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Figure 20. Comparison of meausured and estimated suspended sediment loads in 08070200 East Fork San
Jacinto River near New Caney, Tex, 2006(a) and 2007(b).
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e 18. Comparison of meausured and estimated total organic carbon loads in 08068500 Spring Creek 
Spring, Tex, 2006(a) and 2007(b).
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Abstract
In December 2005, the U.S. Geological Survey in 

cooperation with the City of Houston, Texas, began collect-
ing discrete water-quality samples for nutrients, total organic 
carbon, bacteria (total coliform and Escherichia coli), atra-
zine, and suspended sediment at two U.S. Geological Survey 
streamflow-gaging stations upstream from Lake Houston 
near Houston (08068500 Spring Creek near Spring, Texas, 
and 08070200 East Fork San Jacinto River near New Caney, 
Texas). The data from the discrete water-quality samples 
collected during 2005–07, in conjunction with monitored 
real-time data already being collected—physical proper-
ties (specific conductance, pH, water temperature, turbidity, 
and dissolved oxygen), streamflow, and rainfall—were used 
to develop regression models for predicting water-quality 
constituent concentrations for inflows to Lake Houston. 
Rainfall data were obtained from a rain gage monitored by 
Harris County Homeland Security and Emergency Manage-
ment and colocated with the Spring Creek station. The leaps 
and bounds algorithm was used to find the best subsets of 
possible regression models (minimum residual sum of squares 
for a given number of variables). The potential explanatory or 
predictive variables included discharge (streamflow), specific 
conductance, pH, water temperature, turbidity, dissolved 
oxygen, rainfall, and time (to account for seasonal variations 
inherent in some water-quality data). The response variables 
at each site were nitrite plus nitrate nitrogen, total phosphorus, 
organic carbon, Escherichia coli, atrazine, and suspended 
sediment. The explanatory variables provide easily measured 
quantities as a means to estimate concentrations of the various 
constituents under investigation, with accompanying esti-
mates of measurement uncertainty. Each regression equation 
can be used to estimate concentrations of a given constituent 
in real time. In conjunction with estimated concentrations, 
constituent loads were estimated by multiplying the estimated 
concentration by the corresponding streamflow and applying 
the appropriate conversion factor. By computing loads from 
estimated constituent concentrations, a continuous record of 
estimated loads can be available for comparison to total maxi-
mum daily loads. The regression equations presented in this 
report are site specific to the Spring Creek and East Fork San 

Jacinto River streamflow-gaging stations; however, the meth-
ods that were developed and documented could be applied 
to other tributaries to Lake Houston for estimating real-time 
water-quality data for streams entering Lake Houston. 

Introduction
Houston, Texas (fig. 1), is the fourth largest city in the 

Nation, with an estimated population of about 5.4 million 
people in 2006 (Texas State Data Center, 2007). Histori-
cally, groundwater has been the major source of supply for 
the City of Houston. However, development of groundwater 
resources has contributed to water-level declines and land-
surface subsidence (Kasmarek and Strom, 2002; Kasmarek 
and Houston, 2008). In 2008, Lake Houston supplied about 
20 percent of the total source-water supply for the City of 
Houston (Dannelle Belhateche, City of Houston Public Works 
and Engineering Department, oral commun., 2008). However, 
as a result of regulations to limit groundwater withdrawals to 
arrest land-surface subsidence, Lake Houston is expected to 
become the primary source of water for the city in the future; 
the overall goal is to increase the use of surface water to no 
less than 80 percent of the total demand by 2030 (Harris-
Galveston Subsidence District, 1999). Because Lake Hous-
ton is a major source of potable water and also a recreation 
resource for the Houston area, the possible effects of urban-
ization on the water quality of tributaries to Lake Houston are 
of interest to water managers. Two of the seven tributaries to 
Lake Houston, Spring Creek and East Fork San Jacinto River 
(fig. 1), are the focus of this report.

In compliance with the Federal Clean Water Act, the 
Texas Commission on Environmental Quality compiles an 
inventory of water bodies that are either impaired (do not 
meet applicable water-quality standards) or threatened (are 
not expected to meet standards in the future) (Texas Com-
mission on Environmental Quality, 2008). Lake Houston 
(segment 1002) first appeared in 2006 and again in 2008 on 
the State of Texas list of impaired or threatened water bodies 
(known as the 303[d] list) for bacteria. All of Spring Creek 
(segment 1008) has been listed for bacteria since 1996, and 
one segment of Spring Creek (1008_02) has been listed for 
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Figure 1.  Lake Houston watershed and tributary subwatersheds and location of U.S. Geological Survey streamflow-gaging stations 
08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas.

LAKE
HOUSTON

CYPRESS CREEK

SPRING CREEK

WEST FORK
SAN JACINTO RIVER

CANEY
CREEK

PEACH
CREEK

EAST FORK
SAN JACINTO

RIVER 

LUCE
BAYOU

TEXAS
Lake Houston

watershed

      LAKE
HOUSTON

LAKE
 CONROE

WALLER

GRIMES

WALKER

MONTGOMERY

HARRIS

SAN JACINTO

LIBERTY

0 20 MILES10

EXPLANATION

Subbasin boundary

Subwatershed boundary

U.S. Geological Survey
streamflow-gaging station
and number

08068500

Base from Houston-Galveston Area Council, 2004
Lake Houston watershed, 1:602,933
Universal Transverse Mercator projection, Zone 15

95°30'

95°00'

30°00'

30°30'

08068500 08070200

Houston

Location of study area and Houston, Texas

Study area

WESTERN
SUBBASIN

EASTERN
SUBBASIN



Introduction    3

depressed dissolved oxygen concentrations (not conducive to 
healthy ecosystems) since 1996. The East Fork San Jacinto 
River (segment 1003) also first appeared on the 303(d) list in 
2006 for bacteria and is still listed at present (2009).

This report was done as a part of the Lake Houston Proj-
ect, a cooperative project between the U.S. Geological Survey 
(USGS) and the City of Houston to monitor water quality in 
Lake Houston and its watershed. Watershed water-quality 
monitoring began in December 2005 and is ongoing in 2009; 
ongoing in-lake water-quality monitoring began in April 2006. 
Continuous, real-time monitoring of streamflow and water-
quality properties (specific conductance, pH, water tempera-
ture, turbidity, and dissolved oxygen) in Spring Creek and East 
Fork San Jacinto River is done to alert drinking-water man-
agers to potential changes in quality of water entering Lake 
Houston. The continuously monitored streamflow and water-
quality properties, in conjunction with regression models 
using those data as surrogates for selected constituents (nitrite 
plus nitrate nitrogen, total phosphorus, total organic carbon, 
Escherichia coli [E. coli], atrazine, and suspended sediment) 
can be used to estimate concentrations for constituents that are 
lacking a continuous record; then the estimated concentrations 
can be used to compute estimated constituent loads. With near 
real-time knowledge of water quality of the tributaries, water 
managers will be able to identify potential effects of tributary 
inflows on the water quality of Lake Houston before they hap-
pen and to adjust drinking-water plant operations accordingly. 
In addition, over time the results of tributary water-quality 
monitoring will contribute to the understanding of watershed 
influences on Lake Houston and the effects of those influ-
ences on Lake Houston as a drinking-water and recreational 
resource.

Purpose and Scope

The purpose of this report is to document regression 
models developed to estimate real-time concentrations of 
nitrite plus nitrate, total phosphorus, total organic carbon, 
E. coli, atrazine, and suspended sediment in two tributaries 
to Lake Houston, Spring Creek and East Fork San Jacinto 
River. The regression models were developed using real-
time, continuously measured streamflow and water-quality 
properties (specific conductance, pH, water temperature, 
turbidity, and dissolved oxygen) as well as real-time and 
discrete water-quality samples analyzed for nitrite plus nitrate, 
total phosphorus, total organic carbon, E. coli, atrazine, and 
suspended sediment. Rainfall data and time were considered 
as additional explanatory variables in the regression models. 
The process used to develop and evaluate numerous possible 
regression models to obtain a best-fit regression model for 
each water-quality constituent (using significant water-quality 
properties as explanatory variables) for each site is explained. 
The data were collected at two USGS streamflow-gaging sta-
tions, 08068500 Spring Creek near Spring, Tex. (hereinafter, 
Spring Creek site), and 08070200 East Fork San Jacinto River 
near New Caney, Tex. (hereinafter, East Fork San Jacinto 

Table 1.  Subwatershed drainage areas for tributaries to Lake 
Houston, near Houston, Texas (modified from Sneck-Fahrer and 
others, 2005).

Subwatershed
Drainage area  
(square miles)

Western subbasin

West Fork San Jacinto River 998

Spring Creek1 453

Cypress Creek 305

Eastern subbasin

East Fork San Jacinto River1 404

Peach Creek 151

Caney Creek 222

Luce Bayou 210
1 Subwatershed for which regression analysis was used to develop 

predictive equations in this report.

site). Although atrazine samples were collected at each site, 
a sufficient number of uncensored atrazine concentrations to 
construct a regression model were available only at the Spring 
Creek site. The best-fit regression models for each constituent 
are presented for each station. Lastly, estimated constituent 
loads for 2006 and 2007 computed from concentrations esti-
mated using the best-fit regression models are presented and 
compared to loads computed from concentrations measured 
in discrete water-quality samples. 

Description of Study Area

Lake Houston is about 25 miles northeast of Houston, 
Tex. The watershed of Lake Houston comprises the subwater-
sheds of seven tributaries and the area immediately adjacent 
to the lake in parts of seven counties (fig. 1), including large 
areas of densely populated Harris and Montgomery Counties. 
Sneck-Fahrer and others (2005) divided the Lake Houston 
watershed into eastern and western subbasins, primarily on 
the basis of relative amounts of development, with the eastern 
subbasin being the less developed. The western subbasin 
encompasses three tributary subwatersheds and the eastern 
subbasin encompasses four tributary subwatersheds (table 
1). The study area of this report comprises one subwatershed 
from each subbasin, Spring Creek in the western subbasin and 
East Fork San Jacinto River in the eastern subbasin. 

The Spring Creek subwatershed in the western subbasin 
is the second most densely populated of the seven Lake Hous-
ton subwatersheds, with a population density in 2000 of about 
390 people per square mile (U.S. Census Bureau, 2000). 
Urban and agricultural land together account for 41 percent  
of the 453 square miles of the subwatershed (Multi-Resolu-
tion Land Characteristics Consortium, 2003), more than  



4    Regression Models to Estimate Real-Time Concentrations of Selected Constituents in Two Tributaries to Lake Houston

twice the percentage of developed and cultivated land in the 
East Fork San Jacinto River subwatershed. The predominant 
land-use classification in the Spring Creek subwatershed is 
forest (31 percent). Wetland and rangeland account for 10 and 
16 percent, respectively, of the Spring Creek subwatershed.

The East Fork San Jacinto River subwatershed in the 
eastern subbasin is the least densely populated of the seven 
subwatersheds that drain to Lake Houston, with a popula-
tion density in 2000 of about 80 people per square mile (U.S. 
Census Bureau, 2000). Urban and agricultural land together 
account for 18 percent of the 404 square miles of the subwa-
tershed (Multi-Resolution Land Characteristics Consortium, 
2003). As in the Spring Creek subwatershed, the predomi-
nant land-use classification in the subwatershed is forest  
(47 percent), followed by wetland (19 percent) and rangeland 
(15 percent). 

The climate in the study area is classified as humid 
subtropical (Texas State Climatologist, 2008), characterized 
by cool, temperate winters and long, hot summers and by 
high humidity. During 2005–07, annual rainfall ranged from 
41.2 to 65.5 inches at Intercontinental Airport, Houston, Tex. 
(National Oceanic and Atmospheric Administration, 2008). 
Rainfall in 2005 was about 6.6 inches below normal (1971–
2000 average of 47.8 inches) while 2006 and 2007 were wetter 
than normal; 2007 was the sixth wettest year on record for the 
Houston area (65.5 inches).

Previous Investigations

Previous water-quality information for the study area 
is summarized in Sneck-Fahrer and others (2005). Sneck-
Fahrer and others (2005) assessed relative contributions to 
the water quality of Lake Houston from the more-developed 
western subbasins and the less-developed eastern subbasins 
using analyses of water samples from Cypress Creek (western 
subbasin) and East Fork San Jacinto River (eastern subbasin). 
Constituent yields allowed direct comparison of loads from 
Cypress Creek and East Fork San Jacinto River. In Cypress 
Creek, storm yields of nitrite plus nitrate nitrogen for high 
flows ranged from 8 to 45 pounds per square mile per day. 
In East Fork San Jacinto River, the maximum storm yield of 
nitrite plus nitrate nitrogen for high flows was 1.47 pounds  
per square mile per day. At low flows, the median daily yield 
of dissolved phosphorus from Cypress Creek was 84 times 
larger than the median daily yield from East Fork San Jacinto 
River; at high flows, it was 16 times larger. At high flows, the 
maximum daily yield of atrazine from Cypress Creek was  
460 times larger than the maximum daily yield from East Fork 
San Jacinto River.

Christensen and others (2000) developed regression equa-
tions to estimate constituent concentrations and loads for the 
Little Arkansas River in south-central Kansas. Ryberg (2006) 
also used continuous water-quality monitoring and regression 
analyses to estimate constituent loads in the Red River of the 
North in Fargo, N. Dak. The work by Christensen and others 
(2000) and Ryberg (2006) served as a guide for developing 

similar methods to suit the hydrologic setting of the study area 
for this report.

Methods
This section describes how the data for this study were 

collected and analyzed and explains the methodology used 
to develop the regression equations. The R environment for 
statistical computing (R Development Core Team, 2006) was 
used to implement all multiple regression methods and associ-
ated diagnostic tests of multiple regression results described 
in this report.

Streamflow Measurements

Streamflow is the volume of water passing an established 
reference point in a stream at a given time. Methods used to 
determine streamflow (discharge) are described in Buchanan 
and Somers (1969). Streamflow measurements during the 
course of the study were made about five times per year at 
the Spring Creek site and about five times per year at the East 
Fork San Jacinto site. Stage, or gage height, was measured 
every 15 minutes using submersible pressure transducers to 
the nearest 0.01 foot at the Spring Creek and East Fork San 
Jacinto sites. The data were electronically recorded and trans-
mitted by satellite to a downlink site and then to the USGS 
Texas Water Science Center in Austin, Tex. A stage-discharge 
relation was developed on the basis of streamflow measure-
ments and the stage of the stream at the time of measurement 
(Kennedy, 1984). These unique relations were used to com-
pute a continuous record of streamflow (Kennedy, 1983) from 
the stage record at each site. Instantaneous stage and stream-
flow values are stored in the USGS National Water Informa-
tion System (NWIS) database (U.S. Geological Survey, 2009).

Continuous Water-Quality Monitoring

Continuous monitoring of four physical properties (spe-
cific conductance, pH, water temperature, and dissolved oxy-
gen) began at the Spring Creek site in November 1999 using a 
YSI Environmental 600XL Sonde. In November 2005, a YSI 
Environmental 6600 Sonde was installed at the Spring Creek 
site to include turbidity. Continuous monitoring of specific 
conductance, pH, water temperature, turbidity, and dissolved 
oxygen began at the East Fork San Jacinto site in November 
2005 using a YSI Environmental 6600 Sonde (monitor). Each 
of the five sensors on the sondes was calibrated as described 
in “National Field Manual for the Collection of Water-Quality 
Data” (U.S. Geological Survey, variously dated); the con-
tinuous monitor and record were maintained as outlined in 
Wagner and others (2006).

The Spring Creek and East Fork San Jacinto sites use 
a swinging well design to monitor real-time water-quality 
properties. Swinging wells are constructed of schedule 80 
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polyvinyl chloride pipe with holes in the lower 3 feet, allow-
ing water to pass through wherever the sonde is located. Each 
monitor is located near the centroid of flow in each stream in 
a swinging well. The data from each sonde were electroni-
cally recorded and transmitted by satellite to a downlink site 
and then to the USGS Texas Water Science Center in Austin. 
Specific conductance, pH, water temperature, turbidity,  
and dissolved oxygen data are stored in the USGS NWIS 
database in 15-minute intervals. The Spring Creek and East 
Fork San Jacinto sites are still monitoring real-time water-
quality properties at the present (2009).

Discrete Water-Quality Sample Collection, 
Analysis, and Results

Discrete water-quality samples were manually collected 
at each sampling site. Thirty-nine samples were collected at 
the Spring Creek site and 38 samples were collected at the 
East Fork San Jacinto site. Samples were analyzed for nutri-
ents, total organic carbon, bacteria, atrazine, and suspended 
sediment.

Sample Design and Collection
Hydrologic conditions in the Spring Creek and East Fork 

San Jacinto River watersheds vary and might affect chemical 
constituent concentrations, so discrete water-quality samples 
were collected over a wide range of streamflow conditions 
(fig. 2). Discrete water-quality samples for the first year 
(December 2005–November 2006) of this study were col-
lected about every 2 weeks to observe seasonal patterns in 
water quality. Samples at these fixed-frequency sample times 
were collected as scheduled without regard to hydrologic 
condition, such as rising, falling, or stable streamflows.  
During storms or periods of high flow, unscheduled samples 
were also periodically collected during the first year of the 
study. Discrete water-quality samples for the second year 
(December 2006–December 2007) of the study were collected 
once a month. As in the first year of the study, stormwater-
runoff samples for the second year were collected whenever 
possible. 

Discrete water-quality samples were collected either by 
wading, when accessible, or from bridges during higher flows. 
All samples were collected and processed as outlined in the 
USGS “National Field Manual for the Collection of Water-
Quality Data” (U.S. Geological Survey, variously dated). 
Depth-integrated samples were collected, using a Teflon  
bottle and nozzle, either by multiple verticals when stream 
velocities were less than about 1.5 feet per second or by 
the flow-weighted, equal-width increment method when 
stream velocities were greater than about 1.5 feet per second. 
Samples from each vertical were combined in a Teflon churn, 
dispensed into appropriate sample containers, and shipped at  
4 degrees Celsius (°C) by overnight courier to appropriate 
laboratories. Samples for bacteria analysis were collected 

directly from the centroid of flow in sterile, autoclaved 
bottles.

Sample Analysis
Samples collected and analyzed for nutrients and total 

organic carbon were analyzed by the USGS National Water 
Quality Laboratory, Denver, Colo., using published meth-
ods. Methods for nutrient analysis are documented in Fish-
man (1993), U.S. Environmental Protection Agency (1993; 
method 365.1), and Patton and Truitt (2000). Total organic 
carbon analysis is documented in Wershaw and others (1987). 
Suspended-sediment samples were analyzed by the USGS 
Sediment Laboratory, Baton Rouge, La., using procedures 
described in Guy (1969) and Mathes and others (1992). 
Atrazine samples were analyzed by the USGS Organic 
Geochemistry Research Laboratory, Lawrence, Kans., using 
the Enzyme-Linked Immunosorbent Assay (ELISA) method 
documented in Aga and Thurman (1997). E. coli and total 
coliform bacteria were analyzed at the Houston office of the 
USGS Texas Water Science Center, using the defined sub-
strate method documented in American Public Health Asso-
ciation and others (2005) and were reported as most probable 
number per 100 milliliters (MPN/100 mL) with confidence 
intervals. 

Summary statistics of the discrete water-quality samples 
are summarized in table 2. The data for the Spring Creek and 
East Fork San Jacinto sites are stored in the USGS NWIS 
database and can be accessed online at http://nwis.waterdata.
usgs.gov/tx/nwis/qwdata?site_no=08068500 and http://nwis.
waterdata.usgs.gov/tx/nwis/qwdata?site_no=08070200, 
respectively.

Quality Control
Quality-control (QC) samples were collected as 

described in “National Field Manual for the Collection of 
Water-Quality Data” (U.S. Geological Survey, variously 
dated) and analyzed by the same laboratories and methods 
as the environmental samples. QC samples include equip-
ment blanks (two), field blanks (five), and split replicate 
samples (nutrients and total organic carbon [six], bacteria 
[17], atrazine and suspended sediment [seven]). QC samples 
were collected to evaluate any contamination, as well as bias 
and variability of the water chemistry data, that might have 
resulted from sample collection, processing, transportation, 
and laboratory analysis. QC results are listed in table 3.

Equipment blanks were collected annually in a con-
trolled environment to determine if the cleaning procedures 
for sample containers and the equipment for sample col-
lection and sample processing were sufficient to produce 
contaminant-free samples. Orthophosphate, detected in the 
equipment blank in 2006 at less than the laboratory reporting 
level (LRL), was reported as estimated (Childress and others, 
1999). The USGS uses two reporting conventions for the ana-
lytical data from the National Water Quality Laboratory, the 
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Figure 2.  Flow duration curve and corresponding discrete water-quality samples, (A) Spring Creek near Spring, Texas, and (B) East 
Fork San Jacinto River near New Caney, Texas.

FLOW-DURATION CURVE OF DAILY MEAN STREAMFLOW, OCTOBER 1998–SEPTEMBER 2008
CONCURRENT STREAMFLOW WITH WATER-QUALITY SAMPLE, DECEMBER 2005–DECEMBER 2007
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Table 3.  Results of quality-control samples collected at two tributaries to Lake Houston near Houston, Texas, 2005–07.

[Environ., Environmental; --, not analyzed; <, less than laboratory reporting level; E, estimated; *, value reviewed and rejected; >, greater than]

U.S. Geological  
Survey station 

name
Station number

Sample  
date

Sample 
time

Sample  
type

Ammonia  
plus organic 

nitrogen,  
water, 
filtered  

(milligrams 
per liter as 
nitrogen)

Ammonia 
plus organic 

nitrogen, 
water,  

unfiltered  
(milligrams 
per liter as 
nitrogen)

Ammonia, 
water, 
filtered  

(milligrams 
per liter as 
nitrogen)

Nitrite plus 
nitrate, wa-
ter, filtered  
(milligrams 
per liter as 
nitrogen)

Nitrite,  
water, 
filtered   

(milligrams 
per liter as 
nitrogen)

Orthophos-
phate, water, 

filtered  
(milligrams  
per liter as  

phosphorus)

Spring Creek near 
Spring, Tex.

08068500 12/1/2005 1330 Environ. 0.85 1.3 0.08 6.87 0.028 1.56

12/1/2005 1331 Replicate -- -- -- -- -- --

2/7/2006 1400 Environ. .75 1.1 .06 4.52 .02 .95

2/7/2006 1401 Replicate -- -- -- -- -- --

2/21/2006 1400 Environ. 1.1 1.4 .39 4.01 .054 .91

2/21/2006 1401 Replicate 1.2 1.4 .38 4.04 .054 .91

5/16/2006 1115 Environ. .78 1.8 <.04 1.33 .069 .63

5/16/2006 1116 Replicate .78 1.9 <.04 1.32 .07 .64

6/20/2006 1000 Environ. .86 1.5 .035 .35 .034 .197

6/20/2006 1001 Replicate -- -- -- -- -- --

6/28/2006 845 Blank .12 <.10 .015 <.06 <.002 <.006

6/28/2006 930 Environ. 1 1.2 .088 4.66 .028 1.01

7/12/2006 1300 Environ. .83 1.1 .058 3.36 .057 .719

7/12/2006 1346 Replicate -- -- -- -- -- --

8/23/2006 1320 Blank E.07 <.10 <.010 <.06 <.002 <.006

8/23/2006 1345 Environ. .77 1.8 <.010 2.12 .021 .738

9/20/2006 1230 Environ. 1.1 1.5 .166 2.01 .101 .891

9/20/2006 1231 Replicate 1.1 1.5 .17 2.02 .101 .901

8/15/2007 1420 Environ. .64 .73 .055 3.56 .053 .735

8/15/2007 1421 Replicate -- -- -- -- -- --

East Fork San 
Jacinto 
River near New 
Caney, Tex.

08070200 12/1/2005 1020 Environ. .14 .23 <.04 .1 <.008 .03

12/1/2005 1021 Replicate -- -- -- -- -- --

12/21/2005 930 Blank E.06 <.10 <.04 <.06 <.008 <.02

12/21/2005 1030 Environ. .45 .38 <.04 .07 <.008 <.02

3/7/2006 1130 Environ. .46 .44 <.04 .07 <.008 E.01

3/7/2006 1131 Replicate -- -- -- -- -- --

4/4/2006 1100 Environ. .74 .8 .05 .17 E.006 .02

4/4/2006 1101 Replicate .65 .8 .05 .17 E.007 .02

7/25/2006 945 Environ. .35 .47 .027 .51 .007 .059

7/25/2006 946 Replicate -- -- -- -- -- --

8/8/2006 1000 Environ. .38 .39 .023 .22 .002 .034

8/8/2006 1001 Replicate .42 .39 .022 .23 .003 .032

9/6/2006 1100 Environ. .36 .27 .025 .08 E.001 .024

9/6/2006 1130 Blank .14 <.10 E.009 <.06 <.002 <.006

10/4/2006 945 Environ. .22 .3 E.016 .15 <.002 .047

10/4/2006 946 Replicate -- -- -- -- -- --

10/18/2006 1330 Environ. .65 .98 <.020 E.05 .003 .013

10/18/2006 1331 Replicate -- -- -- -- -- --

1/15/2007 1340 Environ. .5 .76 .038 .09 .003 .021

1/15/2007 1341 Replicate .52 .78 .035 .09 .003 .019

5/24/2007 1038 Environ. -- -- -- -- -- --

5/24/2007 1039 Replicate -- -- -- -- -- --

8/15/2007 1059 Blank .35 <.10 .031 <.06 E.001 <.006

8/15/2007 1132 Environ. * .33 <.020 .07 .004 .015

Equipment blank 08070200 8/22/2006 1330 Blank <.10 <.10 <.010 <.06 <.002 E.003

Equipment blank 301056095265000 11/28/2007 1358 Blank <.14 <.14 <.020 <.04 <.002 <.006

Equipment blank 301056095265000 11/28/2007 1359 Blank -- -- -- -- -- --
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Table 3.  Results of quality-control samples collected at two tributaries to Lake Houston near Houston, Texas, 2005–07—Continued.

U.S. Geological 
Survey station 

name

Station  
number

Sample 
date

Sam-
ple 

time

Sample 
type

Phos-
phorus, 
water, 
filtered  

(mil-
ligrams 

per 
liter)

Phos-
phorus, 
water, 
unfil-
tered  
(mil-

ligrams 
per liter)

Organic 
carbon, 
water, 
unfil-
tered 
(mil-

ligrams 
per liter)

Escherichia 
coli, Colilert 
Quantitray 

method, 
water  

(most prob-
able number 

per 100 
milliliters)

Total coli-
form, Colilert 

Quantitray 
method, 
water  

(most prob-
able number 

per 100 
milliliters)

Atrazine, 
water, 

filtered, 
recoverable, 
immunoas-
say, unad-

justed  
(micrograms 

per liter)

Sus-
pended 

sediment  
(mil-

ligrams 
per liter)

Spring Creek 
near Spring, 
Tex.

08068500 12/1/2005 1330 Environ. 1.61 1.73 9.6 130 >2,400 0.3 36

12/1/2005 1331 Replicate -- -- -- 90 >2,400 -- --

2/7/2006 1400 Environ. .97 1.11 9.8 60 3,400 .95 33

2/7/2006 1401 Replicate -- -- -- 55 3,300 -- --

2/21/2006 1400 Environ. .87 1.05 9.6 37 6,100 1.51 24

2/21/2006 1401 Replicate .86 1.02 9.3 27 6,500 1.34 23

5/16/2006 1115 Environ. .66 .87 13.4 490 110,000 2.56 60

5/16/2006 1116 Replicate .68 .85 15.3 690 98,000 2.68 61

6/20/2006 1000 Environ. .24 .44 17 8,000 410,000 1.45 547

6/20/2006 1001 Replicate -- -- -- 7,100 460,000 -- --

6/28/2006 845 Blank <.02 <.02 <.4 -- -- <.10 <1

6/28/2006 930 Environ. 1 1.25 8.9 43 >2,400 .62 31

7/12/2006 1300 Environ. .7 .89 9 120 41,000 .68 38

7/12/2006 1346 Replicate -- -- -- 190 69,000 -- --

8/23/2006 1320 Blank <.02 <.02 <.4 -- -- <.10 <1

8/23/2006 1345 Environ. .78 1 14.1 6,800 440,000 1.75 147

9/20/2006 1230 Environ. .94 1.1 13.1 270 82,000 1.73 56

9/20/2006 1231 Replicate .95 1.09 10.3 360 49,000 1.77 46

8/15/2007 1420 Environ. .75 .92 8.1 310 17,000 .18 42

8/15/2007 1421 Replicate -- -- -- 190 17,000 -- --

East Fork San 
Jacinto River 
near New 
Caney, Tex.

08070200 12/1/2005 1020 Environ. .039 .086 4 43 1,700 <.10 11

12/1/2005 1021 Replicate -- -- -- 34 1,700 -- --

12/21/2005 930 Blank E.002 <.004 <.4 <1 <1 <.10 1

12/21/2005 1030 Environ. .025 .058 7.7 130 2,000 .1 16

3/7/2006 1130 Environ. .025 .076 7.3 34 1,600 <.10 17

3/7/2006 1131 Replicate -- -- -- 34 1,700 -- --

4/4/2006 1100 Environ. .037 .09 14.2 43 5,200 .13 19

4/4/2006 1101 Replicate .041 .101 12.7 50 10,000 <.10 14

7/25/2006 945 Environ. .071 .158 7 93 9,200 <.10 6

7/25/2006 946 Replicate -- -- -- 84 12,000 -- --

8/8/2006 1000 Environ. .043 .111 5.5 120 8,100 <.10 12

8/8/2006 1001 Replicate .043 .111 6.1 150 6,900 <.10 13

9/6/2006 1100 Environ. .034 .113 4 26 13,000 <.10 6

9/6/2006 1130 Blank <.004 <.004 <.4 -- -- <.10 <1

10/4/2006 945 Environ. .056 .124 4.2 63 4,900 <.10 15

10/4/2006 946 Replicate -- -- -- 52 3,900 -- --

10/18/2006 1330 Environ. .036 .134 18.2 610 44,000 .12 125

10/18/2006 1331 Replicate -- -- -- 690 39,000 -- --

1/15/2007 1340 Environ. .029 .122 16.1 2,100 18,000 <.10 110

1/15/2007 1341 Replicate .028 .123 13.3 2,000 17,000 <.10 81

5/24/2007 1038 Environ. -- -- -- 250 10,000 <.10 39

5/24/2007 1039 Replicate -- -- -- 240 9,900 <.10 39

8/15/2007 1059 Blank <.006 <.008 1

8/15/2007 1132 Environ. .017 .081 6.5 71 15,000 <.10 27

Equipment blank 08070200 8/22/2006 1330 Blank <.02 <.02 <.4 <.10

Equipment blank 301056095265000 11/28/2007 1358 Blank <.006 E.006 -- -- -- -- 1

Equipment blank 301056095265000 11/28/2007 1359 Blank -- -- .9 -- -- <.10 --
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LRL and the long-term method detection level (LT-MDL). The 
LRL is two times the LT-MDL, and concentrations measured 
between the LRL and LT-MDL are reported as estimated con-
centrations (Childress and others, 1999). In 2007, total organic 
carbon was detected at 0.9 milligram per liter (mg/L) and most 
likely is attributed to the methanol used to clean the equip-
ment. Methanol is a known contaminant for organic carbon; 
when equipment is not adequately rinsed, residual methanol 
will result in detections in blank samples.

Field blanks were collected and processed at sampling 
sites prior to the collection of environmental samples. Con-
stituent concentrations in field blank samples mostly were 
less than the LRL except for dissolved ammonia plus organic 
nitrogen (filtered water in tables 2 and 3), which was detected 
in all five field blanks; two of the detections were estimated 
concentrations (less than the LRL). The concentration for the 
August 15, 2007, environmental sample at the East Fork San 
Jacinto site was rejected because the detected concentration 
of dissolved ammonia plus organic nitrogen in the field blank 
associated with this sample was higher than the reported con-
centration in the environmental sample.

Split replicate samples (referred to as replicate samples in 
this report) were collected during the study. Replicate samples 
are prepared by dividing a single volume of water into mul-
tiple samples to provide a measure of the variability of sample 
processing and analysis. Replicate samples were compared to 
the associated environmental samples by computing the rela-
tive percent difference (RPD) for each constituent. RPD was 
computed using the equation

	 RPD = |C
1
 – C

2
|/((C

1
 + C

2
)/2) x 100, 	 (1)

where 
	 C

1
	=	 concentration from environmental sample; and

	 C
2
	=	 concentration from replicate sample.

RPDs of 10 percent or less indicate good agreement between 
analytical results if the concentrations are sufficiently large 
compared to the LRL. The RPD exceeded 10 percent for five 
of the 48 sample pairs of nutrients, four of six for total organic 
carbon, two of seven for atrazine, and three of seven for 
suspended sediment. The RPD exceeded 10 percent primarily 
when constituent concentrations were at or near the LRL so 
that small variability in analysis caused large RPDs.

The 17 bacteriological replicate samples were analyzed in 
the same manner as the environmental samples. The accept-
able RPD for bacteriological replicate samples was set at 
30 percent. The Colilert method used for E. coli and total 
coliform allows the simultaneous detection of E. coli and 
total coliform and is reported as most probable number. Most 
probable number analyses result in a statistical estimate of the 
original number of cells in a known volume of water; results 
are reported with a 95-percent confidence interval and upper 
and lower confidence intervals (Stoeckel and others, 2005). 
The RPD exceeded 30 percent for eight of 34 bacteriological 
sample pairs. The confidence intervals for the eight replicate 

samples with RPDs exceeding 30 percent overlapped, indicat-
ing there were no statistically significant differences between 
replicate samples.

Regression Models to Estimate 
Concentrations

Development of Models

The R environment for statistical computing (R Develop-
ment Core Team, 2006) was used to develop the regression 
models for estimating real-time concentrations for selected 
water-quality constituents. Most of the regression methodolo-
gies used in this report are described in either Furnival and 
Wilson (1974) or Helsel and Hirsch (2002). Multiple linear 
regression analyses were done using the leaps and bounds 
algorithm devised by Furnival and Wilson (1974), an exhaus-
tive, all-subset method for selecting the preferred model for 
each constituent. The potential explanatory or predictive 
variables included discharge (streamflow), specific conduc-
tance, pH, water temperature, turbidity, dissolved oxygen, 
rainfall, and time. Rainfall data were obtained from a rain gage 
monitored by Harris County Homeland Security and Emer-
gency Management (2009) colocated with the Spring Creek 
site. Time was investigated as a possible explanatory variable 
to account for seasonal variations inherent in some concen-
trations. The explanatory variables provide easily measured 
quantities as a means to estimate concentrations of the various 
constituents under investigation with accompanying estimates 
of measurement uncertainty. Each regression equation can 
be used to estimate concentrations of a given constituent in 
real time on the basis of explanatory variables also measured 
in real time. Corresponding 90-percent prediction intervals 
can be computed to display the uncertainty associated with 
the estimate. In conjunction with estimated concentrations, 
constituent loads also can be estimated by multiplying the 
estimated concentration by the corresponding streamflow and 
applying the appropriate conversion factor.

Transformation
The development of multiple linear regression equations 

for concentration and load estimation is well documented  
in previous publications; for example, see Christensen and  
others (2000) and Ryberg (2006). Normally distributed 
response and explanatory variables with linear relations 
and constant variance are required for statistically valid 
multiple linear regression applications. Natural logarithmic 
transformations on the response and explanatory variables 
are commonly used to improve linearity and to compensate 
for non-normality (data that do not follow a bell-shaped 
continuous probability distribution centered on a mean) and 
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heteroscedasticity (non-constant variance about the regression 
line) in model residuals. However, various power transforma-
tions can sometimes improve regression models more than 
logarithmic transformations. The theory of power transforma-
tions is discussed in Neyman and Scott (1960), Box and Cox 
(1964), and Hoyle (1968). An evaluation of appropriate vari-
able transformations was made on all potential constituents, 
physical properties, rainfall, and time data. Exploratory data 
analyses that were done but not reported include scatter plots 
of all constituent concentrations in relation to each possible 
explanatory variable. The scatter plots assisted the authors 
in determining if transformations were necessary to increase 
linearity among response and explanatory variables to improve 
normality and reduce heteroscedasticity. In addition to scatter 
plots of concentrations in relation to time, boxplots of con-
centrations grouped by month were also prepared to evaluate 
possible seasonal variation. Two general methods were used 
to investigate transformations on the response and explanatory 
variables: inverse-response plots and Box-Cox procedures. 
Using the inverse-response plots and Box-Cox procedures 
three transformations were evaluated: transforming response 
and explanatory variables, transforming only the response 
variable, and transforming only the explanatory variables.

Box and Cox (1964) devised a maximum likelihood 
method for optimizing a transformation of a strictly positive 
response variable such that the residuals from the regression 
are as close to normally distributed as possible. The Box-Cox 
procedure is best summarized by a graph with the potential 
powers (power estimate) on the horizontal axis and values of 
the log-likelihood function on the vertical axis, along with 
a 95-percent confidence interval around the power estimate. 
The global maximum likelihood estimate is the point that 
maximizes the curve of the log-likelihood function. Standard 
likelihood theory can be used to derive the confidence interval 
(Weisberg, 2005). 

Generally, transformations are necessary for the explana-
tory variables as well as the response variable. A multivariate 
extension of the Box-Cox procedure was proposed by Velilla 
(1993) which transforms explanatory variables toward joint 
normality. Once the explanatory variables have been trans-
formed and are approximately linearly related, the Box-Cox 
transformation procedure is then used on the response vari-
able. Inverse-response plots provide an additional method 
for optimizing transformations for the response variable. The 
inverse-response plots are created by plotting the observed 
response values on the horizontal axis and fitted response 
values on the vertical axis. Usually the explanatory variables 
must be transformed first to achieve linearity. After verify-
ing that explanatory variables were approximately linearly 
related, an appropriate transformation of the response variable 
was investigated. Natural-base logarithmic transformations 
were used. The theory of inverse-response plots for estimating 
response transformations can be found in Cook and Weisberg 
(1994), based on results of Li and Duan (1989).

The alr3, car, and MASS packages of R provide func-
tions that implement the inverse-response plots and Box-Cox  

procedures (R Development Core Team, 2006) used to deter-
mine the appropriate transformations. Application of these 
packages is discussed in Fox (2002), Faraway (2005), and 
Weisberg (2005). Once the transformation or transformations 
for the response and explanatory variables are selected, the 
analysis continues with the selection of explanatory variables 
that produce a preferable regression model; preferable is 
ascertained as the best-fit model through numerous statistical 
techniques described in the following sections. 

Selection of Variables for the Model

The goal of variable selection is to determine the “best” 
regression model, although when dealing with several inde-
pendent (predictive) variables simultaneously in a regression 
analysis, it can be difficult to determine the best model choice; 
often there are several reasonable candidates from which to 
choose (Kleinbaum and Kupper, 1978). A thorough process 
would involve investigating all possible regression models, 
although this often is a formidable task. With k variables, there 
are 2k possible regression models. Standard stepwise proce-
dures, including forward selection and backward elimination, 
only examine k(k – 1)/2 of the 2k possible subsets. Combining 
the forward and backward algorithms into a single stepwise 
method will inspect more subsets than either method alone, 
but still will not examine all 2k possible models. Furnival and 
Wilson (1974) established algorithms that when joined form a 
simple leap and bound technique to find the best subsets of all 
2k possible models, without actually examining all subsets. In 
this case, “best” describes a model as having a minimum resid-
ual sum of squares (RSS), also called the error sum of squares 
(SSE), for a given number of variables. This method will 
obtain the n best regression models for each subset size. This 
exhaustive variable search technique to develop the best-fit 
regression models was accomplished using the “leaps” pack-
age, described in detail in Fox (2002) and Faraway (2005).

The coefficient of determination, R2, describes the 
proportion of the total sample variability in the response 
explained by the regression model. The coefficient will only 
increase as additional explanatory variables are added to the 
model, thus it might not be an appropriate criterion for deter-
mining the usefulness of a model that has numerous explana-
tory variables. The adjusted R2 statistic, denoted as adjusted 
R-squared, compensates for this by assessing a “penalty” 
for the number of explanatory variables in the model; add-
ing additional explanatory variables increases the value of 
adjusted R-squared only when the predictive capability of the 
model increases. Choosing a model with the highest adjusted 
R-squared value is equivalent to choosing a model with the 
lowest mean standard error (Helsel and Hirsch, 2002).

Evaluation of Candidate Regression Models

When the response and the predictive variables are  
normally distributed, three criteria-based statistics based on  
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likelihood theory can be used for evaluating regression 
models. The criteria-based statistics are Akaike’s informa-
tion criterion (AIC), corrected AIC (AIC

C
), and the Bayesian 

information criterion (BIC). AIC is designed to balance model 
complexity (the number of predictive variables) and goodness 
of fit (how well the model probabilities “fit” the observed fre-
quencies [Iman and Conover, 1983]) and is structured in such 
a way that models with smaller AIC values are identified as 
the models that fit the data the best. AIC is known for show-
ing preference or bias for over-fitted models because of the 
weak penalty for model complexity (Good, 2005). Over-fitted 
models are numerically unstable and have too many predictive 
variables; the objective in modeling is predictive capability 
not goodness of fit (Good, 2005). AIC

C
 was developed by 

Hurvich and Tsai (1989) and provides a bias-corrected ver-
sion of AIC when sample size is small or when the number 
of variables estimated is a moderate to large fraction of the 
sample size. Burnham and Anderson (2004) recommend using 
AIC

C
 unless n/K >40, where K = (k + 2), n is the sample size, 

and k is the number of variables in the model. In practice 
AIC

C
 should be used if possible, and AIC

C
 converges to AIC 

as n increases. Although similar to AIC, BIC (proposed by 
Schwarz [1978]) has a stronger penalty term and thus favors 
smaller models with fewer predictive variables. In conjunction 
with the criteria-based statistics, the prediction error sum of 
squares (PRESS) statistic provides an excellent and general 
measure of the quality of a particular regression equation. An 
equation that produces the least error when making new pre-
dictions is obtained by minimizing the PRESS statistic (Helsel 
and Hirsch, 2002). The PRESS statistic is an excellent statistic 
to use for model-comparison purposes because it can be used 
to compare nested (models in which the various factors are 
contained within one another in a specific hierarchical order) 
as well as non-nested models. Only when two models have 
different response units (different transformation powers of 
the response variable) is the PRESS invalid for model com-
parison. In the case of prediction based on PRESS, the value 
of PRESS for a given model can be used to create an R2-like 
statistic, denoted R

p
2, providing an indication of the relative 

predictive capability of the PRESS-based regression model. 
Conceptually one would expect PRESS-based regression 
models to explain a greater percentage of the variation (higher 
R

p
2) compared to the proportion of total sample variability 

explained by a regression model characterized by adjusted 
R-squared. For the purposes of this investigation, PRESS was 
given considerable weight in the final selection of regression 
models. In the case of model comparisons between different 
response transformations, various residual plots and marginal-
model plots (Weisberg, 2005) were used to identify preferable 
models. AIC, AIC

C
, BIC, adjusted R-squared, and R

p
2 were 

calculated for each model and used in conjunction with addi-
tional regression diagnostics, such as the Breusch-Pagan test, 
to help determine the best overall models. The Breusch-Pagan 
test tests a linear regression model to the residuals of the 
model and rejects the model if the excessive variance is based 
on extra explanatory variables (Hothorn and others, 2009).

Normality of Residuals
Another component of regression analysis is the assess-

ment residual normality. The student’s t-distribution, or 
t-distribution, is the name given to a family of distributions 
indexed by a variable called degrees of freedom (Iman and 
Conover, 1983). To satisfy the t-distribution normal-popu-
lation requirement for valid hypothesis tests, normality of 
the residuals is evaluated with a residual normality test. A 
powerful procedure for assessing the normality of residuals is 
the Shapiro-Wilk test (Helsel and Hirsch, 2002), in which the 
assumption of normality is rejected at an α level (p-value) of 
less than about .05. 

The Mann-Kendall nonparametric test for monotonic 
trends was used in testing the models that appeared to have 
seasonal patterns. The Mann-Kendall test on residuals is a 
hybrid procedure—parametric removal of effects of the exog-
enous variables, followed by a nonparametric test for trend 
(Helsel and Hirsch, 2002). The test determines if the concen-
trations or residuals used are independent of time.

Collinearity
Model selection methods require an investigation of col-

linearity between predictive variables. Collinearity refers to a 
linear relation among some or all of the predictive variables 
in a regression model. When there is collinearity, there is 
redundancy among predicative variables (Ott and Longnecker, 
2001). In addition, many of the predictive variables will have 
insignificant t-values in a full model, where a full model 
involves all variables of interest, indicating their addition to 
the model does not improve the model in a statistically signifi-
cant manner. Kleinbaum and Kupper (1978) note that partial 
F-tests make it possible to partition the regression sum of 
squares into three components and to determine if the addition 
of a given predictive variable improves the overall model, tak-
ing into account the contributions of other predictive variables 
already in the model. Partial F-tests should be used when 
many predictive variables have significant t-values and there 
is not high collinearity. Analysis of variance (ANOVA) tests 
use partial F-tests for comparison between nested models to 
determine if the additional variables provide a better explana-
tion of the variation in the response, despite the loss in degrees 
of freedom. This test is a good check on the significance of 
additional variables in a model, as it is based on different sta-
tistical criteria than stepwise procedures that use AIC and BIC 
to assign significance.

Variance inflation factors (VIF) are used to check for 
high collinearity between explanatory variables (Stine, 1995). 
Explanatory variables carrying similar information about the 
response have a high collinearity and, when such variables are 
all included in the model, give rise to increased variance in the 
estimation of the regression coefficients. A VIF represents the 
increase in variance because of correlation between predictive 
variables, where a minimum value of 1 occurs when no cor-
relation is present. Typically, VIF values greater than 10 are a 
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cause of concern and indicate that a poor estimate of the asso-
ciated regression coefficient has been produced by the model.

To further assist in model selection, PRESS and R
p

2 statis-
tics also were computed using the R environment for statisti-
cal computing. To ensure predictions from the model are as 
accurate as possible, residuals of the final (candidate) model 
must be normally distributed. To ensure this, the Shapiro-Wilk 
test was used, as well as visual inspection of residual plots. A 
comprehensive discussion regarding the selection of predic-
tive variables for multiple linear regression analyses using the 
R system are provided by Fox (2002), Faraway (2005), and 
Weisberg (2005). 

Graphical Analysis
Graphical analysis is a vital component of regression 

analysis; it facilitates visual inspection and verification of 
data patterns such as linearity and constant variance underly-
ing linear regression model theory. Residual plots are used to 
check if regression models “fit” the observed data. Patterns 
in residual plots can be used to indicate when the data fail the 
requirements of a normal distribution with constant variance, 
warranting further investigation and possible application of 
transformation techniques. Sometimes, residual plots will 
indicate heteroscedasticity even when the errors have constant 
variance. Residuals can be modified (standardized) to assist in 
the evaluation process. The standardized residual is the ratio of 
the residual to the residual standard error (Helsel and Hirsch, 
2002). Standardized residuals have a mean of 0 and a standard 
deviation of 1 (Iman and Conover, 1983). By using standard-
ized residuals, patterns in residual plots can be evaluated to 
indicate an incorrect model fit. When the explanatory variables 
are approximately linearly related—they follow a multivariate 
normal distribution—residual patterns provide direct informa-
tion on how the model has been miss-specified. In addition, 
plots of standardized residuals show how many estimated stan-
dard deviations any point is away from the fitted regression 
model. Studentized residuals also were used to aid in identify-
ing extreme outliers (Helsel and Hirsch, 2002). 

In addition to residual plots, a variety of other visual 
diagnostics are necessary before candidate models can be 
evaluated, including rigorous outlier tests. Testing for outliers 
is like performing n significance tests, one for each of the 
n values. To correct for multiple-comparison testing problems 
when investigating outliers, a Bonferroni correction was  
used. The Bonferroni correction (commonly referred to as 
a Bonferroni test) is a multiple-comparison correction used 
when several dependent or independent statistical tests are 
being performed simultaneously. The Bonferroni correction 
can be used to help identify outliers, and the R environment 
for statistical computing reports the Bonferroni p-value for the 
most extreme observation in a script referred to in R documen-
tation as the Bonferroni Outlier Test (R Development Core 
Team, 2006). To avoid a great deal of spurious positives, the 
alpha value needs to be lowered to account for the number of 
comparisons being performed (Ott and Longnecker, 2001). 

This means that for n tests, each with size α, the probability 
of falsely rejecting at least one value as an outlier is no  
greater than nα. So, a level of α/n is used for each test to keep 
the overall level no more than α. Implementing this tech-
nique is achieved by multiplying the p-value returned from a 
t-distribution based outlier test by the sample size (Weisberg, 
2005).

Data points with considerable influence on the fit of a 
regression model are called high leverage points (Rousseeuw 
and Leroy, 2003). A common rule used to quantify an accept-
able upper limit for the leverage and classify a point of high 
leverage is when a hat value is greater than 2(k + 1)/n, where 
n is the number of observations and k is the number of explan-
atory variables in the model. If a particular value is a high 
leverage point but also an outlier, it is deemed a bad leverage 
point, whereas good leverage points have high leverage but are 
not outliers (Møller and others, 2006). The distinction between 
good and bad leverage points is necessary and provides valu-
able information regarding the legitimacy of a data value. Bad 
leverage points should be examined and additional model 
investigation attempted before removal of the value is con-
sidered. Only when significant statistical evidence has been 
compiled or previous information of an error associated with 
the value is known, should the value be declared invalid and 
deleted from the analysis.

Added-variable plots, sometimes called partial regression 
plots, provide an additional graphical technique for identify-
ing influential points. Added-variable plots supplement formal 
testing procedures and provide the analyst with useful infor-
mation for developing an understanding of data properties 
without the need for complex data manipulations (Haining, 
1990). Effects of other explanatory variables on the response 
are removed, as discussed in Fox (2002) and Faraway (2005), 
so the marginal relation between a response and an explana-
tory variable can be directly and visually assessed. These plots 
are useful in identifying the influence and leverage of observa-
tions on each coefficient in the regression model.

Marginal-model plots provide a graphical method to 
assess how well a model fits data (Cook and Weisberg, 1997). 
In essence, marginal-model plots are graphical equivalents 
of goodness-of-fit tests. Generally, a nonparametric fit of the 
predicted concentrations based only on the model is compared 
to a nonparametric fit based only on the measured data. A 
nonparametric fit of the predicted concentrations is a distri-
bution-free method that extracts information from the data by 
comparing each value with all others (ranking the data) rather 
than by computing parameters (Helsel and Hirsch, 2002). In 
nonparametric regression models the structure of the relation 
between variables is treated nonparametrically, but there might 
be parametric assumptions about the distribution of model 
residuals. When there are multiple explanatory variables, 
graphs of LOWESS smooths (Helsel and Hirsch, 2002) for 
each variable are created for comparison. If the two nonpara-
metric estimates agree, then the data are said to be modeled 
correctly by the parametric model under investigation, as 
discussed in Weisberg (2005).
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Quantile-quantile plots (Q-Q plots), constructed to 
compare the measured and predicted datasets, provide infor-
mation on the relation between the two datasets. Q-Q plots 
(not shown) plot the quantiles of one dataset in relation to 
the quantiles of the other dataset. If the two datasets come 
from the same distribution, the quantile pairs will plot along a 
straight line (Helsel and Hirsch, 2002). These plots are useful 
to determine if data from the regression model are similar to 
the environmental data.

Retransformation Bias Correction
Procedures to develop regression equations for estimat-

ing and predicting water-quality constituents have advanced 
substantially over the last 10 years. For example, regression 
equations have been developed with a transformed response to 
fit the observation data better (Christensen and others, 2000). 
For water-quality modeling, transformed response variables 
provide an estimate for the concentration value based on 
instantaneous values of the explanatory variables. When the 
response is transformed to develop a best-fit model, it must 
be retransformed to obtain an estimate in the original units. 
Estimators that are unbiased in the transformed scale will be 
biased once the retransformation has been made to return the 
response to the original scale. Retransformation bias correc-
tions are made to remove bias; the form of the bias correction 
factor will depend on the transformation that was used.

The two response transformations most useful in this 
analysis were the natural logarithmic and the square-root 
transformations. The natural logarithmic transformation is 
useful for describing the relation between concentration and 
streamflow. Even with additional predictive variables, the 
concentration for many constituents is well modeled with 
systematic natural logarithmic transformation. A bias correc-
tion is necessary when using natural logarithms to transform 
the predictive variable if the retransformation yields a median 
estimate; median estimates tend to underestimate the actual 
arithmetic mean for water-quality data. Simply inverting a 
log-transformed response, called a rating curve estimator L

RC
, 

will return a biased low, inconsistent estimate of the arithmetic 
mean. Bias increases with the degree of scatter about the rat-
ing curve. Extensive research has been done to find estimators 
that return the expected value of a water-quality streamflow 
load estimate in real time if the response was log-transformed, 
for example Duan (1983), Crawford (1991), and Cohn (2005).

A minimum variance unbiased estimator (MVUE), L
MVUE

, 
derived by Finney (1941) adjusts for this bias and returns an 
efficient estimate of the mean. L

MVUE
 has the desirable prop-

erties of being unbiased and having a function of sufficient 
statistics with a minimum variance for its expectation. This 
estimator is the best choice when the log-normal model is 
correct and the residual errors are approximately normally dis-
tributed. Bradu and Mundlak (1970) derive an unbiased esti-
mator for the variance of the MVUE of the mean. Alternative 
expressions for the exact variance of the MVUE of the mean 
can be found in Mehran (1973). For an advanced theoretical 

discussion on the derivation and validity of these estimators, 
see Hoyle (1968), Likes (1980), and Cohn (2005). 

Correcting for the bias associated with the square-root 
transformation is straightforward. The MVUE of the mean and 
an expression for the exact variance of the MVUE of the mean 
are derived from and discussed in Bartlett (1936), Neyman and 
Scott (1960), and Stuart and others (1999). 

One method of representing the ability of a particular 
model to estimate constituent concentrations involves compar-
ing measured concentrations or values to the predicted concen-
trations or values obtained by using the regression equation on 
the model data and computing the RPD.

Discussion so far has focused on the parametric estima-
tors used in this study to correct the bias caused by retrans-
formation of the estimated water-quality properties. For 
example, Finney’s MVUE estimator requires the residuals to 
be normally distributed, an assumption not commonly met by 
water-quality data. Nonparametric estimators provided a use-
ful alternative to the retransformation methods. Duan (1983) 
derived a “smearing” estimator that only requires the residuals 
to be independent and homoscedastic (constant variance about 
the regression line). In the case of a base-10 logarithmic trans-
formation, the correction factor involved re-expressing the 
residuals in the original units and computing their mean. This 
“factor” was then multiplied by the geometric mean estimate 
derived when the model is directly inverted. The smearing 
estimator was generalized for use with other transformations, 
specifically the square-root transformation.

Analysis of Censored Data
To avoid false-positive quantification of a constituent, 

very low concentrations are censored and reported as a “less 
than” value by the laboratory (Mueller and Spahr, 2005). 
To compute summary statistics on constituents that contain 
censored data, three different methods were investigated based 
on specific criteria relating to the total number of observations 
and percentage of censored values. These include, but not 
discussed in depth in this report, the nonparametric Kaplan-
Meier (K-M) method, maximum likelihood estimation (MLE), 
and substitution of a value for the LRL. The mathematical 
theory underlying each method and the appropriate conditions 
for implementation are thoroughly discussed in “Nondetects 
and Data Analysis” (NADA) (Helsel, 2005). An R package is 
available, also called NADA, that contains numerous functions 
to handle censored data including the K-M method and MLE 
for computing summary statistics.

The K-M method, which does not depend on the distri-
butional shape of the data, is generally recommended for data 
with up to 50-percent censoring and a single LRL. This was 
the method used at East Fork San Jacinto for nitrite plus nitrate 
concentrations, because the constituent censored values met 
this criterion. More than 50 percent of the atrazine concentra-
tions at the East Fork San Jacinto site were less than the LRL 
and thus censored. Because of the large amount of censored 
atrazine data for the East Fork San Jacinto site, a regression 
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model to predict atrazine concentrations and loads could not 
be developed for this site.

For datasets that contain censored values with one or 
more LRLs, MLE provides a parametric procedure for com-
puting regression models and computing summary statistics 
such as mean and variance. MLE was used in cases where 
the constituents had multiple LRLs—for ammonia at both 
Spring Creek and East Fork San Jacinto sites and for nitrite 
and orthophosphate at the East Fork San Jacinto site. However, 
the use of MLE requires the data to approximate a normal 
distribution. MLE methods also provide poor estimates of the 
mean and variance when applied to small datasets (sample size 
less than 30) and should be used only on large datasets. Even 
though MLE was explored for the constituents listed above 
and models were developed, the models were not acceptable 
because of large errors. 

For datasets with left-censored observations such as the 
water-quality constituents evaluated in this study, concentra-
tions and values can be transposed to a right-censored format 
prior to the regression analysis. As a consequence, response 
variables will be modeled as if negative values are possible, 
biasing the response variables. However, this bias is overcome 
by applying a logarithmic transformation to the response 
variables. Many of the censored constituents evaluated in this 
study were skewed and have values spanning a few orders 
of magnitude; lognormal distribution and MLE regression 
assumptions (Helsel, 2005) were generally met.

The Spring Creek dataset contained one censored value 
(<0.10 microgram per liter [µg/L]) for atrazine. For this one 
data value, one-half the LRL was substituted for the data value 
in the development of the regression model. Although the sub-
stitution might result in a biased estimate of the trend slope, 
the presence of only a few nondetected values in a dataset (less 
than 5 percent) is not likely to affect the accuracy substantially 
(Helsel and Hirsch, 2002). Substitution for this single value 
did not induce a bias in the data and thus was considered an 
acceptable approach.

Best-Fit Models, Spring Creek

Regression models for Spring Creek were developed for 
all constituents (table 2) analyzed for the study. Models devel-
oped and evaluated for total ammonia plus organic nitrogen, 
dissolved ammonia plus organic nitrogen, ammonia nitrogen, 
nitrite nitrogen, orthophosphate phosphorous, dissolved phos-
phorous, and total coliform bacteria were rejected because 
of large errors associated with the models. Best-fit models 
developed for nitrite plus nitrate nitrogen, total phosphorous, 
organic carbon, E. coli bacteria, atrazine, and suspended sedi-
ment are described in this section. 

Nitrite plus Nitrate Nitrogen 

The significant explanatory variables in the best-fit model 
for estimating total nitrite plus nitrate at the Spring Creek site 

were specific conductance and pH. The Box-Cox procedure 
was used to transform response and explanatory variables 
simultaneously to approximate a normal distribution. A sum-
mary of the regression analysis is shown in figure 3.

Measured nitrite plus nitrate concentrations and estimated 
concentrations from the regression are shown in figure 3. 
Nearly identical fits in all marginal-model plots (not shown) 
concur with other regression model diagnostics and demon-
strate that measured data are well modeled by the explanatory 
variables. The marginal-model plots did not show evidence of 
heteroscedasticity in any of the variables. Increased variabil-
ity in the variable estimates caused by collinearity between 
explanatory variables in the model is almost negligible—all 
VIFs were no greater than 2.0. 

In the graph of model residuals and estimated concen-
trations from the regression (fig. 3), samples 33 and 39 are 
labeled as possible outliers. However, a Bonferroni test failed 
to reject either concentration as an outlier, so all 39 sampled 
concentrations were used to construct the model. No discern-
able patterns are evident in the graph, indicating no inad-
equacies between the model and observed data. Significant 
evidence of residual normality is given by the Q-Q plot (not 
shown) and a large p-value (.95) from the Shapiro-Wilk test 
statistic.

The comparatively high adjusted R-squared of .925 of  
the best-fit model indicates the explanatory variables specific 
conductance and pH account for a substantial amount of the 
variation in the measured nitrite plus nitrate concentration 
data. The R

P
2 value was .916, a further indication that the 

model has good predictive capabilities. The appropriateness  
of the model was corroborated by residual analysis and addi-
tional diagnostics. The associated residual standard error was 
0.091 mg/L (in log-transformed space), and the median RPD 
was only 4.00 percent.

Total Phosphorus
The statistically significant explanatory variables in the 

best-fit model for estimating total phosphorus at the Spring 
Creek site were specific conductance, water temperature, and 
turbidity—all logarithmically transformed using the Box-Cox 
procedure. An inverse-response plot using the transformed 
explanatory variables returned a minimum RSS with a square-
root transformation on the response. A summary of the regres-
sion analysis is shown in figure 4.

In the graph of measured and estimated total phosphorus 
concentrations (fig. 4), the estimated concentrations show a 
linear pattern. Samples 2 and 9, labeled on the graph, were 
collected on December 21, 2005, and April 21, 2006, respec-
tively. Investigation of sample 2 revealed it to have the lowest 
temperature, 10.9 °C, of all samples. Added-variable plots 
(not shown) helped illustrate this fact. The added-variable 
plots also show the deviation of sample 9 from the main 
cluster of samples for all explanatory variables. However, the 
sample was included in model construction because significant 
evidence for rejection as an outlier was not determined using 
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Figure 3.  Summary of regression analysis for nitrite plus nitrate nitrogen for 08068500 Spring Creek near Spring, Texas, 2005–07.

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

pH SC
Min. :6.850 Min. :147.0
1st Qu .:7.455 1st Qu .:264.0
Median :7.740 Median :357.0
Mean :7.812 Mean :366.8
3rd Qu .:8.070 3rd Qu .:447.5
Max. :9.080 Max. :671.0

Summary of Regression Analysis for the Constituent of:
Nitrite plus Nitrate (NO2 NO3)

SUMMARY STATISTICS FOR NO2NO3 , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.353 1.382 2.017 2.628 3.693 7.388

REGRESSION EQUATION
Call:
lm(formula = (NO2NO3)^(1/3) ~ pH + sqrt(SC))

Residuals:
Min 1Q Median 3Q Max

-0.186761 -0.054057 -0.007496 0.056360 0.219631

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.366935 0.210589 1.742 0.08997 .
pH -0.104028 0.030885 -3.368 0.00181 **
sqrt(SC) 0.092959 0.004629 20.082 < 2e-16 ***
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.09091 on 36 degrees of freedom
Multiple R-Squared: 0.9288 , Adjusted R-squared: 0.9249
F-statistic: 234.9 on 2 and 36 DF, p-value: < 2.2e-16

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 4.  Summary of regression analysis for total phosphorus for 08068500 Spring Creek near Spring, Texas, 2005–07.

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

SC Turb Temp
Min. :147.0 Min. : 11.40 Min. :10.92
1st Qu .:261.5 1st Qu.: 20.12 1st Qu .:19.43
Median :361.0 Median : 39.20 Median :24.11
Mean :368.6 Mean : 72.84 Mean :23.22
3rd Qu .:450.8 3rd Qu.: 93.00 3rd Qu .:27.20
Max. :671.0 Max. :303.00 Max. :31.26

Summary of Regression Analysis for the Constituent of:
Total Phosphorous (Phos)

SUMMARY STATISTICS FOR Phos , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.2630 0.5188 0.8635 0.8556 1.0370 1.8070

REGRESSION EQUATION
Call:
lm(formula = sqrt(Phos) ~ poly(log(SC), 2) + log(Turb) +

log(Temp))

Residuals:
Min 1Q Median 3Q Max

-0.12325 -0.04116 -0.01203 0.03820 0.19206

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.08056 0.16817 0.479 0.63507
poly(log(SC), 2)1 1.58539 0.11865 13.362 7.25e-15 ***
poly(log(SC), 2)2 0.41861 0.07394 5.662 2.62e-06 ***
log(Turb) 0.10842 0.02064 5.253 8.74e-06 ***
log(Temp) 0.12953 0.04670 2.773 0.00905 **
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.0735 on 33 degrees of freedom
Multiple R-Squared: 0.8949 , Adjusted R-squared: 0.8821
F-statistic: 70.21 on 4 and 33 DF, p-value: 1.142e-15

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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the Bonferroni outlier test in the R environment for statistical 
computing (R Development Core Team, 2006). 

Marginal-model plots indicate phosphorus concentration 
is strongly correlated with specific conductance. The rela-
tion of water temperature with phosphorus concentration was 
highly variable compared to other explanatory variables, also 
illustrated by marginal-model plots.

The adjusted R-squared for the best-fit regression model 
was .882, with a corresponding residual standard error of 
0.0735 mg/L (in log-transformed space) and a median RPD of 
4.45 percent. 

Results for the total phosphorus sample collected on 
January 26, 2006, were unavailable, leaving 38 of the 39 
samples to develop the model. The missing value from January 
26, 2006, was the only total phosphorus sample collected dur-
ing January. Based on graphical evidence, periodic variables 
that include data for January will likely improve predictive 
capabilities of the regression model. 

Organic Carbon
Explanatory variables in the best-fit model for estimating 

organic carbon concentrations at the Spring Creek site were 
specific conductance, turbidity, and sine and cosine terms for 
seasonal fluctuations, where Date represents the Julian day of 
the year as a fraction of the year, normalized between 0 and 1. 
A summary of the regression analysis is shown in figure 5.

The marginal-model plots (not shown) show nearly iden-
tical fits for all explanatory variables used in the final model, 
and no discernable patterns that might have been of concern 
were detected in the graph of model residuals and estimated 
concentrations. Three samples were identified as possible 
outliers (samples 7, 14, and 31; fig. 5), as those samples show 
slight disagreement to the best-fit model.

Associated with the best-fit model is an adjusted 
R-squared of .756, a residual standard error of 0.0184 mg/L 
(in log-transformed space), and a median RPD of 4.41 percent. 
Additionally, all VIFs are less than 3.0. Organic carbon con-
centrations varied seasonally; seasonality effects were visually 
evident in boxplots of concentrations grouped by month (not 
shown).

Three samples were not used in model development and 
are not shown in figure 5. Sample 28, collected on November 
28, 2006 (51.5 mg/L) and sample 35, collected on July 25, 
2007 (17.4 mg/L) were identified as statistically significant 
outliers and were not used in the development of the model. 
Additionally, sample 32, collected on April 24, 2007, became 
contaminated and could not be analyzed, leaving 36 of the 
39 samples to develop the model. Organic carbon concentra-
tions ranged from 7.62 to 21.0 mg/L (table 2), with a median 
concentration of 11.5 mg/L. 

Concentrations showed significant monotonic correlation 
(y generally increases or decreases as x increases) with stream-
flow, dissolved oxygen, specific conductance, and turbidity. 
Streamflow and turbidity exhibited positive correlation with 
concentrations, whereas specific conductance and dissolved 

oxygen exhibited negative correlation with concentrations. A 
similar, significant correlation between explanatory variables 
was observed. Also substantial intra-variable correlations 
between explanatory variables exist. The strong intra-variable 
relations between concentration and explanatory variables 
indicate additional samples (larger degrees of freedom in the 
regression) most likely will change significant explanatory 
variables. 

Escherichia Coli
The statistically significant explanatory variables 

included in the best-fit regression model for estimating  
E. coli were streamflow and rain. A binary variable was used 
to indicate when collection times either coincided with or 
were within 24 hours of a storm. A summary of the regression 
analysis is shown in figure 6. 

A power transformation provided the best-fit model. The 
quadratic relation between logarithmically transformed E. coli 
and streamflow was visually confirmed with a scatter plot (not 
shown). Homoscedasticity of the residuals was demonstrated 
by the residual plots, whereas marginal-model plots indicate 
that the model adequately fits the measured data. 

The largest residual value was 2.84 for sample 38, col-
lected on December 18, 2007. E. coli for sample 38 was 3,255 
MPN/100 mL. There was no statistically significant evidence 
to warrant discarding this value as an outlier on the basis of 
investigating the residuals. Rather, strong evidence in sup-
port of residual normality was provided by the Shapiro-Wilk 
p-value of .92 and an acceptable a Q-Q plot (not shown). 

The regression equation has an adjusted R-squared of 
about .812, a residual standard error of 0.924 MPN/100 mL 
(in log-transformed space), and a median RPD of 9.78 percent. 
All 38 sampled E. coli values and corresponding explanatory 
variable values appear legitimate and thus were included in the 
development of the regression model. The sample collected 
on May 22, 2007, was 41,000 MPN/100 mL, a relatively 
large value when compared to other samples, but evidence for 
removing the sample as an outlier was not determined. The 
largest organic carbon concentration, 21.0 mg/L, also occurred 
on this date. 

The sample collected on September 7, 2007, was con-
taminated, leaving no estimate to use with the available 
streamflow value for this date, 222 cubic feet per second. Two 
other E. coli values were associated with streamflow values of 
214 and 225 cubic feet per second, respectively, indicating that 
the amount of information lost because of the missing E. coli 
value was not substantial.

Atrazine
Streamflow, turbidity, and seasonal, periodic terms were 

the explanatory variables in the best-fit regression model for 
atrazine at the Spring Creek site. Logarithmic transformations 
were used on streamflow and turbidity, whereas the response 
required a one-third power transformation. All variable 
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 Figure 5.  Summary of regression analysis for total organic carbon for 08068500 Spring Creek near Spring, Texas, 2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

SC Turb Date
Min. :147.0 Min. : 11.40 Min. :0.07123
1st Qu .:266.5 1st Qu.: 20.18 1st Qu .:0.30206
Median :361.0 Median : 44.60 Median :0.47945
Mean :371.8 Mean : 75.69 Mean :0.51792
3rd Qu .:458.8 3rd Qu.: 99.55 3rd Qu .:0.73014
Max. :671.0 Max. :303.00 Max. :0.97260

Summary of Regression Analysis for the Constituent of:
Total Organic Carbon (OrgC)

SUMMARY STATISTICS FOR OrgC , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

7.622 9.559 11.320 12.190 14.580 21.000

REGRESSION EQUATION
Call:
lm(formula = Con3 ~ log(SC) + Turb3 + sin(4 * pi * Date) +

cos(4 * pi * Date))

Residuals:
Min 1Q Median 3Q Max

-0.043305 -0.010962 0.001392 0.014564 0.026522

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.120898 0.061275 1.973 0.057463 .
log(SC) 0.024127 0.011398 2.117 0.042406 *
Turb3 0.484436 0.115679 4.188 0.000216 ***
sin(4 * pi * Date) 0.009733 0.004725 2.060 0.047887 *
cos(4 * pi * Date) 0.018276 0.004458 4.100 0.000277 ***
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.01845 on 31 degrees of freedom
Multiple R-Squared: 0.784 , Adjusted R-squared: 0.7561
F-statistic: 28.13 on 4 and 31 DF, p-value: 6.352e-10

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 6.  Summary of regression analysis for Escherichia coli for 08068500 Spring Creek near Spring, Texas, 2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Rain
Min. : 18.40 Yes: 11
1st Qu.: 38.64 No : 27
Median : 73.50
Mean : 520.37
3rd Qu.: 180.25
Max. :5350.00

Summary of Regression Analysis for the Constituent of:
Escherichia coli (ECB)

SUMMARY STATISTICS FOR ESCHERICHIA COLI (ECB), IN MOST -PROBABLE
NUMBER (MPN) PER 100 MILLILITERS

Min. 1st Qu. Median Mean 3rd Qu. Max.
36.0 120.0 359.5 4266.0 3554.0 41060.0

REGRESSION EQUATION
Call:
lm(formula = log(ECB) ~ poly(log(Q), 2) + Rain)

Residuals:
Min 1Q Median 3Q Max

-1.913527 -0.596184 -0.005551 0.597244 2.325746

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 5.6688 0.2105 26.932 < 2e-16 ***
poly(log(Q), 2)1 5.3790 1.4275 3.768 0.000626 ***
poly(log(Q), 2)2 -3.1014 0.9240 -3.356 0.001955 **
Rain 2.3830 0.5107 4.666 4.63e-05 ***
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.9236 on 34 degrees of freedom
Multiple R-squared: 0.8268 , Adjusted R-squared: 0.8115
F-statistic: 54.08 on 3 and 34 DF, p-value: 4.962e-13

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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transformation procedures discussed in the “Methods” section 
were investigated before a final regression model was selected. 
A variation in concentrations during the year is evident in a 
concentration-by-month boxplot (not shown). A period of 4p 
is used with the sine and cosine terms in the model to account 
for the apparent seasonality. A summary of the regression 
analysis is shown in figure 7.

The residuals for atrazine adhered to a normal distribu-
tion and were independent and homoscedastic; two residual 
plots are shown (fig. 7). Three samples are labeled in each 
graph; samples 9 and 11 are the two largest measured concen-
trations and do not provide any evidence against the best-fit 
model. The second largest turbidity of 268.7 Formazine 
Nephelometric Units (FNU), measured on May 5, 2006, cor-
responds to sample 11. The marginal-model plots provided 
additional evidence in favor of this model. There was no sig-
nificant evidence to indicate any problems in the model associ-
ated with collinearity or heteroscedasticity. Residual normality 
is assumed based on the approximate linear relation in a Q-Q 
plot (not shown) and the Shapiro-Wilk test p-value of .21. The 
best-fit model has an associated adjusted R-squared of .745, 
a residual standard error of 0.175 µg/L (in log-transformed 
space), and a 9.95 percent median RPD. 

Two samples, collected on March 21, 2006 (14.0 µg/L) 
and March 13, 2007 (11.0 µg/L), were discarded from the 
data and not used to construct the best-fit regression model. 
Atrazine concentrations for the two samples differed consider-
ably from the rest of the atrazine data collected at the Spring 
Creek site. During construction of the regression model, it was 
determined that including the two extreme atrazine concen-
trations only reduced model accuracy, and these values were 
consistently identified as significant outliers.

The atrazine value for the sample collected on September 
6, 2006, was censored (<0.1 µg/L). This one sample accounts 
for less than 3 percent of the total number of samples. More 
model investigation techniques are available for non-censored 
data compared to censored data. Therefore, model investiga-
tion techniques for censored data were not needed. A concen-
tration of 0.05 µg/L was used in place of the censored value 
for model development. 

Suspended Sediment
Suspended sediment is an important indicator of the qual-

ity of surface water conveyed to Lake Houston. Constituents 
such as nitrogen and phosphorus are readily transported in 
streams by their adsorption to silt and clay particles (Muel-
ler and Spahr, 2006). Suspended sediment conveyed to Lake 
Houston generally comes from seven major tributaries (Sneck-
Fahrer and others, 2005). Suspended sediment is defined as 
sand, silt, or clay depending on particle diameter. Sand is 
defined as particles less than or equal to 4.00 millimeters and 
greater than 0.062 millimeter; silt is defined as particles less 
than or equal to 0.062 millimeter and greater than 0.004 mil-
limeter; and clay is defined as particles less than or equal to 
0.004 millimeter (Barlow, 1997).

Statistically significant explanatory variables in the best-
fit model for estimating suspended-sediment concentrations at 
the Spring Creek site were streamflow, water temperature, and 
turbidity. Box-Cox procedures indicated logarithmic transfor-
mations were most suitable for the explanatory and response 
variables. A summary of the regression analysis is shown in 
figure 8.

A graph of the estimated suspended-sediment concentra-
tions for the regression model designed to predict real-time 
concentrations, as well as measured suspended-sediment 
concentrations, is shown in figure 8. Of 39 suspended- 
sediment samples collected, 38 were available for developing 
the regression model (the sample collected on February 27, 
2007, was ruined).

A graph of model residuals and estimated concentra-
tions from the best-fit regression model is shown in figure 
8. The relatively high adjusted R-squared value (.917) indi-
cates streamflow, water temperature, and turbidity account  
for a substantial amount of the variation in the measured  
data. Residual plots, marginal-model plots used to graphi-
cally depict goodness of fit (not shown), and additional  
diagnostics confirm the goodness of fit of the best-fit model. 
The residual standard error for the model was 0.325 mg/L  
(in log-transformed space), the Shapiro-Wilk statistic had  
an associated p-value of .889, and the median RPD was 
4.50 percent. The LOWESS smooths for all marginal-model 
plots (not shown) were nearly identical, indicting this model 
provides an adequate fit to the data. All VIFs were less 
than 4.0, indicating there was not a high degree of collinear-
ity among the predictive variables included in the best-fit 
model.

The statistical significance of streamflow, water tem-
perature, and turbidity as explanatory variables seems logical, 
as these are well-known indicators of suspended-sediment 
concentration. Turbidity is inversely proportional to transpar-
ency depth and is a measure of the scattering of light (Ameri-
can Society for Testing and Materials, 2003). Thus, a decrease 
in the amount of transparency in water seems appropriate as a 
possible indicator for an increase in the amount of suspended 
sediment in the water. 

Best-Fit Models, East Fork San Jacinto River

Regression models for East Fork San Jacinto River 
were developed for all constituents analyzed for the study 
(table 2), except atrazine. Models developed and evaluated 
for total ammonia plus organic nitrogen, dissolved ammonia 
plus organic nitrogen, ammonia nitrogen, nitrite nitrogen, 
orthophosphate phosphorous, dissolved phosphorous, and 
total coliform bacteria were rejected because of large errors 
associated with the models. An atrazine regression model was 
not developed for the study because more than 50 percent 
of the data were below the LRL (censored). Best-fit models 
developed for nitrite plus nitrate nitrogen, total phosphorous, 
organic carbon, E. coli bacteria, and suspended sediment are 
described in this section.



22    Regression Models to Estimate Real-Time Concentrations of Selected Constituents in Two Tributaries to Lake Houston

Figure 7.  Summary of regression analysis for atrazine for 08068500 Spring Creek near Spring, Texas, 2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Turb Date
Min. : 18.40 Min. : 11.4 Min. :0.07123
1st Qu.: 38.09 1st Qu.: 19.3 1st Qu .:0.32329
Median : 70.00 Median : 49.5 Median :0.49041
Mean : 558.46 Mean : 75.5 Mean :0.51824
3rd Qu.: 199.50 3rd Qu .:102.8 3rd Qu .:0.70274
Max. :5350.00 Max. :303.0 Max. :0.97260

Summary of Regression Analysis for the Constituent of:
Atrazine (Atz)

SUMMARY STATISTICS FOR Atz , IN MICROGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.025 0.535 0.930 1.414 1.740 7.080

REGRESSION EQUATION
Call:
lm(formula = (Atz)^(1/3) ~ log(Q) + log(Turb) + Date +

sin(4 * pi * Date) + cos(4 * pi * Date))

Residuals:
Min 1Q Median 3Q Max

-0.381460 -0.100473 -0.008568 0.111630 0.267816

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.80162 0.14035 5.712 3.52e-06 ***
log(Q) -0.10968 0.03372 -3.253 0.002897 **
log(Turb) 0.29973 0.05552 5.398 8.39e-06 ***
Date -0.84118 0.12125 -6.937 1.26e-07 ***
sin(4 * pi * Date) -0.19103 0.04448 -4.295 0.000179 ***
cos(4 * pi * Date) -0.12463 0.04387 -2.841 0.008142 **
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.175 on 29 degrees of freedom
Multiple R-squared: 0.7823 , Adjusted R-squared: 0.7447
F-statistic: 20.84 on 5 and 29 DF, p-value: 8.379e-09

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 8.  Summary of regression analysis for suspended sediment for 08068500 Spring Creek near Spring, Texas, 2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Turb Temp
Min. : 18.40 Min. : 11.60 Min. :10.92
1st Qu.: 38.64 1st Qu.: 20.45 1st Qu .:19.43
Median : 78.50 Median : 44.60 Median :24.11
Mean : 524.37 Mean : 74.12 Mean :23.07
3rd Qu.: 206.75 3rd Qu.: 93.00 3rd Qu .:27.20
Max. :5350.00 Max. :303.00 Max. :31.26

Summary of Regression Analysis for the Constituent of:
Suspended Sediment (SS)

SUMMARY STATISTICS FOR SS , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

15.00 34.25 44.50 152.90 81.50 987.00

REGRESSION EQUATION
Call:
lm(formula = log(SS) ~ log(Q) + poly(log(Turb), 2) + log(Temp))

Residuals:
Min 1Q Median 3Q Max

-0.594926 -0.194488 -0.002587 0.241283 0.673800

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.68026 0.67540 1.007 0.321167
log(Q) 0.42009 0.06664 6.304 3.96e-07 ***
poly(log(Turb), 2)1 2.64107 0.60731 4.349 0.000124 ***
poly(log(Turb), 2)2 0.95660 0.35300 2.710 0.010592 *
log(Temp) 0.50494 0.19524 2.586 0.014303 *
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.3254 on 33 degrees of freedom
Multiple R-Squared: 0.9263 , Adjusted R-squared: 0.9174
F-statistic: 103.7 on 4 and 33 DF, p-value: < 2.2e-16

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Nitrite plus Nitrate Nitrogen

Of the 38 nitrite plus nitrate samples collected, three 
resulted in censored values less than the nitrite plus nitrate 
LRL of 0.06 mg/L in 2007 or 0.04 mg/L in 2008. The col-
lection dates of these three samples were October 19, 2006, 
November 9, 2006, and January 18, 2007, coinciding with the 
three highest streamflow values (7,930; 4,570; and 5,160 cubic 
feet per second, respectively). Evidence of dilution is provided 
by a negative quadratic relation of nitrite plus nitrate concen-
tration with streamflow in the regression model, as well as by 
scatter plots (not shown) using transformed and untransformed 
variables. MLE regression was used for model development 
for the three censored values for nitrite plus nitrate.

Streamflow and a seasonal term were chosen as explana-
tory variables for estimating the concentration of nitrite plus 
nitrate. The best-fit regression model was determined by 
logarithmically transforming streamflow using the Box-Cox 
procedure and by applying a quadratic seasonality adjustment, 
where Date represents the Julian day of the year as a fraction 
of the year, normalized between 0 and 1. A summary of the 
regression analysis is shown in figure 9.

The graph of residuals and estimated concentrations 
(Helsel and Hirsch, 2002) shows a homoscedastic pattern, 
indicative of a valid model. Sample 7, collected on March 21, 
2006, had a slightly elevated studentized residual value of 2.66 
for the concentration of nitrite plus nitrate, so it was investi-
gated further. A Bonferroni test on the studentized residuals 
did not reject sample 7 as an outlier. Including sample 7 in 
the analysis, evidence for residual normality was provided by 
acceptable residual plots (not shown) and a Shapiro-Wilk test 
p-value of .93.

Regression diagnostics and residual analysis provided 
evidence of model validity. Marginal-model plots provided 
visual evidence that nitrite plus nitrate data are well modeled 
by the explanatory variables of streamflow and a seasonal 
term. No evidence of collinearity between explanatory vari-
ables was determined; all VIFs are less than 2.0. An adjusted 
R-squared of .712, a residual standard error of 0.374 mg/L (in 
log-transformed space), and a median RPD of 9.98 percent are 
associated with this model. 

The five largest streamflow values, ranging from 1,490 
to 7,930 cubic feet per second, coincide with nitrite plus 
nitrate samples collected during the cooler months of October, 
November, and January. Corresponding streamflow values did 
not exceed 237 cubic feet per second for the nitrite plus nitrate 
samples collected during the warmer months (April through 
September). A boxplot of nitrite plus nitrate concentrations 
by month (not shown) revealed an approximate unimodal 
(one highest value in the annual distribution) shape, with 
larger concentrations occurring during the summer months. 
No samples were collected during June 2007, leaving only 
two concentrations for June 2006 to estimate the periodic 
component of the model. Both concentrations for June 2006 
are lower than expected compared to measured concentrations 
during surrounding months.

Total Phosphorus
The best-fit model for total phosphorus contained the 

explanatory variables streamflow, specific conductance, 
turbidity, and the periodic functions sine and cosine, with 
periods of 4p, to adjust for seasonal effects. Both streamflow 
and specific conductance were logarithmically transformed, 
whereas turbidity and the modeled response did not require 
transformation. A summary of the regression analysis is shown 
in figure 10.

No discernable patterns are evident in the studentized 
residual plot (fig. 10). The total phosphorus sample collected 
on January 24, 2006, and labeled as sample 3 in the residual 
plot has a residual value of about -2.89, although a Bonfer-
roni outlier test did not identify it as an outlier. The largest 
phosphorus concentration of 0.210 mg/L (measured sample 
35, collected October 16, 2007) is greater than three times the 
interquartile range (IQR), 0.0302 mg/L, of the measured con-
centrations. Inspection of a Cook’s distance plot (not shown) 
(measure of the influence of each observation on the regres-
sion coefficients [Dalgaard, 2008]), the residual plot, and the 
plot of measured and estimated concentrations identify this as 
a point of high leverage, but low influence. 

Satisfactory residual plots (not shown) and a Shapiro-
Wilk p-value of .68 indicate the normality assumption among 
the residuals is met. Acceptable marginal-model plots (not 
shown) for all explanatory variables provide additional evi-
dence in favor of this model. Additionally, the marginal-model 
plots illustrate the dissimilarity sample 35 has with all other 
streamflow and specific conductance values. 

The total phosphorus sample collected on July 25, 2006, 
with a high concentration of 0.158 mg/L, was discarded and 
not used in the regression analysis because the Bonferroni 
outlier test identified it as an outlier. One of the two lowest 
suspended-sediment concentrations (6 mg/L) was measured 
on July 25, 2006. The largest nitrite plus nitrate concentration 
also was measured on July 25, 2006, and had a relatively large 
deviation from the line of best fit in the graph of measured and 
estimated concentrations. The adjusted R-squared for the best-
fit regression model was .719, with a corresponding residual 
standard error of 0.0159 mg/L (in log-transformed space) and 
a median RPD of 8.00 percent. 

Organic Carbon
Explanatory variables in the best-fit regression model 

for estimating organic carbon at the East Fork San Jacinto site 
were streamflow and turbidity. The Box-Cox procedure was 
used for the logarithmic transformations of explanatory and 
response variables. Results from the regression analysis are 
summarized in figure 11.

The residuals displayed the desired random pattern 
lacking heteroscedasticity (fig. 11). The samples collected 
on March 4, 2006 (sample 8) and June 13, 2006 (sample 13), 
labeled in figure 11, have the largest residual values (absolute), 
although neither was identified as an outlier and discarded 
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Figure 9.  Summary of regression analysis for nitrite plus nitrate nitrogen for 08070200 East Fork San Jacinto River near New Caney, 
Texas, 2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Date
Min. : 11.0 Min. :0.0411
1st Qu.: 37.0 1st Qu .:0.2671
Median : 67.5 Median :0.5644
Mean : 680.7 Mean :0.5300
3rd Qu.: 146.8 3rd Qu .:0.7938
Max. :7930.0 Max. :0.9726

Summary of Regression Analysis for the Constituent of:
Nitrite plus Nitrate (NO2 NO3)

SUMMARY STATISTICS FOR NO2NO3 , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0150 0.0620 0.1030 0.1358 0.1793 0.5060

REGRESSION EQUATION
Call:
lm(formula = (NO2NO3)^( -1/3) ~ poly(log(Q), 2) + poly(Date , 2))

Residuals:
Min 1Q Median 3Q Max

-0.56114 -0.23378 0.00617 0.19357 0.88907

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.24555 0.06073 36.976 < 2e-16 ***
poly(log(Q), 2)1 2.06213 0.41318 4.991 1.89e-05 ***
poly(log(Q), 2)2 2.14896 0.40289 5.334 6.89e-06 ***
poly(Date , 2)1 0.59724 0.38014 1.571 0.125694
poly(Date , 2)2 1.75588 0.43421 4.044 0.000297 ***
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.3744 on 33 degrees of freedom
Multiple R-Squared: 0.7434 , Adjusted R-squared: 0.7123
F-statistic: 23.9 on 4 and 33 DF, p-value: 2.371e-09

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 10.  Summary of regression analysis for total phosphorus for 08070200 East Fork San Jacinto River near New Caney, Texas, 
2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q SC Turb Date
Min. : 11.0 Min. : 49.0 Min. : 7.30 Min. :0.0411
1st Qu.: 37.0 1st Qu .:146.0 1st Qu .:11.80 1st Qu .:0.2575
Median : 73.0 Median :180.0 Median :15.60 Median :0.5644
Mean : 698.1 Mean :168.1 Mean :27.75 Mean :0.5291
3rd Qu.: 151.0 3rd Qu .:209.0 3rd Qu .:39.20 3rd Qu .:0.7945
Max. :7930.0 Max. :277.0 Max. :90.50 Max. :0.9726

Summary of Regression Analysis for the Constituent of:
Total Phosphorous (Phos)

SUMMARY STATISTICS FOR Phos , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05440 0.08270 0.09820 0.09983 0.11290 0.21020

REGRESSION EQUATION
Call:
lm(formula = Phos ~ log(Q) + log(SC) + Turb +

sin(4 * pi * Date) + cos(4 * pi * Date))

Residuals:
Min 1Q Median 3Q Max

-0.036360 -0.008247 -0.001157 0.009646 0.028747

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.2781701 0.0594032 4.683 5.32e-05 ***
log(Q) -0.0155395 0.0030207 -5.144 1.42e-05 ***
log(SC) -0.0287821 0.0098910 -2.910 0.00664 **
Turb 0.0013905 0.0001925 7.223 4.01e-08 ***
sin(4 * pi * Date) -0.0052041 0.0039071 -1.332 0.19258
cos(4 * pi * Date) -0.0121902 0.0037978 -3.210 0.00309 **
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.01593 on 31 degrees of freedom
Multiple R-Squared: 0.758 , Adjusted R-squared: 0.719
F-statistic: 19.42 on 5 and 31 DF, p-value: 9.824e-09

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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from the dataset. The sample collected on June 13, 2006, 
coincided with the highest specific conductance (277 micro-
siemens per centimeter at 25 °C) and the lowest streamflow 
(11 cubic feet per second) of all measurements. Although  
specific conductance is not included in the model as an 
explanatory variable, there was a strong inverse correlation 
between organic carbon and specific conductance. Regression 
models are most reliable when the range of predicted values 
is similar to the range of measured values; there is increased 
uncertainty associated with predictions near or beyond the  
limits defined by actual measured values. 

Strong agreement between the LOWESS smooths in  
the marginal-model plots for all four explanatory variables 
(not shown) provide visual evidence that the model fits  
the measured data well. The Breusch-Pagan test (R docu
mentation, R Development Core Team, 2006) indicates  
the data are homoscedastic (heteroscedasticity was rejected 
with an approximate p-value of .886), and VIFs were all 
less than 2.0, providing statistical evidence that assump-
tions regarding constant error variance have been satisfied  
and that collinearity among explanatory variables is not  
present. 

A linear relation between measured and estimated con-
centrations is displayed in figure 11, and samples with large 
residuals (sample 8 collected on April 4, 2006, and sample 
13 collected on June 13, 2006) are labeled for comparison. In 
addition to the results of the marginal-model plots, Breusch-
Pagan test results, and VIFs, the goodness of fit of the final 
regression model was further substantiated by the adjusted 
R-squared of .878 with a residual standard error of 0.153 mg/L 
(in log-transformed space). The median RPD was 4.82 per-
cent, and the PRESS statistic was about 1.10, which corre-
sponded to an R

p
2 of .835. 

The organic carbon concentration of 32.6 mg/L on  
September 20, 2006, was discarded as an outlier. An addi-
tional sample collected May 24, 2007, was ruined, leaving  
36 of the original 38 samples to construct the regression 
model. The studentized residual from the questionable 
sample of 32.6 mg/L was about 13 when the best-fit model  
was developed. A Bonferroni adjusted t-test (p-value <.001) 
on the residuals rejected the September 20, 2006, concen
tration as an extreme outlier. The concentration of 32.6 mg/L 
is almost twice that of the next largest concentration of  
18.2 mg/L on January 18, 2007, which had corresponding 
streamflow and turbidity values of 5,160 cubic feet per  
second and 81.7 FNU, respectively. Streamflow and turbid-
ity for the organic carbon concentration of 32.6 mg/L  
are 17 cubic feet per second and 11.3 FNU, respectively,  
both below the first quartile in their respective classes. A  
scatter plot of organic carbon concentration relative to  
both streamflow and turbidity indicates the concentration  
of 32.6 mg/L plots differently than all other values; this  
value did not agree with the positive relation between stream-
flow and turbidity. With additional regression diagnostics, 
there is sufficient evidence to justify the exclusion of the 
concentration.

Escherichia Coli
Logarithmically transformed streamflow and turbidity 

were the explanatory variables included in the best-fit regres-
sion model for estimating E. coli. A summary of the regression 
analysis is shown in figure 12.

Measured relative to estimated and residual graphs in  
figure 12 provide adequate, visual evidence for the adherence 
of the model to requisite normal distribution assumptions. 
Four values are labeled in both graphs because they show  
substantial departure from the rest of the data. The Shapiro-
Wilk test did not provide sufficient evidence to reject the 
assumption of normally distributed residuals; approximate 
p-value was .799. All residual and marginal-model plots 
indicate the best-fit regression model is appropriate for the 
measured data.

The adjusted R-squared value for the best-fit model was 
.607—although the model did not explain as much variability, 
this adjusted R-squared value by itself should not be inter-
preted as evidence of a poor model. Other regression model 
diagnostics and statistical tests for determining strength and 
relevance of models must be considered. In log-transformed 
space the residual standard error for this model is 0.887 
MPN/100 mL; the median RPD was 10.0 percent. As addi-
tional measurements are made and incorporated into an 
updated model, uncertainty will likely decrease, yielding an 
improved regression model for estimating E. coli. 

Turbidity values ranged from 7.30 to 90.5 FNU, and the 
magnitude of the maximum turbidity value (sample 36) was 
more than three times the magnitude of the IQR determined 
from all measured values, indicating it was an extreme outlier. 
No model could efficiently describe the variation in measured 
E. coli concentrations when sample 36 collected on October 
16, 2007, was included in the analysis. E. coli for sample 36 
was 36,100 MPN/100 mL, more than six times as large as the 
next largest value of 5,475 MPN/100 mL measured on October 
17, 2006. E. coli for sample 36 was about 138 times greater 
than the IQR of 261 MPN/100 mL. Regression analysis was 
performed on the rest of the data and the best-fit model was 
obtained. The best-fit model was fit to the data, including 
sample 36, where regression diagnostics identified it as a sig-
nificant outlier. Additional leverage points were identified, but 
not discarded from the data. A median RPD of 9.78 percent 
was obtained for the model that included sample 36.

Suspended Sediment
Streamflow and turbidity were the statistically signifi-

cant explanatory variables for estimating suspended-sediment 
concentrations for the East Fork San Jacinto site. Logarithmic 
transformations proved suitable for both streamflow and the 
response, whereas turbidity required no transformation. A 
summary of the regression analysis is shown in figure 13.

The homoscedacity of residuals in the studentized 
residual plot (fig. 13) provides evidence of model adequacy. 
The graph of measured relative to estimated concentrations 
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Figure 11.  Summary of regression analysis for total organic carbon for 08070200 East Fork San Jacinto River near New Caney, Texas, 
2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Turb
Min. : 11.0 Min. : 7.30
1st Qu.: 37.0 1st Qu .:12.18
Median : 76.5 Median :16.90
Mean : 716.6 Mean :28.27
3rd Qu.: 172.5 3rd Qu .:39.50
Max. :7930.0 Max. :90.50

Summary of Regression Analysis for the Constituent of:
Total Organic Carbon (OrgC)

SUMMARY STATISTICS FOR OrgC , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.

3.965 6.443 7.617 9.173 12.250 18.190

REGRESSION EQUATION
Call:
lm(formula = log(OrgC) ~ poly(log(Q), 2) + poly(log(Turb), 2))

Residuals:
Min 1Q Median 3Q Max

-0.25706 -0.09356 -0.01361 0.12333 0.34015

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.12342 0.02544 83.475 < 2e-16 ***
poly(log(Q), 2)1 2.20846 0.25132 8.787 6.39e-10 ***
poly(log(Q), 2)2 -0.66288 0.15533 -4.268 0.000173 ***
poly(log(Turb), 2)1 0.24825 0.24537 1.012 0.319486
poly(log(Turb), 2)2 -0.53624 0.16457 -3.258 0.002718 **
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.1526 on 31 degrees of freedom
Multiple R-Squared: 0.8915 , Adjusted R-squared: 0.8775
F-statistic: 63.66 on 4 and 31 DF, p-value: 1.667e-14

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 12.  Summary of regression analysis for Escherichia coli for 08070200 East Fork San Jacinto River near New Caney, Texas, 
2005–07. 

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Turb
Min. : 11.0 Min. : 7.30
1st Qu.: 37.0 1st Qu .:11.80
Median : 73.0 Median :15.60
Mean : 691.6 Mean :25.91
3rd Qu.: 151.0 3rd Qu .:37.00
Max. :7930.0 Max. :81.70

Summary of Regression Analysis for the Constituent of:
Escherichia coli (ECB)

SUMMARY STATISTICS FOR ESCHERICHIA COLI (ECB), IN MOST -PROBABLE
NUMBER (MPN) PER 100 MILLILITERS

Min. 1st Qu. Median Mean 3rd Qu. Max.
23.0 44.0 93.0 496.8 248.1 5475.0

REGRESSION EQUATION
Call:
lm(formula = log(ECB) ~ log(Q) + poly(log(Turb), 2))

Residuals:
Min 1Q Median 3Q Max

-2.0047954 -0.5658744 0.0009804 0.4702329 2.3415816

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 3.5338 0.7457 4.739 3.97e-05 ***
log(Q) 0.2922 0.1577 1.853 0.0728 .
poly(log(Turb), 2)1 3.3014 1.5381 2.146 0.0393 *
poly(log(Turb), 2)2 2.4903 1.0203 2.441 0.0202 *
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.8872 on 33 degrees of freedom
Multiple R-squared: 0.6397 , Adjusted R-squared: 0.607
F-statistic: 19.53 on 3 and 33 DF, p-value: 1.843e-07

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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exhibits approximate linearity around the line of equal  
value (fig. 13). The suspended-sediment concentration on 
March 21, 2006 (sample 7), identified on the residual plot  
in figure 13, had the largest absolute studentized residual 
value, about 3.29. The corresponding Bonferroni adjusted 
p-value obtained using the Bonferroni outlier script in the 
R environment for statistical computing (R Development 
Core Team, 2006) is about .09. Such a small p-value asso-
ciated with the Bonferroni test has important implications 
because this is a conservative test; two-sided tests based 

on bivariate normal variables (such as the Bonferroni test) 
are always conservative (Samuel-Cahn, 1996). The authors 
decided against discarding the March 21, 2006, suspended-
sediment value as an outlier. The Shapiro-Wilk test statistic 
had an associated p-value of .36, indicating the requirement of 
residual normality was met. 

Agreement between the LOWESS smooths for all 
marginal-model plots (not shown) indicates that this model 
provides an adequate fit to the data. A lack of collinearity 
was indicated by the VIFs, which were all less than 3.0. The 
model has an adjusted R-squared of .745, a residual standard 
error of 0.426 mg/L (in log-transformed space), and a median 
RPD of 6.69 percent. After adjusting the concentrations for 
seasonal and exogenous effects (ensuring each response vari-
able is independent of all others), a Mann-Kendall test on the 
residuals did not find evidence of a statistically significant 
monotonic trend. 

The suspended-sediment sample collected on June 13, 
2006, was contaminated and could not be used for model 
construction. In addition, suspended-sediment samples col-
lected on June 28, 2006 (sample 13) and December 18, 2007 
(sample 38) were deemed unrepresentative and discarded 
from the model data, leaving 35 of 38 suspended-sediment 
concentrations to develop the regression equation. A thorough 
graphical comparison (not shown) combined with substantial 
statistical evidence justified excluding the June 28, 2006, and 
December 18, 2007, suspended-sediment samples. The June 
28, 2006, suspended-sediment concentration was 109 mg/L, 
with corresponding streamflow and turbidity of 27 cubic feet 
per second and 15.6 FNU, respectively. This sample provided 
the sixth largest suspended-sediment concentration, whereas 
the associated streamflow value was less than the correspond-
ing first quartile computed using all 38 streamflow samples. 
Although the suspended-sediment concentration was large  
for the June 28, 2006, sample, turbidity approximated the 
median turbidity of 15.85 FNU. Streamflow and turbidity  
were less than their respective medians, whereas the sus-
pended-sediment concentration was considerably greater 
than the third-quartile concentration of 44.75 mg/L. The 
suspended-sediment concentration on December 18, 2007, was 
695 mg/L, and the corresponding streamflow was 303 cubic 
feet per second, well below the mean streamflow of 685 cubic 
feet per second, yet still above the third quartile of 158.5 cubic 
feet per second. Positive skewness (few high values) associ-
ated with streamflow explains the large difference between 
these two values.

The quadratic and linear relation of streamflow and 
turbidity with suspended sediment was evident in a scatter plot 
(not shown) of all three transformed variables—suspended 
sediment, streamflow, and turbidity. The scatter plot also illus-
trates the approximate (and required) linear relation between 
streamflow and turbidity.

Measured and Estimated Constituent Loads
Constituent estimates were obtained from selected best-fit 

regression equation models using real-time water-quality data 
for 2006 and 2007. Because the real-time water-quality data 
are collected at 15-minute intervals, a year with no missing 
values would have 35,040 data points. Missing 15-minute 
values were found randomly throughout the record and were 
simply ignored during the regression process. Instantaneous 
loads were obtained by multiplying the constituent value esti-
mated from the regression model by the associated streamflow 
and a constant conversion factor.

Measured loads computed from the collected discrete 
water-quality data and loads estimated using regression mod-
els are shown for nitrite plus nitrate, total phosphorus, total 
organic carbon, atrazine (Spring Creek site only), and sus-
pended sediment at each site (figs. 14–22). Graphical depic-
tions of load estimates provide a visual reference for planning 
the collection of discrete water-quality samples, particularly 
with respect to periods of low and high flow.

Measured and estimated constituent loads generally 
match closely. For example, the measured and estimated nitrite 
plus nitrate loads from each site differ only slightly. Small, 
rapid fluctuations in nitrite plus nitrate loads occur within 
larger monthly fluctuations, especially at the Spring Creek 
site. The explanatory variables for the regression model for 
nitrite plus nitrate loads at the Spring Creek site are specific 
conductance and pH. pH follows a diurnal pattern because it 
is affected by photosynthetic processes and tends to increase 
during the daytime. Also, pH is negatively correlated with 
streamflow and turbidity (for the most part).

Estimates of loads for nitrite plus nitrate, total phospho-
rus, total organic carbon, atrazine, and suspended sediment 
computed from the real-time water-quality data are listed for 
the Spring Creek site (table 4) and the East Fork San Jacinto 
site (table 5). Load estimates include daily average by year 
(2006 and 2007), daily average for month by year (2006 and 
2007), and total for each month and year. Two daily average 
estimated loads for each year are listed: the first was computed 
by averaging the estimated daily average loads for the months; 
the second was computed as the estimated total load for the 
year divided by 365. Generally, the first estimated daily load  
is less than the second because no adjustment for missing  
daily values was made when computing the monthly total. 
Real-time, continuously monitored data are collected every 
15 minutes; sometimes a 15-minute interval or series of 
15-minute intervals might be deleted because of fouling  
(if criteria described in Wagner and others [2006] are not met) 
or might be missing because of lost transmission. When the 
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Figure 13.  Summary of regression analysis for suspended sediment for 08070200 East Fork San Jacinto River near New Caney, Texas, 
2005–07.  

Inflow Statistics of Applicable Explanatory Variables: [Min., minimum, Qu., quartile, Max., maximum]
EXPLANATORY VARIABLE SUMMARY STATISTICS

Q Turb
Min. : 14.0 Min. : 7.30
1st Qu.: 40.0 1st Qu .:11.78
Median : 76.5 Median :15.65
Mean : 713.5 Mean :27.95
3rd Qu.: 153.5 3rd Qu .:37.55
Max. :7930.0 Max. :90.50

Summary of Regression Analysis for the Constituent of:
Suspended Sediment (SS)

SUMMARY STATISTICS FOR SS , IN MILLIGRAMS PER LITER
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 13.75 18.00 36.28 42.50 170.00

REGRESSION EQUATION
Call:
lm(formula = log(SS) ~ poly(log(Q), 2) + Turb)

Residuals:
Min 1Q Median 3Q Max

-0.951962 -0.197273 -0.001296 0.226476 1.196067

Coefficients:
Estimate Std. Error t-value Pr(>|t|)

(Intercept) 2.491914 0.161342 15.445 < 2e-16 ***
poly(log(Q), 2)1 0.907973 0.690301 1.315 0.1977
poly(log(Q), 2)2 -0.997305 0.437366 -2.280 0.0294 *
Turb 0.025235 0.005184 4.868 2.91e-05 ***
---
Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 0.426 on 32 degrees of freedom
Multiple R-Squared: 0.7669 , Adjusted R-squared: 0.7451
F-statistic: 35.1 on 3 and 32 DF, p-value: 3.093e-10

Nomenclature (all potential variables)
• Q is streamflow, in cubic feet per second;

• pH is pH, in standard units;

• Rain is binary: 1 if data collected within 24
hours of storm, otherwise 0;

• SC is specific conductance, in microsiemens
per centimeter at 25°Celsius;

• Turb is turbidity in Formazine Nephelomet-
ric Units;

• Temp is water temperature, in °Celsius;

• Date is Julian day d (days into year) divided
by 365; and

• log(x) is natural log of x.

Special note: the poly() function, which is used
in some regressions, creates orthogonal polyno-
mials and not conventional polynomials of form
ax + bx2. The poly() function can be used to
implement the regression [see documentation by
R Development Core Team (2006)].
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Figure 14.  Measured and estimated nitrite plus nitrate nitrogen loads for 08068500 Spring Creek near Spring, Texas, (A) 2006 and 
(B) 2007.

Figure 15.  Measured and estimated total phosphorus loads for 08068500 Spring Creek near Spring, Texas, (A) 2006 and (B) 2007. 
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Figure 16. Comparison of meausured and estimated nitrite plus nitrate loads in 08068500 Spring Creek
near Spring, Tex, 2006(a) and 2007(b).
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Figure 17. Comparison of meausured and estimated total phosphorous loads in 08068500 Spring Creek 
near Spring, Tex, 2006(a) and 2007(b).
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Figure 16.  Measured and estimated total organic carbon loads for 08068500 Spring Creek near Spring, Texas, (A) 2006 and (B) 2007.

Figure 17.  Measured and estimated atrazine loads for 08068500 Spring Creek near Spring, Texas, (A) 2006 and (B) 2007. 
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Figure 18. Comparison of meausured and estimated total organic carbon loads in 08068500 Spring Creek 
near Spring, Tex, 2006(a) and 2007(b).
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Figure 18. Comparison of meausured and estimated total organic carbon loads in 08068500 Spring Creek 
near Spring, Tex, 2006(a) and 2007(b).
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Figure 19. Comparison of meausured and estimated atrazine loads in 08068500 Spring Creek near 
Spring, Tex, 2006(a) and 2007(b).
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Figure 18.  Measured and estimated suspended-sediment loads for 08068500 Spring Creek near Spring, Texas, (A) 2006 and (B) 2007.

Figure 19.  Measured and estimated nitrite plus nitrate nitrogen loads for 08070200 East Fork San Jacinto River near New Caney, Texas, 
(A) 2006 and (B) 2007. 
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Figure 15. Comparison of meausured and estimated suspended sediment loads in 08068500 Spring Creek
near Spring, Tex, 2006(a) and 2007(b).
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Figure 21. Comparison of meausured and estimated nitrite plus nitrate loads in 08070200 East Fork San
Jacinto River near New Caney, Tex, 2006(a) and 2007(b).
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Figure 20.  Measured and estimated total phosphorus loads for 08070200 East Fork San Jacinto River near New Caney, Texas, (A) 2006 
and (B) 2007.

Figure 21.  Measured and estimated total organic carbon loads for 08070200 East Fork San Jacinto River near New Caney, Texas, (A) 
2006 and (B) 2007. 
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Figure 22. Comparison of meausured and estimated total phosphorous loads in 08070200 East Fork San
Jacinto River near New Caney, Tex, 2006(a) and 2007(b).
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Figure 23. Comparison of meausured and estimated total organic loads in 08070200 East Fork San Jacinto
River near New Caney, Tex, 2006(a) and 2007(b).
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continuous real-time data needed to compute the 15-minute 
load estimation were missing, no load value was computed for 
that interval. Interpolation of the missing real-time data was 
not done, and the daily load average was based on less than 

the 96 data points that typically are available for most days  
when data are collected for all 15-minute intervals. Days with 
missing continuous 15-minute interval data would have poten-
tially low daily average load estimations.

Figure 22.  Measured and estimated suspended-sediment loads for 08070200 East Fork San Jacinto River near New Caney, Texas, 
(A) 2006 and (B) 2007. 
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Figure 20. Comparison of meausured and estimated suspended sediment loads in 08070200 East Fork San
Jacinto River near New Caney, Tex, 2006(a) and 2007(b).
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Table 4.  Estimated loads from regression models for 08068500 Spring Creek near Spring, Texas, 2006–07—Continued.

Month
2006 Loads 2007 Loads

Estimated daily  
average for month

Total estimated  
for month

Estimated daily average 
for month

Total estimated for 
month

Nitrite plus nitrate nitrogen
January 1,340 41,400 2,630 81,500
February 1,070 30,000 1,380 38,700
March 1,120 34,900 2,150 66,700
April 980 29,400 1,560 46,800
May 1,430 44,400 2,220 69,000
June 1,260 37,800 1,600 48,000
July 850 26,200 2,170 67,300
August 760 23,500 1,220 37,800
September 920 27,500 1,000 30,100
October 2,060 63,900 1,300 40,200
November 1,080 32,500 1,620 48,500
December 1,460 45,300 1,200 37,300

Total 437,000 612,000
Daily average 1,190 1,200 1,670 1,680

Total phosphorus
January 409 12,700 1,600 49,600
February 316 8,850 334 9,350
March 329 10,200 1,660 51,600
April 308 9,230 572 17,100
May 818 25,300 1,590 49,400
June 672 20,100 888 26,600
July 478 14,800 1,920 59,400
August 247 7,660 413 12,800
September 307 9,200 366 11,000
October 5,930 184,000 510 15,800
November 318 9,530 680 20,400
December 523 16,200 305 9,450

Total 328,000 333,000
Daily average 888 898 903 911

Total organic carbon
January 4,480 139,000 78,600 2,440,000
February 4,530 127,000 9,550 267,000
March 3,800 118,000 68,000 2,110,000
April 3,980 119,000 21,400 642,000
May 19,000 589,000 58,500 1,810,000
June 16,400 492,000 27,400 822,000
July 10,300 320,000 65,200 2,020,000
August 2,280 70,600 7,270 225,000
September 2,430 72,800 6,990 210,000
October 193,000 5,970,000 12,300 382,000
November 7,990 240,000 21,200 635,000
December 9,370 290,000 5,370 166,000

Total 8,550,000 11,700,000
Daily average 23,100 23,400 31,800 32,100

Table 4.  Estimated loads from regression models for 08068500 Spring Creek near Spring, Texas, 2006–07.

[In pounds]
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Table 4.  Estimated loads from regression models for 08068500 Spring Creek near Spring, Texas, 2006–07—Continued.

Month
2006 Loads 2007 Loads

Estimated daily  
average for month

Total estimated  
for month

Estimated daily average 
for month

Total estimated for 
month

Atrazine
January 0.993 30.8 9.13 283
February .815 22.8 1.00 28.1
March .705 21.8 6.80 211
April .868 26.0 3.21 96.3
May 3.74 116 7.62 236
June 2.15 64.5 2.23 66.8
July .777 24.1 2.22 68.9
August .133 4.11 .289 8.94
September .206 6.19 .427 12.8
October 6.36 197 .901 27.9
November .548 16.4 1.25 37.6
December .310 9.62 .121 3.76

Total 539 1,080
Daily average 1.47 1.48 2.93 2.96

Suspended sediment
January 39,000 1,210,000 1,070,000 33,200,000
February 39,400 1,100,000 58,600 1,640,000
March 17,300 537,000 1,190,000 36,900,000
April 24,600 737,000 167,000 5,000,000
May 646,000 20,000,000 1,040,000 32,400,000
June 313,000 9,390,000 461,000 13,800,000
July 224,000 6,960,000 1,380,000 42,600,000
August 16,300 506,000 75,300 2,330,000
September 15,000 449,000 95,400 2,860,000
October 5,060,000 157,000,000 277,000 8,590,000
November 42,300 1,270,000 442,000 13,200,000
December 94,500 2,930,000 25,600 792,000

Total 202,000,000 193,000,000
Daily average 545,000 554,000 523,000 530,000
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Table 5.  Estimated loads from regression models for 08070200 East Fork San Jacinto River near New Caney, Texas, 2006–07—
Continued.

Month
2006 Loads 2007 Loads

Estimated daily  
average for month

Total estimated  
for month

Estimated daily average 
for month

Total estimated  
for month

Nitrite plus nitrate nitrogen
January 42.3 1,310 226 7,010
February 91.3 2,560 130 3,630
March 79.7 2,470 191 5,930
April 96.2 2,890 189 5,680
May 65.5 2,030 358 11,100
June 36.3 1,090 185 5,550
July 103 3,190 321 9,960
August 13.0 403 81.3 2,520
September 7.81 234 41.9 1,260
October 241 7,480 56.1 1,740
November 136 4,070 41.5 1,240
December 41.7 1,290 33.4 1,040

Total 29,000 56,600
Daily average 79.5 79.5 155 155

Total phosphorus
January 38.7 1,200 595 18,400
February 80.6 2,260 99.9 2,800
March 34.6 1,070 166 5,130
April 43.9 1,320 142 4,250
May 25.2 780 324 10,000
June 15.3 460 68.1 2,040
July 41.2 1,280 171 5,300
August 9.05 281 35.6 1,100
September 8.91 267 26.0 780
October 818 25,400 70.6 2,190
November 329 9,880 63.5 1,910
December 43.9 1,360 40.7 1,260

Total 45,500 55,200
Daily average 124 125 150 151

Total organic carbon
January 4,430 137,000 81,500 2,530,000
February 8,420 236,000 14,400 402,000
March 3,870 120,000 24,900 772,000
April 4,110 123,000 14,200 425,000
May 2,020 62,600 25,400 789,000
June 1,010 30,300 6,060 182,000
July 3,650 113,000 17,200 534,000
August 452 14,000 3,130 97,100
September 332 9,960 1,750 52,500
October 131,000 4,070,000 4,300 133,000
November 43,200 1,300,000 5,520 166,000
December 5,890 183,000 5,060 157,000

Total 6,390,000 6,240,000
Daily average 17,400 17,500 17,000 17,100

Table 5.  Estimated loads from regression models for 08070200 East Fork San Jacinto River near New Caney, Texas, 2006–07.

[In pounds]
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Summary
In December 2005, the U.S. Geological Survey, in coop-

eration with the City of Houston, Texas, began collecting dis-
crete water-quality samples for nutrients, total organic carbon, 
bacteria (Escherichia coli [E. coli] and total coliform), atra-
zine, and suspended sediment at two gaging stations upstream 
from Lake Houston near Houston. Data from discrete water-
quality samples, in conjunction with monitored real-time data 
already being collected—physical properties (specific conduc-
tance, pH, water temperature, turbidity, and dissolved oxygen), 
streamflow, and rainfall—were used to develop regression 
models for predicting water-quality constituent concentrations 
for inflows to Lake Houston.

The regression equations presented in this report are 
site specific to streamflow-gaging stations on two tributaries 
to Lake Houston; however, the methods that were developed 
and documented could be applied to other tributaries to Lake 
Houston for estimating real-time water-quality data. The con-
tinuously monitored streamflow and water-quality properties, 
in conjunction with regression models using those data as sur-
rogates for selected constituents (nitrite plus nitrate nitrogen, 
total phosphorus, total organic carbon, E. coli, atrazine, and 
suspended sediment) can be used to estimate concentrations 
for constituents that are lacking a continuous record. Used in 
conjunction with monitored real-time data, real-time modeled 
water-quality constituents will help water managers make 
critical near real-time decisions. Water managers will be able 
to assess the water quality of the tributaries of Lake Houston 
and identify effects on water quality in near real time. This 
information will help water managers make near real-time 
adjustments in drinking-water plant operations. 

Streamflow, physical property, and water-quality  
constituent data were collected at two U.S. Geological Survey 
streamflow-gaging stations, 08068500 Spring Creek near 
Spring, Texas (Spring Creek site), and 08070200 East Fork 
San Jacinto River near New Caney, Texas (East Fork San 
Jacinto site). During 2005–07, discrete samples were collected 
at the Spring Creek site (39 samples) and at the East Fork 
San Jacinto site (38 samples). Hydrologic conditions within 
the Spring Creek and East Fork San Jacinto River watersheds 
vary and might affect chemical constituent concentrations, 
so discrete water-quality samples were collected over a 
wide range of streamflow conditions. Discrete water-quality 
samples for the first year (December 2005–November 2006) 
of this study were collected about every 2 weeks to observe 
seasonal patterns in water quality. Samples at these fixed-
frequency sample times were collected as scheduled without 
regard to hydrologic condition, such as rising, falling, or stable 
streamflows. During storms or periods of high flow, unsched-
uled samples were also periodically collected during the 
first year of the study. Discrete water-quality samples for the 
second year (December 2006–December 2007) of the study 
were collected once a month. As in the first year of the study, 
stormwater-runoff samples for the second year were collected 
whenever possible.

Regression analyses were done using streamflow, con-
tinuous water-quality, and discrete water-quality data collected 
during 2005–07 at the Spring Creek and East Fork San Jacinto 
sites. Rainfall data obtained from a rain gage monitored by the 
Harris County Homeland Security and Emergency Manage-
ment and colocated with the Spring Creek site were used in 
the regression analyses. The R environment for statistical 
computing was used to develop the regression models for 

Table 5.  Estimated loads from regression models for 08070200 East Fork San Jacinto River near New Caney, Texas, 2006–07—
Continued.

Month
2006 Loads 2007 Loads

Estimated daily  
average for month

Total estimated  
for month

Estimated daily average 
for month

Total estimated  
for month

Suspended sediment
January 17,600 545,000 1,340,000 41,600,000
February 48,900 1,370,000 50,700 1,420,000
March 9,530 295,000 106,000 3,280,000
April 36,300 1,090,000 115,000 3,460,000
May 5,290 164,000 215,000,000 6,660,000,000
June 3,390 102,000 35,400 1,060,000
July 17,800 553,000 277,000 8,600,000
August 1,130 34,900 13,900 431,000
September 841 25,200 6,360 191,000
October 737,000 22,800,000 454,000 14,100,000
November 185,000 5,550,000 71,600 2,150,000
December 18,400 571,000 15,200 471,000

Total 33,100,000 6,740,000,000
Daily average 90,100 90,800 18,100,000 18,500,000
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estimating real-time concentrations for selected water-quality 
constituents. Multiple linear regression analyses were done 
using the leaps and bounds algorithm, an exhaustive, all- 
subset method for selecting the preferred model for each 
constituent. The leaps and bounds package uses a search 
technique to find the best subsets of possible models where 
“best” describes a model as having a minimum residual sum 
of squares for a given number of variables. Numerous possible 
regression models were evaluated to determine the best-fit 
relation between physical properties of the water and water-
quality data. The potential explanatory or predictive variables 
included discharge (streamflow), specific conductance, pH, 
water temperature, turbidity, dissolved oxygen, rainfall, and 
time (to account for seasonal variations inherent in some 
water-quality data). The response variables at each site were 
nitrite plus nitrate nitrogen, total phosphorus, organic carbon, 
E. coli, atrazine, and suspended sediment. Because normally 
distributed response and explanatory variables with linear 
relations and constant variance were required for statistically 
valid multiple linear regression models, transformations were 
done when necessary to increase linearity among response 
and explanatory variables to improve normality and reduce 
heteroscedasticity.

The explanatory variables provide easily measured 
quantities as a means to estimate concentrations of the various 
constituents under investigation, with accompanying estimates 
of measurement uncertainty. Each regression equation can be 
used to estimate concentrations of a given constituent in real 
time, on the basis of explanatory variables also measured in 
real time. Corresponding 90-percent prediction intervals can 
be computed to display the uncertainty associated with the 
estimate. 

The best-fit regression models at the Spring Creek and 
East Fork San Jacinto sites frequently had different statis-
tically significant explanatory variables. The significant 
explanatory variables in the best-fit model for estimating  
total nitrite plus nitrate at the Spring Creek site were spe-
cific conductance and pH. In contrast, streamflow and a  
seasonal term were the explanatory variables for estimating 
the concentration of nitrite plus nitrate for the East Fork  
San Jacinto site. The statistically significant explanatory  
variables in the best-fit model for estimating total phospho-
rus at the Spring Creek site were specific conductance,  
water temperature, and turbidity—all logarithmically trans-
formed using the Box-Cox procedure. At the East Fork  
San Jacinto site, streamflow, specific conductance, turbidity, 
and the periodic functions sine and cosine, with periods of  
4p, to adjust for seasonal effects resulted in the best-fit 
model for estimating total phosphorus. Explanatory variables 
in the best-fit model for estimating organic carbon concen-
trations at the Spring Creek site were specific conductance, 
turbidity, and sine and cosine terms for seasonal fluctuations. 
Explanatory variables in the best-fit regression model for  
estimating organic carbon at the East Fork San Jacinto site 
were streamflow and turbidity. The statistically significant 
explanatory variables included in the best-fit regression  

model for estimating E. coli at the Spring Creek site were 
streamflow and rain. At the East Fork San Jacinto site,  
logarithmically transformed streamflow and turbidity  
were the explanatory variables included in the best-fit  
regression model for estimating E. coli. Although atrazine 
samples were collected at each site, a sufficient number  
of uncensored atrazine concentrations to construct a regres-
sion model were available only at the Spring Creek site. 
Streamflow, turbidity, and seasonal, periodic terms were  
the explanatory variables in the best-fit regression model 
for atrazine at the Spring Creek site. Statistically signifi-
cant explanatory variables in the best-fit model for estimat-
ing suspended-sediment concentration at the Spring Creek  
site were streamflow, water temperature, and turbidity, 
whereas streamflow and turbidity were the explanatory  
variables in the best-fit model for the East Fork San Jacinto 
site.

Streamflow and turbidity were statistically significant 
estimators for most constituents at the Spring Creek and East 
Fork San Jacinto sites. Streamflow, turbidity, and all real-time 
monitored physical properties, except for dissolved oxygen, 
had statistical significance in at least one of the regression 
equations. Sine and cosine functions of time were used to 
explain seasonal variations in total organic carbon and atrazine 
at the Spring Creek site and total phosphorus at the East Fork 
San Jacinto site.

For each regression equation, the adjusted R-squared 
was evaluated as an indicator of the regression equation to 
explain variability in constituent concentrations. The adjusted 
R-squared for each best-fit regression equation at the Spring 
Creek site were .925 for nitrite plus nitrate, .882 for total  
phosphorus, .756 for total organic carbon, .812 for E. coli, 
.745 for atrazine, and .917 for suspended sediment. Also the 
median relative percent difference was computed for each 
equation. The median relative percent difference compares 
the measured concentrations to the concentrations estimated 
by the regression equations, so the smaller the relative percent 
difference the better the regression equation. The median 
relative percent difference for the Spring Creek site was 4.00 
for nitrite plus nitrate, 4.45 for total phosphorus, 4.41 for total 
organic carbon, 9.78 for E. coli, 9.95 for atrazine, and 4.50 
for suspended sediment. The adjusted R-squared for each 
equation at the East Fork San Jacinto site was .712 for nitrite 
plus nitrate, .719 for total phosphorus, .878 for total organic 
carbon, .607 for E. coli, and .745 for suspended sediment. 
The median relative percent difference for the East Fork San 
Jacinto site was 9.98 for nitrite plus nitrate, 8.00 for total phos-
phorus, 4.82 for total organic carbon, 10.0 for E. coli, and 6.69 
for suspended sediment.

In conjunction with estimated concentrations, constituent 
loads were estimated by multiplying the estimated concentra-
tion by the corresponding streamflow and applying the appro-
priate conversion factor. By computing loads from estimated 
constituent concentrations, a continuous record of estimated 
loads can be available for comparison to total maximum daily 
loads.
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