load estimates has numer-
ous practical implications. Primarily, reduced uncertainty in 
the load estimates will facilitate change or trend detection, as 
smaller changes in load will be necessary to detect statistically 
significant differences. This may lead to more accurate and 
timely detection of trends resulting from management prac-
tices on the landscape, which ultimately leads to an improved 
understanding of processes affecting sediment and nutrient 
transport from the terrestrial environment to, and through, 
fluvial systems.

Summary and Conclusions 

Elevated suspended-sediment concentrations (SSC) and 
nutrient concentrations are major water-quality concerns in 
the Chesapeake Bay, the Nation’s largest estuary. Excess 
sediment is having an adverse effect on the living resources 
and associated habitat of the bay and its watershed. Because 
of excess nutrient and sediment levels, the bay was listed as an 
impaired water body in 1998 under the Clean Water Act. The 
USEPA Chesapeake Bay Program (CBP) needs information 
with which to evaluate current conditions and assess progress 
toward meeting sediment-reduction goals.

Implementation of recent technological and methodologi-
cal advances in continuous water-quality monitoring and 
surrogate approaches has helped to generate estimates of SSC 
and suspended-sediment loads (SSL) with improved precision 
as compared with traditional approaches. The U.S. Geological 
Survey, in cooperation with the Chesapeake Bay Program and 
the Virginia Department of Environmental Quality, evalu-
ated this approach in three major tributaries to the bay and 
compared the results with the conventionally applied approach 
using streamflow as the primary regressor for SSC estimation. 
Specifically, the objectives of this investigation were to

Figure 15.  Monthly and annual suspended-sediment load estimations for the 2007 water year at the 
James River at Cartersville, Virginia, estimated using turbidity-based and streamflow-based methods.
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Figure 15.  Monthly and annual suspended-sediment load estimations for the 2007 water year at the James
River at Cartersville, Virginia, estimated using turbidity-based and streamflow-based methods.

Streamflow based Turbdity based

Upper 95-percent
confidence interval

Lower 95-percent
confidence interval

Upper 95-percent
confidence interval

Lower 95-percent
confidence interval



34    Turbidity-Based and Streamflow-Based Estimates of Suspended Sediment in Three Chesapeake Bay Tributaries

1.	 Evaluate the use of turbidity as a surrogate for esti-
mating SSC in the James, Rappahannock, and North 
Fork Shenandoah Rivers, each of which drain into 
the Chesapeake Bay; and

2.	 Compare two methods of estimating SSC: turbidity-
based and streamflow-based regression models.

These study objectives were expanded to include the  
evaluation of turbidity-based models to estimate nutrient  
concentrations, specifically total nitrogen (TN) and total  
phosphorous (TP).

Multivariate turbidity-based estimation models were 
generated using best-subsets regression procedures, with 
potential explanatory variables including continuously 
measured water-quality and streamflow parameters. Natural-
logarithm and square-root transformations of the explanatory 
and response variables were evaluated, and in all instances,  
the square-root transformation provided estimates of constitu-
ent concentration with the least uncertainty. Turbidity-based 
models using the square-root transform explained 92–98 per-
cent of the variability in SSC, 85–94 percent of the variability 
in TP, and 83–85 percent of the variability in TN. With one 
exception, a single-variable model using turbidity  
as the explanatory variable outperformed a single-variable 
model using streamflow as the explanatory variable. Further-
more, the use of a square-root transformation was shown to 
produce the most statistically acceptable models. In the case 
of similar levels of acceptability between the square-root and 
log-based transformations, the square-root transformation was 
shown to produce estimates of SSC and SSL with the least 
unexplained variance.

Two iterations of the streamflow-based estimation models 
were generated using the ESTIMATOR program. One was 
generated using a 9-year window of data because this is the 
dataset used by the CBP to estimate nutrient and sediment 
loadings to the bay. The second model was generated using 
the data from the same time period that was used to generate 
the turbidity-based models. These two models were generated 
so that comparisons of both the streamflow-based model 
and the approach used by the CBP could be compared with 
the turbidity-based models. Each of the streamflow-based 
estimation models explained a large portion of the variance 
in the estimated constituent, describing 74–88 percent of the 
variability in SSC, 58–85 percent of the variability in TP, and 
60–68 percent of the variability in TN. The streamflow-based 
estimation models specified using the study-period dataset 
consistently described a greater portion of the variance than 
the model generated from the 9-year window; this result is 
attributed to the shorter datasets having less variability in the 
constituent concentrations. 

Comparison of the streamflow-based and turbidity-based 
methods focused on the accuracy and precision of the two 
methods. Accuracy was evaluated through graphical and 
statistical comparison of the error in the re-transformed bias-
corrected concentration estimates. Precision was compared 
using a squared-ranks test of equal variance on the estimates 

and the residual errors in those estimates. Using these multiple 
lines of evidence, results of this study indicate that the 
turbidity-based modeling approach is capable of generating 
estimates of the concentration of particulate constituents with 
greater precision and accuracy than the streamflow-based 
modeling approach. Interpretation of the accuracy of the 
turbidity-based approach using graphical analysis of the 
model fit and residual error distributions is supported by the 
summary statistics calculated from the re-transformed and 
bias-corrected estimates of SSC, where the mean absolute 
error (MAE) of the turbidity-based estimates is found to be 
50–87 percent less than the corresponding value from the 
streamflow-based approach. The magnitude of error for the 
turbidity-based estimates of TP also was generally smaller, 
with MAE values 10–57 percent less than those from the 
streamflow-based estimates. Improvements in precision over 
the streamflow-based approach are typically evident through 
significant results from the squared-ranks test on the distribu-
tion of SSC estimates and associated residual errors. While the 
turbidity-based approach yields estimates of SSC and TP with 
greater accuracy and precision, the streamflow-based approach 
remains practicable.

The accuracy and precision of estimates of particulate 
concentrations using turbidity as an explanatory variable are 
improved because of the strong relation between turbidity  
and particulate material, and the lesser relation between 
streamflow and particulate concentrations. Turbidity is a 
measure of the optical properties of water, and those optical 
properties are directly influenced by suspended particulate 
matter. Therefore, the relation between turbidity and sus-
pended matter stays the same, regardless of flow conditions. 
In contrast, streamflow influences suspension and transport 
of particulate material, so a relation exists between the two, 
but many confounding factors (such as variable source 
area contribution, variations in runoff intensity, and other 
non-constant variables) degrade the strength of the relation 
between streamflow and particulate concentrations. 

Results from the estimation of TN, a primarily dissolved 
constituent, did not indicate that either approach provided 
a definite advantage for estimating concentrations. Both 
approaches were found to provide acceptable estimates of 
TN. The turbidity-based model generated slightly more 
accurate concentration estimates, and precision tests gave 
mixed results about the significance of differences in variance 
of the estimates and residuals. Although the results were not 
typically statistically separable, the turbidity-based approach 
appears to provide more desirable results than the streamflow-
based approach. The finding that neither approach yielded 
appreciably better estimates of TN follows the understanding 
that TN occurs mostly as nitrogen in the dissolved form; thus, 
neither turbidity nor streamflow are measures of TN that may 
be influenced by either predictor.

Improvements in the concentration estimates were shown 
to translate into similar improvements in load estimates. 
Monthly and annual suspended-sediment loads estimated for 
the James River at Cartersville monitoring station were shown 



References    35

to be more precise when estimated using the turbidity-based 
approach, with an average monthly coefficient of variation of 
12 percent compared with the average monthly coefficient of 
variation of 38 percent for the streamflow-based approach. The 
demonstrated improvements reveal the desirable characteris-
tics of turbidity-based estimations; however, the streamflow-
based approach remains a viable practical methodology.

Results of this effort demonstrate that use of continuous 
water-quality data and turbidity-based regression models to 
estimate SSC and nutrients is viable for use in tributaries to 
the bay. Furthermore, this investigation identified advantages 
of using the turbidity-based methodology relative to the 
currently applied streamflow-based approach. The advantages 
are that

1.	 The use of continuously monitored water-quality 
data coupled with turbidity-based regression models 
permits generation of a dense time-series dataset of 
accurate SSC and nutrient estimations, and

2.	 The precision of turbidity-based SSC and nutrient 
estimates, and consequently loads calculated from 
those estimates, is often significantly greater than 
the precision of those values estimated using the 
streamflow-based approach.

Although the turbidity-based approach has been shown 
to provide a more effective means for estimating constituent 
concentrations and loads, the approach requires further 
development to take full advantage of the improved precision 
in load estimates. Currently available statistical methods and 
load-calculation tools do not permit the use of response vari-
able transformations other than natural logarithm because the 
tools to calculate estimates of the variance of the load have not 
been developed for other transformations. With the develop-
ment of such statistical procedures and software to apply these 
procedures, reductions in the uncertainty of load estimations 
are expected to be greater than the reductions observed in  
this investigation. 

In conclusion, the model based on continuous turbidity 
data has been found to be capable of providing more precise 
estimates of sediment and nutrient concentrations and loads 
for the Chesapeake Bay tributaries than a model based on 
continuous streamflow data. These findings are important to 
many groups, including scientists, resource managers, policy 
makers, and the general public because application of this new 
methodology could promote an enhanced understanding of 
trends and transport processes. 
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