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Groundwater Hydrology and Chemistry in and near an
Emulsified Vegetable-0il Injection Zone, Solid Waste
Management Unit 17, Naval Weapons Station Charleston,
North Charleston, South Carolina, 2004-2009

By Don A. Vroblesky,' Matthew D. Petkewich,' Mark A. Lowery,' Kevin J. Conlon," and Clifton C. Casey?

Abstract

The U.S. Geological Survey and the Naval Facilities
Engineering Command Southeast investigated the hydrology
and groundwater chemistry in the vicinity of an emulsified
vegetable-oil injection zone at Solid Waste Management
Unit (SWMU) 17, Naval Weapons Station Charleston, North
Charleston, South Carolina. In May 2004, Solutions-IES
initiated a Phase-I pilot-scale treatability study at SWMU17
involving the injection of an edible oil emulsion into the
aquifer near wells 17PS-01, 17PS-02, and 17PS-03 to treat
chlorinated solvents. The Phase-I injection of emulsified
vegetable oil resulted in dechlorination of trichloroethene
(TCE) to cis-1,2-dichloroethene (¢cDCE), but the dechlorina-
tion activity appeared to stall at cDCE, with little further
dechlorination of ¢DCE to vinyl chloride (VC) or to ethene.
The purpose of the present investigation was to examine
the groundwater hydrology and chemistry in and near the
injection zone to gain a better understanding of the apparent
remediation stall. It is unlikely that the remediation stall
was due to the lack of an appropriate microbial community
because groundwater samples showed the presence of
Dehalococcoides species (sp.) and suitable enyzmes. The
probable causes of the stall were heterogeneous distribution
of the injectate and development of low-pH conditions in the
injection area. Because groundwater pH values in the injection
area were below the range considered optimum for dechlorina-
tion activity, a series of tests was done to examine the effect
on dechlorination of increasing the pH within well 17PS-02.
During and following the in-well pH-adjustment tests, VC
concentrations gradually increased in some wells in the injec-
tion zone that were not part of the in-well pH-adjustment tests.
These data possibly reflect a gradual microbial acclimation to
the low-pH conditions produced by the injection. In contrast,
a distinct increase in VC concentration was observed in well
17PS-02 following the in-well pH increase. Adjustment of the

"'U.S. Geological Survey, South Carolina Water Science Center

2 Formerly with the Naval Facilities Engineering Command Southeast

pH to near-neutral values in well 17PS-02 may have made
that well relatively favorable to VC production compared with
much of the rest of the injection zone, possibly accounting

for acceleration of VC production at that well. Following

a Phase-II injection in which Solutions-IES, Inc., injected
pH-buffered emulsified vegetable oil with an improved-
efficiency injection approach, 1,1-dichloroethene, TCE, and
¢DCE rapidly decreased in concentration and are now (2009)
undetectable in the injection zone, with the exception of a

low concentration (43 micrograms per liter, August 2009) of
¢DCE in well 17PS-01. In August 2009, VC was still present
in groundwater at the test wells in concentrations ranging
from 150 to 640 micrograms per liter. The Phase-II injection,
however, appears to have locally decreased aquifer permeabil-
ity, possibly resulting in movement of contamination around,
rather than through, the treatment area.

Introduction

Groundwater contamination by volatile organic
compounds (VOCs) is present at Solid Waste Management
Unit (SWMU) 17 at the Naval Weapons Station (NWS)
Charleston, North Charleston, South Carolina (fig. 1) and
across a street from SWMU16, a former landfill (fig. 2).
Although SWMU17 was used primarily for surface disposal
of solid waste between 1950 and 1978 and disposal of engine
oil between 1965 and 1966 (TetraTech NUS, Inc., 2006),
the primary VOCs of concern in groundwater at the site are
chlorinated solvents. A tree-coring investigation in 2002 by the
U.S. Geological Survey (USGS) provided a reconnaissance-
level initial delineation of the contaminant plumes (Vroblesky
and Casey, 2008). A study by Tetra Tech NUS, Inc. (2004),
involving installation and sampling of temporary wells,
confirmed the tree-core delineations and further defined the
contaminant distribution and described the general hydro-
geology. The studies found that groundwater contamination
at SWMU17 was present in two areas: a southern plume
consisting primarily of trichloroethene (TCE) (fig. 34) and
cis-1,2-dichloroethene (¢cDCE) that appeared to emanate from
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a shallow basin and a northern plume consisting primarily

of tetrachloroethene (PCE) of unknown origin. Additional
groundwater contaminants in the southern plume include vinyl
chloride (VC) and 1,1-dichloroethene. Although the present
investigation includes measurements of groundwater levels

in both SWMU16 and SWMU17, the primary area of focus
for this investigation is the groundwater contamination in the
southern part of SWMU7 (fig. 34).

A consulting firm, Solutions-IES, initiated an Environ-
mental Security Technology Certification Program (ESTCP)
project at SWMU 17 in 2004 to evaluate the effectiveness of
injecting emulsified-oil technology as a remediation alterna-
tive for subsurface VOC contamination (Project Number
ER-0221). During Phase I of the investigation in May 2004,
Solutions-IES injected about 1,260 pounds of emulsified-oil
substrate into the shallow aquifer in the southern part of
SWMU17 in a test plot about 20 feet (ft) by 20 ft at wells
17PS-01, 17PS-02, and 17PS-03 (Lieberman and Borden, in
press; fig. 4). Solutions-IES found that the injection resulted
in an initial rapid dechlorination of TCE to ¢DCE (Borden and
others, 2008). The remediation appeared to stall, however, at
¢DCE, with little or no further reduction of the cDCE to VC or
to ethene (Borden and others, 2008).

The USGS and the Naval Facilities Engineering
Command Southeast (NAVFACSE) began a groundwater

investigation of SWMU17 in 2005 to obtain information on
the groundwater chemistry in and near the injection zone and
to gain a better understanding of the nature of the remediation
stall. Initial field tests during the investigation indicated that
the pH in the injection area was below 6.0 and below the range
typically considered optimum for dechlorination activity (near
neutral). Solutions-IES modified the injectate to produce a
pH-buffered emulsified-oil substrate, based partly on informa-
tion obtained during the present investigation and partly on
confirmatory laboratory tests conducted in their own labora-
tory. During September 2628, 2006, and October 16—18,
2006, Solutions-1ES injected 3,030 pounds of pH-buffered
emulsified vegetable oil into the test zone as Phase-II of the
field test. This second injection was done by a direct-push
method, which resulted in a more efficient injection and
distribution than the recirculation method of the May 2004
injection. Following this second injection, Solutions-IES
reported rapid dechlorination of the solvents to VC and ethene,
with a decrease in total chlorinated solvent concentration of
more than 95 percent (Borden and others, 2008; Lieberman
and Borden, in press). In addition, Solutions-IES reported a
large increase in the Dehalococcoides sp. population and in
TCE reductase levels, with VC reductase levels remaining low
(Borden and others, 2008).
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o
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EXPLANATION
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Injection well monitored by
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Figure 4.

Locations of monitoring wells in the vicinity of the vegetable-oil injection area, Solid Waste Management Unit 17 (SWMU17),

Naval Weapons Station, Charleston, North Charleston, South Carolina.



Purpose and Scope

The purposes of this report are to (1) discuss the
groundwater hydrology and chemistry in and near the
vegetable-oil injection zone with the goal of gaining a better
understanding of the nature of the remediation stall following
the Phase-I injection of emulsified vegetable oil at SWMU17
and (2) present recent data on VOC concentrations in and
near the injection zone. Evaluation of the effectiveness of the
vegetable-oil injection at SWMU17 as a VOC-remediation
approach has been addressed by Solutions-IES in a conference
proceedings (Borden and others, 2008) and is the subject of an
in-depth separate document (Lieberman and Borden, in press)
as part of the ESTCP investigation. Groundwater chemical
and microbiological data collected from three wells in the
vegetable-oil injection area and two wells in the contaminated
aquifer upgradient from the injection area as part of the
present investigation provide the primary supporting informa-
tion for the present report; however, a substantial amount of
data collected by Solutions-IES from injection wells as part
of the ESTCP investigation (Lieberman and Borden, in press)
also are referred to in this report. This report also refers to
selected water-quality data from the ESTCP investigation for
monitoring wells that were sampled on dates other than during
the present investigation.

This report also discusses results of on-site jar studies and
passive in-well tests to examine the effect of increasing the pH
in monitoring wells on dechlorination activity at SWMU17.
Water-level data are presented as appendixes to this report.

Methodology

A series of jar and in-well tests were conducted by the
USGS and NAVFACSE to raise the pH of water in target
wells. The jar studies were done using glass jars containing
1 liter of tap or well water amended with pH-adjustment
media. From September 2005 to June 2006, permeable devices
containing alkaline material were deployed at four to five
depths across the screened interval of well 17PS-02. For a
deployment, the alkaline material consisted of one of the
following: granular calcite, magnesium oxide (MgO), sodium
bicarbonate, Portland-cement grout cylinders, or a mixture
of calcite and MgO. In general, the permeable bags consisted
of nylon mesh. When sodium bicarbonate was used, it was
deployed in a closed cylinder of porous polyethylene. In most
cases, one or more data loggers for pH were deployed along
with the string of permeable devices.

Because the in-well tests in well 17PS-02 were expected
to alter the water in the well casing but not necessarily in
the aquifer beyond the casing, sampling methodology was
used to allow collection of water within the well. The in-well
sampling methodology included collection and analysis of
water from passive diffusion bag (PDB) samplers that were
deployed at the same time as deployment of the pH-adjusting
media (table 1).
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Groundwater levels were collected by multiple
approaches. Primarily, groundwater levels were collected by
tape-down measurements using a Solinst™ electric tape and
correcting the measurements to feet above North American
Vertical Datum of 1988 (NAVD 88) by subtracting the
measurements from the measuring-point elevations. Measure-
ments were made at wells in the vicinity of the SWMU17
vegetable-oil injection during most sampling events. Synoptic
water-level measurements were made during a high and low
tide on September 10, 2008, and during a low tide on April 21,
20009, at all wells in SWMU16 and SWMU17 except for well
17MW-018S, which was not accessible. Water-level loggers in
seven wells recorded data at 15-minute intervals in 2009. To
ensure consistency of measurement to a common datum, all
of the measurement datums for the wells were resurveyed on
September 8, 2009 (table 2).

The USGS groundwater sampling at SWMU17
concentrated on a relatively small subset of the wells. The
wells were 17MW-06S, 17MW-07S, 17PS-01, 17PS-02, and
17PS-03 (fig. 4). Wells 17MW-06S and 17MW-07S were in
a contaminated part of the aquifer upgradient from the edible
vegetable-oil injection. Wells 17PS-01, 17PS-02, and 17PS-03
were in the immediate vicinity of the injection (fig. 4). In
addition, this investigation refers to monitoring data collected
from injection wells 17PSI-02, 17PSI-07, 17PSI-10, and
17PSI-13 by Solutions-IES for a separate investigation
(fig. 4; Lieberman and Borden, in press). The monitoring
wells and the injection wells were screened 8—18 ft below
land surface (BLS).

Low-flow sampling methodology (Barcelona and others,
1994; Shanklin and others, 1995; Sevee and others, 2000)
was used to collect groundwater samples from all of the wells
on most sampling dates. Exceptions were May 10, 2004, and
July 21, 2005, when the wells were sampled following a three-
casing volume purge. In addition, wells 17PS-01, 17PS-02,
and 17PS-03 developed a severe permeability loss caused by
vegetable-oil injections in September 2006. In an attempt to
obtain samples from these wells, these wells were purged and
then sampled the day following the purging to allow them to
recover. Because of the potential vapor loss associated with
this method of sampling, VOC concentrations from 2007
should be regarded with some level of uncertainty.

During low-flow sampling, the wells were purged at a
rate of approximately 100-200 milliliters per minute
(mL/min), until the water temperature, pH, dissolved oxygen
concentration, and specific conductance values stabilized and
no additional water-level drawdowns were observed.
Stabilization of temperature, pH, dissolved oxygen, and
specific conductance were observed by passing the water
through a flow-through cell containing sensors. The pumpage
was considered to be stabilized when the observed changes
over three 3-minute intervals were within +3 percent for water
temperature and specific conductance, within 0.1 unit for pH,
and within =10 percent for dissolved oxygen. Final dissolved
oxygen measurements were determined using a Chemetrics™
colorimetric field kit.
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Table 1. Chronology of pH-adjustment tests in well 17PS-02, Naval Weapons Station Charleston, North Charleston, South Carolina.
Date Deployment (?r re.moval o-f in-well Effect
pH-adjusting media
9/6/2005 Added granular calcite to well 17PS-02 No substantial change; pH was 5.9 on August 23, 2005, and
6.0 on September 12, 2005
9/28/2005 Added additional granular calcite to well 17PS-02 No data
10/13/2005 Removed granulated calcite from well 17PS-02 Low-flow sample pH was 5.8
10/20/2005 Added calcite-magnesium oxide (50/50) in well 17PS-02 | The pH at the top of the well screen increased from 5.9 on
October 19, 2005, to 6.2 on October 25, 2005
11/3/2005 Checked pH in well 17PS-02 and found it to be 6.7; The pH was 6.7. Black precipitate indicates a pH increase
replaced two of the calcite-magnesium oxide bags
with new bags of the same mix because the bags had
a black coating
11/4/2005 Removed the (50/50) mix bags from well 17PS-02 and No data
replaced them with calcite bags
12/12/2005 Removed calcite from well 17PS-02 and added porous No data

1/20/2006-2/16/2006

cylinders on February 16, 2006

6/1/2006-6/21/2006
17PS-03; removed the magnesium oxide on
June 21, 2006

polyethylene sleeves of sodium bicarbonate

Removed the sodium bicarbonate containers from well
17PS-02 and replaced them with grout cylinders; three
grout cylinders were deployed; removed the grout

Added magnesium oxide to wells 17PS-02 and

No data, but the sodium bicarbonate was nearly gone.
Although approximately 1 kilogram of sodium bicarbon-
ate was deployed, less than a gram remained

The pH in the top and bottom of the screened interval in
well 17PS-02 increased from about 5.7 prior to deploy-
ment to about 6.8 after deployment. Water obtained from
the well by collecting the first water to discharge from
peristaltic-pump tubing in the screened interval in well
17PS-03 had a pH of 7.2

Water samples were collected from wells for VOC
analysis by using PDB samplers during this investigation. A
comparison of PDB-sample results from different depths in
the screened intervals with low-flow sampling shows that the
results generally were within or near the range of
concentrations detected by at least one of the PDB samplers
(figs. 54-D, F, G). Well 17PS-02 was unusual in that the
low-flow VOC concentrations were within or near the con-
centration range detected by at least one of the PDB samplers
for the respective VOC in February 2006 (fig. 5D), but the
TCE concentration from low-flow sampling was substantially
higher than that from the PDB samplers in May 2006 (fig. 5E).
The variability in the comparison may be due to temporal vari-
ability in the contaminant distribution in the aquifer or in the
well or to changing groundwater-flow directions. Substantial
fluctuations in VOC concentrations at well 17PS-03 also were
detected in samples collected as part of the ESTCP investiga-
tion (Lieberman and Borden, in press).

Samples collected for microbial analysis using molecular
biological tools were obtained by using a variety of methods.
The methods included low-flow sampling and collecting

samples after purging multiple casing volumes. On some
sampling dates, sediment samples were obtained by using

a peristaltic pump to collect a slurry of water and sediment
from the sumps of selected wells. Samples were collected by
passing well water through 0.45-micron filters and sending the
filtrate to a commercial laboratory (Microbial Insights, Inc.)
for analysis. Samples were collected for both deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA). Because RNA
sample analysis was a relatively new tool, various approaches
for field preservation of the samples prior to shipment to

the laboratory were tested at SWMU17. Comparisons were
made among storing the samples at 4 degrees Celsius (°C)
using water ice, storing them frozen using dry ice, and storing
them at 4 °C after adding the preservative RNAlater® to the
samples. Although the results were highly variable, usually
more gene copies per milliliter of water were reported from
samples preserved with RNAlater® (fig. 6). Therefore, the
RNA samples typically were preserved with RNAlater® and
shipped on ice to the laboratory for analysis. DNA samples
were preserved by storing the samples at 4 °C.
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Table 2. Locations, data, and screened intervals of wells used in the investigation at Solid Waste Mangement Units 16

and 17, Naval Weapons Station Charleston, North Charleston, South Carolina.

[ft NAVD 88, feet above the North American Vertical Datum of 1988; ft BLS, feet below land surface]

Top of riser

Well name Northing Easting Gr?:;:;’l;v:;)ion elevation To(t:ll;ifg)th Scrtz:tnBill-l:)arval
(ft NAVD 88)
16MW-01S 397987.2661 2320919.034 4.89 7.78 14 4-14
16MW-02S 398042.1787 2320606.301 0.65 4.77 13 3-13
16MW-03S 397728.0346 2320274.067 2.08 4.74 13 3-13
16MW-04S 397189.5322 2320693.892 1.51 4.28 13 3-13
16MW-05S 397306.6424 2320382.639 1.63 4.40 13 3-13
17MW-02S 397442.5013 2321322.98 4.56 7.66 15 5-15
17MW-03S 397501.9857 2321135.31 5.95 8.74 15 5-15
17MW-04S 397023.706 2321129.466 4.39 7.15 15 5-15
17MW-05S 397272.7887 2321215.29 5.31 7.77 19 8-18
17MW-06D 397246.08 2321206.63 5.37 7.62 235 18-23
17MW-06S 397253.9852 2321209.39 5.49 7.88 19 8-18
17MW-07S 397234.3491 2321203.959 5.44 7.92 19 8-18
17MW-118S 397501.23 2321062.28 7.36 9.67 20 10-20
17MW-12D 397266.21 2321064.86 5.38 7.17 29 18-28
17MW-128 397256.37 2321070.34 5.41 7.37 14 4-14
17MW-13S 397847.74 2321436.38 5.39 7.49 14 4-14
17MW-14D 397530.54 2321499.6 4.05 6.63 25.5 15-25
17MW-14S 397539.42 2321498.64 3.95 6.27 14.5 4-14
17MW-15D 397436.19 2321462.83 3.45 5.90 40 29-39
17MW-15S 397434.77 2321457.71 3.76 6.00 20 10-20
17MW-16D 397350.51 2321425.29 3.48 5.89 425 3242
17MW-161 397350.2 2321420.68 3.66 6.02 25 15-25
17MW-16S 397351.01 2321430.67 3.52 5.80 15 5-15
17MW-17D 397284.48 2321379.32 3.52 5.97 37.5 27-37
17MW-171 397295.98 2321382.43 3.42 6.03 23.5 13-23
17MW-17S 397290.49 2321381.1 3.37 6.15 14.5 4-14
17MW-18D 397201.33 2321365.9 3.59 5.42 22.5 15-22
17MW-18S 397198.18 2321362.01 3.76 5.36 14.5 4-14
17MW-19S 397336.43 2321197.09 5.5 7.72 18 8-18
17MW-20S 397173.63 2321216.51 4.89 7.32 14 4-14
17MW-21S 397615.39 2321095.35 7.99 10.37 18 8-18
17MW-228S 397557.42 2321078.76 7.77 10.18 20 10-20
17MW-23S 397369.78 2321023.35 4.76 7.06 20 9-19
17PS-01 397239.0561 2321244.25 6.29 7.96 20.9 8.0-18
17PS-02 397241.5962 2321249.443 6.35 7.90 20.9 8.0-18
17PS-03 397248.0191 2321247.222 6.19 7.80 20.9 8.0-18

7
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Figure 5. Trichloroethene and cis-1,2-dichloroethene concentrations in passive diffusion bag samplers from various depths in the
screened interval during low-flow testing, Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston,
South Carolina.
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Figure 6. Ribionucleic acid (RNA) sample-preservation field methods for groundwater at wells (A) 177MW-07S and (B) 17PS-01,
Solid Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina, July 21, 2005.

Groundwater Hydrology

The study area, SWMU17, is located in a low-lying
forest and is nearly surrounded by local surface-water features
(fig. 2). The site geology, as described by TetraTech NUS, Inc.
(2006), consists of a sandy-clay or sandy-silt unit that extends
from land surface to a depth of about 5 to 11 ft BLS. The most
hydraulically conductive material is a silty-sand zone about
8 to 10 ft thick, coarsening downward (Tetra Tech NUS, Inc.,
2006). The silty-sand zone is underlain by silty clay with
shell fragments. A clay zone is present at a depth of 16 ft in
the vegetable-oil injection zone (Borden and others, 2008).
Slug-test data indicate that the mean hydraulic conductivity
was about 1.24 feet per day (ft/d) in wells screened above
20 ft BLS (Tetra Tech NUS, Inc., 2006). The calculated
seepage velocity in the upper surficial aquifer was about 5 to
11.3 feet per year (ft/yr; Tetra Tech NUS, Inc., 2006; Borden
and others, 2008).

Groundwater-flow directions near the treatment area
vary at SWMU17. A previous investigation reported that

water-level measurements taken in and near the injection zone
on seven different occasions showed seven widely different
groundwater-flow directions, some of them in opposite
directions (Lieberman and Borden, in press). The present
investigation found that the variations in groundwater-flow
directions are related to localized ponding, recharge,
evapotranspiration, tides, and possibly to differences in
hydraulic conductivity.

A groundwater mound is present at SWMU17, which
results in radial flow from SWMU17 toward SWMU6 to the
west and toward a surface-water feature to the east (figs. 7,

8, 9). The location of the groundwater mound shifts laterally
within SWMU17, resulting in localized shifts in groundwater-
flow directions. The shift in location of the groundwater
mound is partly caused by localized recharge from ponds

that form from poor drainage following rainfall events. The
highest water level measured at SWMU16 and SWMU17

on April 21, 2009, was 4.07 ft above NAVD 88 at well
17MW-038 (fig. 9), although that well did not have the
highest water level on other dates (figs. 7, 8). At the time of
measurement on April 21, 2009, substantial ponding was



10

Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-0il Injection Zone, SWMU17

Goose Creek

0 250 500 FEET
| 1 | 1 |

I T T 1 T

0 50 100 METERS

EXPLANATION
\] 1.5 Water-table elevation contour at approximately high tide,
\ September 10, 2008. Interval variable as shown. Datum
is NAVD 88. Dashed where inferred. Arrows show general
1.79 direction of groundwater movement
o Monitoring well and water-table elevation, in feet
above NAVD 88, September 10, 2008
o
I/
o/
!
e ()
[¢] /' / o
/] >
° (]
o
Q
o 8 o
N
o
o
° /

©2009 Tele Atlas

Image c 2009 DigitalGlobe
©2009 Europa Technologies
©2009 LeadDog Consulting

Figure 7. Water table at Solid Waste Management Unit (SWMU) 16 and SWMU17 at approximately high tide, Naval Weapons Station

Charleston, North Charleston, South Carolina, September 10, 2008.

present near well 17MW-03S because of runoff collection in
the topographically low area at that well. The ponding likely
resulted in localized recharge, making the groundwater levels
at well 17MW-03S higher than in surrounding wells.

An additional important influence on groundwater levels
at SWMU17 is evapotranspiration. Hydrographs of monitoring
wells in April 2009 showed a diurnal water-level change
and an overall declining trend (fig. 10). The water levels
declined about 0.1 to 0.2 ft during the late morning through
the afternoon and evening and rose during the night and early
morning. Although a substantial tidal influence was seen
during this and previous investigations on groundwater levels
in nearby SWMU16 (Tetra Tech NUS, Inc., 2004, 2006), the
consistent single daily cycle rather than a twice per day cycle
coincident with tides indicates that evapotranspiration is a
substantially more dominant influence on groundwater levels
than tidal fluctuations at SWMU17.

Water levels in some of the wells change more sharply
than in other wells, perhaps related in part to differences in
evapotranspirative intensity. For example, water levels at well
17MW 198, in the middle of the forest, decreased by about
0.35 ft between 3:30 a.m. and 8:00 p.m. on April 23, 2009.
During that same time period, the water levels in wells
17MW-178 and 17MW-18S, on the edge of the forest,
decreased by only 0.18 and 0.19 ft, respectively. The differ-
ence in magnitude of change results in changes in the apparent
direction of the hydraulic gradient throughout the day. On
some days, the water levels in well 17MW-17S were higher
or lower than the water levels in well 17MW-05S, depending
on the time of day (fig. 10). In addition, water levels in well
17MW-178S were as high or higher than water levels in inland
well 17MW-20S for days before declining below water levels
in well 17MW-20S.
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Figure 8. Water table at Solid Waste Management Unit (SWMU) 16 and SWMU17 at approximately low tide, Naval Weapons Station

Charleston, North Charleston, South Carolina, September 10, 2008.

The water level in well 17PS-02, in the vegetable-oil
injection zone, changed more slowly in comparison to nearby
wells. This is particularly noticeable during the part of the
day when evapotranspiration is most active (fig. 10). Thus,
part of the reason for the subdued water-level changes in well
17PS-02 may be the fact that no large trees are immediately
adjacent to the injection zone, resulting in a relatively lower
influence from evapotranspiration. An additional reason for
the relatively subdued response of the well 17PS-02 is that
the hydraulic conductivity at well 17PS-02 may be lower than
at nearby wells outside of the injection zone because of the
vegetable-oil injection. The importance of recognizing the
subdued nature of well 17PS-02 is that if that well is used
to obtain synoptic water levels, then substantially varying
hydraulic gradients and directions can be obtained, depending
on the time of day.

No direct tidal influence on water levels in wells at
SWMU17 was seen during this investigation; however, a
substantial tidal influence on groundwater levels at SWMU16
was observed during this and previous studies (Tetra Tech
NUS, Inc., 2004, 2006). Some of the nearshore wells at
SWMU16 are submerged at high tide. Overland flow during
high tide allows infiltration of river water downward into the
aquifer. As can be seen in figures 7 and 8, high-tide ground-
water levels in some near-shore wells can be more than 1 ft
higher than at low tide. The result is that the nearshore parts
of SWMU16 sometimes can have higher water levels than the
more inland parts (fig. 7). Because of the strong tidal influence
and the lack of a well in the middle of SWMU 16, the actual
groundwater-flow directions beneath SWMU16 can only be
approximated. Because groundwater from the southwestern
side of SWMU17 generally flows to SWMU16, however, it is
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Figure 9. Water table at Solid Waste Management Unit (SWMU) 16 and SWMU17 at approximately low tide, Naval Weapons Station

Charleston, North Charleston, South Carolina, April 21, 2009.

likely that tidal changes at SWMU16 have some level of
influence on groundwater-flow directions beneath the
southwestern part of SWMU17.

The complex hydrology of SWMU17 and the frequent
changes in hydraulic gradient make it difficult to determine
flow directions based simply on synoptic water-level
measurements. The average water levels at selected wells near
the vegetable-oil injection zone are based on 15-minute-

interval measurements for the period April 21 to May 13, 2009
(fig. 11). The resulting water-table configuration indicates a
groundwater hydraulic gradient of about 0.001 foot per foot
(ft/ft) in a southeastern direction. This hydraulic gradient is
consistent with previous investigations using 0.001 ft/ft to
calculate groundwater-flow rates of 1 to 11 ft/yr (Tetra Tech
NUS, Inc., 2004; Lieberman and Borden, in press).



Groundwater Hydrology 13

3.5

WATER LEVELS, IN FEET RELATIVE TO NAVD 88

— 17PS-02
— 17MW-05S
— 17MW-178
— 17MW-18S
— 17MW-198
— 17MW-20S
17MW-128

Figure 10. Hydrographs of monitoring wells
in the vicinity of the vegetable-oil injection
zone, Solid Waste Management Unit 17,
Naval Weapons Station Charleston, North
Charleston, South Carolina, April 23-30, 2009

Figure 11.

APRIL
2009
17MW-19S
212
o7 SWMU17 17MW-17S
N 191 ©
fb‘
H
0
N~
17PS-01
NM Q
8
N#
Forest °
17MW-18S
17MW-20S 1.88
© 1.97
0 25 50 100 FEET
IIIIIIIIII|IIII 1 |
0 5 10 15 20 METERS
EXPLANATION
1 SWMU17 extent
./ Injection test area
—— 2.10 — Average water-table elevation contour for the period

April 21 to May 13, 2009. Interval is 0.05 foot.

Datum is NAVD 88. Arrows show direction of
groundwater movement

17MW-19S o Monitoring well and name, and average water-level

212

elevation for the period April 21 to May 13, 2009,
in feet above NAVD 88. NM indicates not measured

Average water table based on 15-minute-interval data in the vicinity of the vegetable-oil injection area, Solid

Waste Management Unit 17, Naval Weapons Station Charleston, North Charleston, South Carolina, April 21 to May 13, 2009.



14 Groundwater Hydrology and Chemistry in and near an Emulsified Vegetable-0il Injection Zone, SWMU17

Groundwater Chemistry

Groundwater contamination in the southern part of
SWMU17 (fig. 3) consists of chlorinated VOCs. Measured
concentrations in groundwater at wells 17MW-06S and
17MW-078, upgradient from the vegetable-oil injection zone,
ranged from about 13,000 to 130,000 micrograms per liter
(ng/L) for TCE and from 295 to 8,040 pg/L for cDCE
(table 3). Vinyl chloride was not detected in groundwater at
these upgradient wells; however, the laboratory detection limit
often was 44 to 250 pg/L or higher due to the dilution factors
needed to measure the high concentrations of TCE and ¢DCE.

Higher TCE concentrations were detected in PDB
samplers at the top of the well screen relative to the bottom of
the well screen in wells 17MW-07S, 17PS-02, and 17PS-03
(figs. 5B, D, E, G). Thus, it is likely that the groundwater
contamination is more concentrated at depths shallower than
about 13 ft BLS than in deeper sediment. Some degree of
lateral heterogeneity of TCE concentrations also may be pres-
ent in the treatment area. During a test of low-flow sampling
methodology, TCE concentrations in well 17PS-03 gradually
increased from 900 pg/L, after field-property stabilization
(water level, temperature, pH, and specific conductance) and
purging one-half of a casing volume, to 10,000 ng/L after
purging three casing volumes (table 3). These data likely indi-
cate that well 17PS-03 was screened near an interface between
relatively low TCE concentrations (less than 1,000 pg/L) and
relatively high concentrations (greater than 9,000 pug/L).

Aquifer Terminal Electron-Accepting Processes

The aquifer was anaerobic during this investigation,
based on dissolved oxygen concentrations, usually ranging
from less than 0.025 milligram per liter (mg/L) to about
0.6 mg/L (table 4). Iron reduction is a likely terminal electron-
accepting process (TEAP) in the aquifer outside of the
injection zone. Data from Solutions-IES show that dissolved
iron in water from the injection wells increased from about
24 to 44 mg/L prior to injecting the vegetable oil to greater
than 200 mg/L following injection (Lieberman and Borden,
in press), indicating that the aquifer had a large amount of
bioavailable iron. Because of the strongly competitive nature
of iron-reducing bacteria relative to sulfate-reducing or
methanogenic bacteria, the presence of bioavailable iron in
this anaerobic aquifer where more efficient electron acceptors
are absent indicates that iron reduction is an active TEAP in
the shallow aquifer outside of the injection zone.

In addition to iron reduction, it is likely that groundwater
from the wells upgradient from the injection zone represents
an integration of multiple redox zones. The presence of
methane (usually greater than 50 pg/L) in groundwater from
wells 17MW-06S and 17MW-07S indicates that some amount
of methanogenesis was taking place in or upgradient from the
wells (table 3).

Data from the ESTCP investigation showed a substantial
increase in dissolved iron and a decrease in dissolved sulfate
concentrations in water from the monitored injection wells
during the months following the injection (Lieberman and
Borden, in press). Dissolved sulfate concentrations in water
from the injection wells prior to the injection ranged from
tens of milligrams per liter to greater than 100 mg/L. In the
months following the Phase-I injection, dissolved sulfate
concentrations decreased to less than 0.5 mg/L in water from
the injection wells (Lieberman and Borden, in press). The
decrease in sulfate indicates that enough ferrous iron was
removed from the aquifer sediment to allow sulfate reduction
to proceed or that enough electron acceptor was added so that
competition between iron and sulfate reducers was diminished.
These data indicate that the TEAP near the injection wells
immediately following the Phase-I injection probably was iron
reduction followed by sulfate reduction.

Depletion of dissolved sulfate to undetectable concentra-
tions by sulfate reduction removes the electron acceptor
needed to support sulfate reduction; therefore, methanogenesis
likely became an active TEAP near the injection wells. The
shift to methanogenesis can be seen in the data collected
by Solutions-IES, which indicated that by November 2004,
methane concentrations in groundwater from the monitored
injection wells increased by factors of about 5.5 to 14 (Lieber-
man and Borden, in press). At most of the sampled injection
wells, methane concentrations again showed an increase in the
February 2005 sampling. By May 2005, Solutions-IES data
showed that the methane concentrations in the tested injection
wells had increased by factors ranging from about 24 to 197
(Lieberman and Borden, in press). Thus, the TEAP in the
aquifer adjacent to the injection wells gradually shifted from
iron or sulfate reduction to methanogenesis.

The progress to more reducing groundwater conditions
was not as intense at monitoring wells 17PS-01 and 17PS-02,
which are in the injection zone, as it was at injection wells
17PSI-02, 17PSI-07, 17PSI-10, and 17PSI-13 (fig. 4). Data
from the present investigation indicated that sulfate concentra-
tions remained between 26 and 50 mg/L in monitoring wells
17PS-01 and 17PS-02 in the injection zone through May 2006
(table 4). Data from the ESTCP investigation indicate that
sulfate concentrations were between 2.7 and 20.8 mg/L at
well 17PS-03 during the same period (Lieberman and Borden,
in press). These concentrations are sufficient to maintain
sulfate reduction as a predominant TEAP under conditions of
relatively low available electron donor (Vroblesky and others,
1996). The data from both investigations collectively indicate
that redox conditions in the aquifer near wells 17PS-01
and 17PS-02 in the injection zone were more oxidizing
than near the injection wells. Support for the hypothesis of
redox heterogeneity in the injection zone can be seen in the
fact that the total organic carbon (TOC) concentrations in
groundwater at the injection wells (usually in the hundreds
to thousands of milligrams per liter; Lieberman and Borden,
in press) were substantially greater than at wells 17PS-01
and 17PS-02 (about 6 to 27 mg/L between July 2005 and
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May 2006; table 4). The redox heterogeneity probably is the
result of irregular distribution of the injectate, which was most
concentrated near the injection wells and apparently much less
concentrated near wells 17PS-01 and 17PS-02.

Unlike in wells 17PS-01 and 17PS-02, the sulfate
concentrations in well 17PS-03 rapidly declined following the
Phase-I injection. Pre-injection sampling by Solutions-IES
detected 77.5 mg/L of sulfate in groundwater at well 17PS-03
(Lieberman and Borden, in press). Subsequent sampling
during the present and the ESTCP investigation show that
sulfate concentrations in water from well 17PS-03 declined to
less than 2.5 mg/L. This is probably caused by heterogeneous
distribution of injectate, resulting in more substrate and more
rapid depletion of efficient electron acceptors at well 17PS-03
than at wells 17PS-01 and 17PS-02. The TOC concentration a
few months after the Phase-I injection was somewhat higher at
well 17PS-03 (84.5 mg/L) than at wells 17PS-01 (62.7 mg/L)
and 17PS-02 (62.9 mg/L; Lieberman and Borden, in press).
Thus, TEAP conditions at well 17PS-03 probably became
more reducing than at wells 17PS-01 and 17PS-02 within
months after the injection.

A marked difference in redox was apparent following
the Phase-II injection relative to the Phase-I injection. During
the Phase-II injection, the injectate was more efficiently
distributed and injected in larger quantity than during the
Phase-I injection (Lieberman and Borden, in press). Following
the Phase-II injection in September and October 2006, sulfate
concentrations declined to less than 1 mg/L in wells 17PS-01
and 17PS-02. The data indicate a probable shift to methano-
genesis in the aquifer at wells 17PS-01 and 17PS-02.

Groundwater and In-Well pH

The pH of the groundwater can be an important influence
on microbial reduction of chlorinated solvents. Although
reductive dechlorination of chlorinated solvents in a low-pH
environment (2—4 range) has been reported in a Fenton’s
reagent treatment area (Bradley and others, 2007), the more
common observation is that microbial reductive dechlorination
substantially decreases with decreasing pH below neutral
and with maximum chlorinated-solvent dechlorination rates
between pH values of about 6.8 to 7.6 (Holliger and others,
1993; Zhuang and Pavlostathis, 1995; Wiedemeier and others,
1996; Cirpka and others, 1999; Fennell and Gossett, 2003).
One study showed that although Dehalococcoides sp. were
inhibited from dechlorination activity in an aquifer having a
pH of about 4.0, they were not killed by the low pH and could
reactivate after a suitable pH was established (Dennis and
others, 2008).

Groundwater Chemistry 19

Ambient pH

Data from multiple depths in monitoring wells
17MW-06S and 17MW-07S indicate that the pH in the
wells outside the injection area show a seasonal variation in
vertical gradient. A strong vertical gradient was present in
well 17NW-06S in May 2006, with lower pH values near the
top of the well than at the bottom of the well. The pH in well
17MW-06S was 5.2 to 5.6 near the top of the 10-ft well screen
and about 6.3 at the bottom of the well screen in May 2006
(fig. 124). Data loggers in the top and bottom parts of the
screened intervals of well 17MW-07S detected a similar
pH gradient, with a pH of 5.76 near the top part of the 10-ft
screened interval and 6.34 near the bottom part of the screened
interval in October 2005 (data not shown). The warm water at
the top of the well relative to the bottom of the well during the
summer limited the amount of thermally induced mixing in the
well (fig. 12B). Thus, the data indicate a downward increase in
pH in the aquifer outside of the injection area.

In the winter, however, cooler water at the top of the well
relative to the bottom of the well initiates in-well convection.
At the Naval Weapons Station Charleston, thermal convection
continues through mid-March (Vroblesky and others, 2007)
and sometimes extends into April or May (unpublished data
available at the USGS South Carolina Water Science Center).
Wells 17MW-06S and 17MW-07S are screened across the
same interval and are approximately 20 ft apart, indicating
that they are subject to the same temperature-induced effects.
A vertical profile of well 17MW-07S in the winter shows that
the shallow water in the well was more than 2 °C cooler at
the top of the well than at the bottom of the well, indicating
that convection was occurring in the wells. The convection
eliminated the pH gradient and produced uniform pH values of
approximately 5.6 standard units in well 17MW-07S
(fig. 124). Continuous data loggers in the top and bottom of
the screened interval of well 17MW-07S showed that during
2005, the pH gradient in the well disappeared in early Decem-
ber after the shallow water became cooler than the deeper
water. It is likely that the convection is an in-well process
rather than an aquifer process. Thus, during winter months,
static measurements of pH in wells at the site with no flow-
limiting devices probably do not represent pH stratification in
the adjacent aquifer.

The pH of groundwater in the injection area was less
variable with depth. Data loggers deployed in well 17PS-02
showed that in the thermally stable part of late May 2006,
the pH was about 5.9 in the bottom part of the 10-ft screened
interval and about 6.0 in the top part of the screened interval
(fig. 13). In early June 2006, the pH in well 17PS-02 ranged
from about 6.0 near the bottom of the screened interval to
about 5.9 at the top of the screened interval. Data collected by
the Solutions-IES showed that the pH at the injection wells
from September 2004 to May 2005 ranged from about 4.0 to
5.2 (Robert Borden, North Carolina State University, written
commun., 2006).
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Figure 12. Seasonal differences in the (4) pH and (B) temperature profiles in monitoring wells at Solid Waste Management Unit 17,
Naval Weapons Station Charleston, North Charleston, South Carolina, February and May 2006.
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Figure 13. Changes in pH in the screened interval of well
17PS-02 following deployment of magnesium oxide, Solid Waste
Management Unit 17, Naval Weapons Station Charleston, North
Charleston, South Carolina, April through July 2006.

Results of pH-Adjustment Tests

The pH-adjustment tests at SWMU 17 showed that a
variety of media were capable of raising the pH in jars of
pH-adjusted tap water and well water. Sodium hydroxide
(41grams in a liter of water) raised the pH of tap water from
4.9 to 6.5 in an hour. A solidified cylinder of well grout (type 1
Portland cement) raised the pH of tap water from 5.0 to 11.7
after about 8 hours. A container of commercial pH-adjustment
media for swimming pools (Poolife™) raised the pH of tap
water from 4.6 to 11.3 and raised the pH of well water from

well 17PS-01 from 5.6 to 10.6 in 30 minutes. The pH of
groundwater from well 17PS-02 showed a slight increase from
5.6 to 5.9 during the 2.5 hours of observation when a bag of
granular magnesium oxide was added. When granular calcite
was added to the test jar containing groundwater, little or no
change in pH (5.6 to 5.8) was observed relative to the control
test jar (5.6 to 5.8) during the 2.5-hour test, presumably
because of the comparatively low dissolution rate.

Jar studies showed that the pH of well water from
well 17PS-01 in a jar containing a bag of commercial pH-
adjustment media for swimming pools increased from 5.8
in the unamended control jar to 10.9 in the test jar. Despite
the effectiveness of the pH adjustment, the commercial
pH-adjustment media were not deployed in wells at SWMU17
because of concern that the rapid dissolution of the media and
the rapid pH shift could produce a short-lived pH extreme
that would be harmful to the native microbial populations and
would not last long enough to allow the microbial community
to acclimate. It is interesting, however, that the substantial pH
increase from the commercial pH-adjustment media resulted
in production of black precipitate from the well water in the
jar with the commercial pH-adjustment media. The black
precipitate was not observed in jars containing well water
in which the pH was not adjusted or in which the pH adjust-
ment was more subdued than in the jar with the commercial
pH-adjustment media.

In-well experiments involving deployment of pH-
adjustment media began in September 2005, with calcite-
magnesium oxide deployment beginning in October 2005
(table 1). Down-hole pH data are not available during the
initial deployment of calcite-magnesium oxide because of
problems with the data logger. It is clear, however, that the
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deployment substantially increased in-well pH values because
the black precipitate that was observed as a result of the
substantial pH increase in jar studies also was observed on
the calcite-magnesium oxide bags deployed in well 17PS-02
and recovered on November 3, 2008. Furthermore, down-hole
pH values from a later deployment of magnesium oxide in

the same well showed a substantial pH increase in June 2006
(fig. 13). Comparison of the sharp pH increase in June 2006
in well 17PS-02 after deployment of magnesium oxide further
indicates that the October to November 2005 deployment of
calcite-magnesium oxide increased the in-well pH to near
neutral values.

The data indicate that the pH in well 17PS-02 increased
during a series of in-well deployments of alkaline material.
The increases probably began in late October 2005. Because
these in-well tests did not involve injection of substrate into
the aquifer, the direct influence of the pH adjustment probably
did not extend far beyond the immediate vicinity of the
screened interval.

Contributing Factors Affecting the
Stall in Dechlorination Activity
Following the Phase-l Emulsified
Vegetable-0il Injection

The Phase-I injection of emulsified vegetable oil resulted
in dechlorination of TCE to ¢DCE, but the dechlorination
activity appeared to stall at cDCE, with little further dechlori-
nation of ¢cDCE to VC or to ethene (Borden and others, 2008;
Lieberman and Borden, in press). The initial dechlorination
activity is consistent with other studies that found reductive
dechlorination of TCE to ¢cDCE to be common at sites where
conditions are at least sulfate-reducing (Bradley, 2003). A
variety of factors can contribute to the lack of continued
dechlorination to VC and ethene. The primary factors are the
lack of bacteria capable of efficient dechlorination of cDCE
to ethene and insufficient electron donors to achieve strongly
reducing conditions. In addition, conditions need to be within
an acceptable range for pH, temperature, and moisture, and
sufficient nutrients need to be present (Looney and Vangelas,
2004). In some cases, the lack of apparent VC and ethene
accumulation may be due to anaerobic oxidation of VC and
ethene (Bradley and Chapelle, 1996).

The cause of the stall in reductive dechlorination follow-
ing the Phase-I injection at SWMU 17 does not appear to be a
lack of bacteria capable of efficient dechlorination. Molecular
analysis as part of this investigation showed the presence
of Dehalococcoides sp. and BVC, which is VC reductase
associated with Dehalococcoides sp. strain BAV1 (table 5).
The presence of members of the Dehalococcoides group is
related to completed dechlorination (Hendrickson and others,
2002; Cupples and others, 2003; He and others, 2003a, b).

Strain BAV1 grows using all DCE isomers and VC as electron
acceptors and cometabolizes PCE and TCE, efficiently
converting these compounds to ethene and inorganic chloride
(He and others, 2003b).

One major factor likely affecting the dechlorination
stall in the months following the Phase-I injection was the
low pH values in the aquifer. Following the 2004 injection,
the groundwater pH in parts of the injection zone declined
to about 5.0 (Borden and others, 2008). The groundwater pH
was below the optimum range for microbial dehalogenation of
chlorinated ethenes, which is 6.8 to 7.6 (Holliger and others,
1993; Zhuang and Pavlostathis, 1995; Wiedemeier and others,
1996; Cirpka and others, 1999; Fennell and Gossett, 2003).
Loading an aquifer with readily degradable organic substrate,
such as vegetable oil, can result in a buildup of low molecular-
weight organic acids, such as acetate, which can lower the pH
in a poorly buffered aquifer. Acetic acid concentrations greater
than 1 mg/L were detected in water from the injection-zone
monitoring wells on some occasions during 2005-2006, but
not in water from nearby wells outside of the injection zone
(table 4). The accumulation of organic acids may be related to
acid production by fermenting bacteria at a rate faster than the
acids can be consumed by methanogens, or to methanogens
using the carbon dioxide reduction pathway instead of the
acetotrophic pathway (Bradley and others, 1993; McMahon
and others, 1995).

A second major factor likely affecting the dechlorina-
tion stall in the months following the Phase-I injection was
the heterogeneous distribution of injected substrate. The
heterogeneous distribution can be seen in the substantially
higher TOC concentrations in groundwater from the injection
wells (usually greater than 500 mg/L; Lieberman and Borden,
in press) relative to concentrations in groundwater from
the monitoring wells 17PS-01 and 17PS-02 in the injection
zone. Data from Lieberman and Borden (in press) found that
TOC in wells 17PS-01 and 17PS-02 ranged from less than
5 to 62.9 mg/L. This investigation found a range of TOC
concentrations for wells 17PS-01 and 17PS-02 from about
6 to 12 mg/L during July and August 2005. In areas receiving
relatively low amounts of injectate, such as at wells 17PS-01
and 17PS-02, the rate of microbial activity apparently was
insufficient to remove the sulfate (table 4), indicating a
persistence of iron or sulfate reduction. Groundwater from
the wells in the injection zone contained less than 100 pg/L of
methane prior to November 2004 and increasing amounts of
methane in subsequent samplings (Lieberman and Borden, in
press). Thus, in areas receiving substantially more injectate,
such as near the injection wells, the amount of electron donor
was sufficient to allow microbial removal of ferric iron and
sulfate, eventually resulting in methanogenic conditions.

In injection wells 17PSI-02, 17PSI-07, 17PSI-10, and
17PSI-13, the VC concentrations changed from less than
5 pg/L to about 10 to 40 pg/L during about November 2004
to May 2005 (Lieberman and Borden, in press). Thus, some
low level of VC production was initiated at the injection wells
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Contributing Factors Affecting the Stall in Dechlorination Activity Following the Phase-1 Emulsified Vegetable-Qil Injection
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following the Phase-I injection. During October 2005, the VC
concentration in the aquifer at well 17PS-02 was less than

10 pg/L (table 3). The data indicate that in the months follow-
ing the Phase-I injection, aquifer conditions at the injection
wells were more conducive to VC production than conditions
at well 17PS-02.

The VC concentration in water from low-flow sampling
at well 17PS-02 substantially increased from less than 10 pg/L
in October 2005 to 422 pg/L in February 2006 (fig. 14;
table 3), and the VC concentration in the adjacent monitor-
ing wells remained less than 100 pg/L (table 3). The VC
concentration at well 17PS-02 was substantially higher than in
groundwater from the injection wells (less than 5 to 25 pg/L)
for August 2005 and March 2006 (Lieberman and Borden, in
press). The persistence of 49 mg/L of sulfate in groundwater
at well 17PS-02 in February 2006 indicates that iron or sulfate
reduction remained active TEAPs at some level within or
near the screened interval despite a slight increase in methane
concentration (tables 3, 4). Thus, even though conditions were
more oxidizing at well 17PS-02 than in the injection wells,
VC production at well 17PS-02 outpaced VC production in the
injection wells from October 2005 to February 2006, during
the time of the pH-adjustment tests in well 17PS-02.
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Figure 14. Changes in volatile organic compound

concentrations in low-flow groundwater samples from well
17PS-02 during 2005-2006 showing initiation of vinyl chloride
production following in-well pH adjustments, Solid Waste
Management Unit 17, Naval Weapons Station Charleston, North
Charleston, South Carolina, August 2005 through August 2006.

The VC concentration in well 17PS-02 continued to
increase following cessation of the pH-adjustment tests
in February 2006. By May 2006, the VC concentration in
groundwater at the well had risen to 1,430 pg/L, while the
VC concentration in well 17PS-01 remained at less than
50 pg/L (table 3). The VC concentrations in the injection
wells remained below 100 pg/L through September 2006
(data from Lieberman and Borden, in press). The ethene
concentration in water from low-flow samples at well
17PS-02 increased from 3.1 pg/L in February 2006 to
16 pg/L in May to 54.7 ng/L in August, indicating an
increase in complete dechlorination activity (table 3).

The VC concentrations in water from well 17PS-03
increased from less than 100 pg/L in February 2006
to 1,860 png/L in May 2006 (table 3). At that point, no
pH-adjustment tests had been done in well 17PS-03,
although there had been pH adjustments in well 17PS-02
approximately 6.5 ft away. The concentrations of VC
in wells 17PS-02 and 17PS-03 on May 31, 2006, were
greater than 10 to greater than 100 times higher than the
VC concentrations in the monitored injection wells and in
monitoring well 17PS-01 in the injection area. An injec-
tion well midway between wells 17PS-02 and 17PS-03
contained only 52 pg/L on May 25, 2006 (Lieberman and
Borden, in press).

A potential explanation for the increase in VC produc-
tion at wells 17PS-02 and 17PS-03 is that VC production
was slowly being initiated in various parts of the injection
zone after a long period of microbial acclimation. This
activity would be expected to occur most readily in parts
of the aquifer most favorable for VC production, such as
highly reducing conditions with near-neutral pH. Adjust-
ment of the pH to near-neutral values in well 17PS-02 may
have made that area relatively favorable to VC production
compared with much of the rest of the injection zone, pos-
sibly accounting for acceleration of VC production at that
well. The lack of measurable sulfate (less than 2.5 mg/L)
in water from well 17PS-03 in May 2006 indicated the
presence of more reducing conditions than at well 17PS-02
(26 mg/L of sulfate (table 4). Although conditions probably
were even more reducing at the injection wells, by virtue
of proximity to the injectate, the pH values in the injection
wells typically were near or less than 5 pH units (data
from Lieberman and Borden, in press). Conditions at well
17PS-03 may have represented a more favorable balance of
highly reducing conditions and a slightly higher pH (usu-
ally greater than about 5.5 pH units) than at the injection
wells. Thus, conditions likely were more favorable for VC
production at well 17PS-03 than at the injection wells.

Following an additional deployment of magnesium
oxide in wells 17PS-02 and 17PS-03 on June 1, 2006,

VC concentration sharply increased in well 17PS-02

(fig. 14). In addition, the pH in well 17PS-03 increased to
about 7.4 (table 4), and the VC concentration increased in
low-flow samples from 1,860 pg/L prior to the deployment
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to 2,720 pg/L 7 days after deployment (table 3). Thus, there
is the potential that the pH adjustment in the wells locally
invigorated VC production.

These changes in concentration of VOCs also can be
seen by comparing PDB sampler results at multiple depths in
the screened interval (fig. 15). The data in figure 154 show
that within well 17PS-02, the post-injection VOCs were
dominantly ¢cDCE and TCE. Once pH adjustment experiments
began in the well, however, VC became an important constitu-
ent (fig. 158) and eventually became the dominant constituent
(figs. 15C, D). The substantially lower VC concentrations in
low-flow samples from well 17PS-02 relative to the in-well
PDB samplers in February 2006 may be because the water

A. Aug. 23, 2005
100

80 -

60 - -

40t -

20 -

0
100

B. Feb. 16, 2006

80 .
60 .
40 -

20 T EXPLANATION

Il Trichloroethene
I cis-1,2-Dichloroethene
[ Vinyl chloride

0
100

C. May 31, 2006

80 [ B

60 |- B

40t -

20 - —

CONCENTRATION, IN MICROMOLES PER LITER

0

D. June 21, 2006

100

80 -

60 - -

40 F 4

20 -

0

TOP
RELATIVE POSITION OF PASSIVE DIFFUSION
BAG SAMPLER IN THE SCREENED INTERVAL

MIDDLE BOTTOM

Figure 15. Concentrations of trichloroethene, cis-1,2-
dichloroethene, and vinyl chloride in passive diffusion bag
samplers at various depths in the screened interval of well
17PS-02, Solid Waste Management Unit 17, Naval Weapons
Station Charleston, North Charleston, South Carolina, 2005-2006.

represented by the PDB samplers was in closer proximity
to the pH-adjustment tests than the water represented by the
low-flow samples (table 3).

In response to what appeared to be low-pH-induced
reduction of dechlorination activity in the injection area,
Solutions-IES initiated a Phase-II injection in the fall of 2006.
During this phase, pH-buffered emulsified vegetable oil was
injected into the aquifer. The groundwater pH in the injection
zone increased in the range of 6.4—7.7, TCE and ¢DCE rapidly
dechlorinated to VC, and substantial increases were seen in
Dehalococcoides populations and in TCE-reductase levels
(Borden and others, 2008). TCE and ¢DCE concentrations
have continued to decrease in the test area since injection of
the pH-buffered emulsified vegetable oil. TCE declined from
a pre-injection concentration of 5,980 pg/L in August 2006 to
less than 2.5 pg/L in August 2007 at well 17PS-02 (table 3).
The success of the Phase-II injection likely is partly related
to the pH buffering, although the injection also involved
an increase in the amount of substrate injected and in the
efficiency of the injection.

The Phase-II injection in September 2006 substantially
decreased well yield in the injection zone. In August 2006,
prior to the Phase-II injection, the low-flow pumping rate
from well 17PS-02 was easily maintained at 220 milliliters
per minute (mL/min). Following the injection, a substantial
amount of crusty material accumulated in monitoring wells
17PS-01, 17PS-02, and 17PS-03, even though these wells
were not used for the injection. In August 2007, well 17PS-02
could not be sampled by low-flow methodology because
pumping the well at a unacceptably low rate (less than
90 mL/min) caused water levels to draw down about 9 ft,
which lowered the water level about 6 ft into the well screen.
Some of the reduced well yield was the result of well clog-
ging. Solutions-IES conducted a field effort in late 2007 to
restore well yield, with some measure of success. The field
effort removed most of the precipitation deposits that had been
present in the monitoring wells and increased well yield. The
well yield, however, still remained substantially lower than
in nearby wells outside of the injection zone. Attempts by the
USGS to sample wells 17PS-01, 17PS-02, and 17PS-03 in
May 2008 following the injection showed that water levels
in the wells drew down substantially (several feet) even
when pumping only 60 mL/min, while wells outside the
injection zone could be pumped at 200 mL/min with almost
no drawdown. Considering that the yields of the monitoring
wells remained relatively low and that the injections had
been in wells other than the monitoring wells, it is likely that
some level of permeability reduction is present outside of the
monitoring wells in the aquifer matrix. Thus, the groundwater
contamination transport pathway following the Phase-II
injection likely was around the injection zone rather than
through it.
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Recent Data on Contaminants and
Water Movement in and near the
Injection Zone

Following the Phase-II injection of pH-buffered
emulsified vegetable oil into the test zone by Solutions-IES
in September and October 2006, concentrations of 1,1-Dichlo-
roethene (1,1-DCE), TCE, and ¢DCE sharply declined in the
injection area (table 3). The concentrations have remained
low. Samples collected on July 21, 2009, showed that these
constituents were undetectable in the injection zone, with
the exception of a low concentration (43 pg/L) of ¢cDCE in
well 17PS-01. VC was still present in groundwater at the test
wells in concentrations ranging from 150 to 640 pg/L. Total
organic carbon, which was present in the monitoring wells in
the injection zone at concentrations greater than 1,000 mg/L
in May 2007, declined to concentrations ranging from 81 to
310 mg/L (table 4). These concentration levels contrast with
concentration levels in water from wells outside the injection
zone. In July 2009, water from wells 17MW-06S and
17MW-07S contained greater than 10,000 pg/L of TCE,
less than 500 pg/L of VC, and TOC concentrations less than
3 mg/L (tables 3 and 4). It is of interest to note, however, that
the July 2009 sampling of well 17PS-06 showed the presence
of a higher VC concentration (430 pg/L) than had been seen in
that well during any previous sampling event. In general, the
distinct changes in VOC concentrations in water from wells
in the injection area relative to wells outside of the injection
area indicate that the pH-buffered emulsified vegetable oil
substantially enhanced VOC degradation.

The yields of wells 17PS-01, 17PS-02, and 17PS-03
remain lower than nearby wells outside of the injection zone.
In July 2009, the water levels during low-flow sampling in
wells outside of the injection area could be maintained at less
than about 1 ft of drawdown at pumping rates greater than
200 mL/min, but water levels in the monitoring wells in the
injection zone drew down several feet at a pumping rate of
only 100 mL/min. The continued low well yield even after
well renovation and the fact that the accumulation of deposits
took place in wells that were not used for the injection indicate
that there is some level of permeability reduction in the aquifer
outside of the monitoring wells. Permeability reduction in
the injection zone could explain the sluggish and subdued
response of water levels in well 17PS-02 to diurnal fluctua-
tions, compared to nearby wells (fig. 10). These data indicate
that because of the localized permeability reduction in the
injection zone, contamination transport may be around, rather
than through, the injection zone.

Summary and Conclusions

Groundwater contamination by VOCs is present at
SWMU17 at the Naval Weapons Station Charleston, North

Charleston, South Carolina. This investigation focused on the
groundwater contamination in the southern part of SWMU17,
where the primary contaminants are TCE and its dechlorina-
tion products. In May 2004, Solutions-IES initiated a Phase-I
pilot-scale treatability study at SWMU17 involving the
injection of an edible oil emulsion into the aquifer near wells
17PS-01, 17PS-02, and 17PS-03 to treat chlorinated solvents.
The Phase-I injection of emulsified vegetable oil resulted in
dechlorination of TCE to ¢DCE, but the dechlorination activity
appeared to stall at cDCE, with little further dechlorination

of ¢DCE to VC or to ethene. Groundwater pH values in the
injection area declined to less than 6.0, which is below the
range considered optimum for dechlorination activity. The
USGS and NAVFACSE initiated the present investigation to
examine the groundwater hydrology and chemistry in and near
the injection zone and to gain a better understanding of the
apparent remediation stall.

Groundwater flows radially from SWMU17 toward
SWMU16 to the west and toward a surface-water feature to
the east. Specific groundwater-flow paths vary temporally
because of changes in evapotranspiration, tides, recharge,
and localized ponding, and possibly because of differences in
hydraulic conductivity. The aquifer was anaerobic during this
investigation. Iron reduction is a likely TEAP in the aquifer
outside of the injection zone. In addition to iron reduction,
it is likely that groundwater from the wells upgradient of the
injection zone represents an integration of multiple redox
zones, including iron reduction, sulfate reduction, and metha-
nogenesis. The TEAP near the injection wells immediately
following the Phase-I injection probably was iron reduction
followed by sulfate reduction with a gradual shift
to methanogenesis.

The progress to more reducing groundwater conditions
was not as intense at monitoring wells 17PS-01 and 17PS-02
in the injection zone as it was at the injection wells. The redox
heterogeneity probably is the result of irregular distribution of
the injectate, which was most concentrated near the injection
wells and apparently much less concentrated near wells
17PS-01 and 17PS-02. Unlike wells 17PS-01 and 17PS-02,
the sulfate concentrations at well 17PS-03 rapidly declined
following the Phase-I injection. This is likely the result of het-
erogeneous distribution of injectate resulting in more substrate
and more rapid depletion of efficient electron acceptors at well
17PS-03 than at wells 17PS-01 and 17PS-02. TEAP condi-
tions at well 17PS-03 likely became more reducing relative
to those at wells 17PS-01 and 17PS-02 within months after
the injection. The TEAP appeared to shift to methanogenesis
in the aquifer at wells 17PS-01 and 17PS-02 following the
Phase-II injection.

The pH level of the groundwater in well 17MW-06S
outside the injection area shows a strong vertical gradient dur-
ing months when there is no thermal convection in the well,
with lower pH values near the top of the 10-ft well screen
(5.2 to 5.6) than at the bottom of the screen (about 6.3). The
pH of groundwater in the injection area was less variable with
depth (about 6.0 through the screened interval). Because the



pH values in the injection area were lower than the optimum
near-neutral range for bioremediation of chlorinated solvents,
a series of tests were done in wells to raise the pH. Different
pH-adjustment media were deployed at multiple levels in

the screened interval of well 17PS-02. Deployment of
calcite-magnesium oxide increased the in-well pH to near-
neutral values.

The cause of the stall in reductive dechlorination follow-
ing the Phase-I injection at SWMU17 does not appear to be a
lack of bacteria capable of efficient dechlorination. Molecular
analysis as part of this investigation indicated the presence
of Dehalococcoides sp. and BVC, which is VC reductase
associated with Dehalococcoides sp. strain BAV1. One major
factor likely affecting the dechlorination stall in the months
following the Phase-I injection was the low pH values in the
aquifer in the injection zone. A second major factor likely
affecting the dechlorination stall in the months following
the Phase-I injection was the heterogeneous distribution of
injected substrate, resulting in localized areas that remained
relatively oxidizing.

Concentrations of VC slightly increased in some wells in
the injection area during early 2005, indicating a gradual shift
toward VC production. These data possibly reflect a gradual
microbial acclimation to the low-pH conditions produced by
the injection.

The VC concentrations in water from low-flow sampling
at well 17PS-02 during a period of in-well pH-adjustment tests
substantially increased from less than 10 pg/L in October 2005
to 422 ng/L in February 2006, while the VC concentration in
the adjacent monitoring wells remained less than 100 pg/L.
The VC concentration in well 17PS-02 continued to increase
following cessation of the pH-adjustment tests in February
2006. Between February and May 2006, VC concentrations
also substantially increased in well 17PS-03.

A potential explanation for the increase in VC production
at wells 17PS-02 and 17PS-03 is that VC production was
slowly being initiated in various parts of the injection zone
after a long period of microbial acclimation. This activity
would be expected to occur most readily in parts of the aquifer
most favorable for VC production, such as highly reducing
conditions with near-neutral pH. Adjustment of the pH to
near-neutral values in well 17PS-02 may have made that area
relatively favorable to VC production compared with much of
the rest of the injection zone, possibly accounting for accelera-
tion of VC production at that well. The lack of measurable
sulfate in water from well 17PS-03 indicated the presence
of more reducing conditions than at well 17PS-02. Although
conditions probably were even more reducing at the injection
wells, by virtue of proximity to the injectate, the pH values in
the injection wells typically were near or less than 5 pH units.
Conditions at well 17PS-03 may have represented a more
favorable balance of highly reducing conditions and a slightly
higher pH (usually greater than about 5.5 pH units) than at the
injection wells for VC production. By September 2006, prior
to the Phase-II injection, data collected as part of the ESTCP
project indicated that all three of the monitoring wells in the
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injection zone contained greater than 4,000 pg/L of VC, while
the injection wells contained only 70 ng/L or less of VC.

In response to a low-pH-induced reduction of dechlorina-
tion activity in the injection area, Solutions-IES initiated
a Phase-II injection in the fall of 2006. During this phase,
pH-buffered emulsified vegetable oil was injected into the
aquifer. The groundwater pH in the injection zone increased
to 6.4—7.7, TCE and ¢DCE rapidly dechlorinated to VC,
and substantial increases were seen in Dehalococcoides
populations and in TCE-reductase levels. Samples collected on
July 21, 2009, indicated that 1,1-DCE, TCE, and ¢cDCE were
undetectable in the injection zone, with the exception of a low
concentration (43 pg/L) of ¢cDCE in well 17PS-01. VC was
still present in groundwater at the monitoring wells in concen-
trations ranging from 150 to 640 pg/L. Total organic carbon,
which was present in the monitoring wells in the injection
zone at concentrations greater than 1,000 mg/L in May 2007,
declined to concentrations ranging from 81 to 310 mg/L.
Water from wells 17MW-06S and 17MW-07S outside the
injection zone contained greater than 10,000 pug/L of TCE and
TOC concentrations less than 3 mg/L. The distinct changes
in VOC concentrations in water from wells in the injection
area relative to wells outside of the injection area indicate
that the pH-buffered emulsified vegetable oil enhanced VOC
degradation. The Phase-II injection, however, appears to have
locally decreased aquifer permeability, possibly resulting in
movement of contamination around, rather than through, the
treatment area.
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Appendix 1. Groundwater levels not associated with synoptical tidal water-level measurements, Solid Waste
Management Units 16 and 17, Naval Weapons Station Charleston, North Charleston, South Carolina, 2006—2009.

[NAVD 88, North American Vertical Datum of 1988]

Well Date and time Datum Depth to water Water level
(feet above NAVD 88) (feet below top of casing) (feet above NAVD 88)
16MW-01S 9/11/08 11:52 7.78 6.41 1.37
17MW-05S 6/1/06 11:18 7.77 6.84 0.93
17MW-05S 6/28/06 10:09 7.77 6.19 1.58
17MW-05S 8/10/06 12:43 7.77 7.27 0.50
17MW-05S 8/1/07 8:29 7.77 4.25 3.52
17MW-05S 8/22/07 9:41 7.77 7.08 0.69
17MW-05S 5/13/09 10:00 7.77 6.83 0.94
17MW-06D 6/28/06 10:11 7.62 5.94 1.68
17MW-06D 8/10/06 12:40 7.62 6.92 0.70
17MW-06S 3/8/05 14:14 7.88 391 3.97
17MW-06S 6/1/06 11:15 7.88 6.94 0.94
17MW-06S 6/28/06 10:10 7.88 6.31 1.57
17MW-06S 8/10/06 12:41 7.88 7.37 0.51
17MW-06S 8/22/07 9:39 7.88 7.14 0.74
17MW-06S 8/14/08 11:10 7.88 7.9 -0.02
17TMW-07S 7/21/05 10:41 7.92 5.93 1.99
17MW-07S 2/16/06 12:08 7.92 3.96 3.96
17MW-07S 6/1/06 11:12 7.92 6.97 0.95
17MW-07S 6/28/06 10:12 7.92 6.34 1.58
17MW-07S 8/10/06 12:37 7.92 7.4 0.52
17MW-07S 8/1/07 8:28 7.92 4.43 3.49
17MW-07S 8/1/07 8:28 7.92 4.43 3.49
17MW-07S 5/13/09 10:01 7.92 7 0.92
17MW-12S 5/13/09 9:45 7.37 6.32 1.05
17MW-17S 5/13/09 10:14 6.15 5.26 0.89
17MW-18S 5/13/09 10:16 5.36 4.46 0.90
17MW-19S 5/13/09 9:59 7.72 6.76 0.96
17MW-20S 5/13/09 9:48 7.32 6.43 0.89
17MW-6D 3/8/05 16:19 7.62 3.86 3.76
17PS-01 7/21/05 (time not recorded) 7.96 6.15 1.81
17PS-01 2/16/06 9:46 7.96 4.12 3.84
17PS-01 5/31/06 10:10 7.96 6.9 1.06
17PS-01 6/1/06 11:20 7.96 6.99 0.97
17PS-01 6/28/06 10:05 7.96 6.29 1.67
17PS-01 8/10/06 10:51 7.96 7.37 0.59
17PS-01 8/14/06 10:51 7.96 7.37 0.59
17PS-01 8/22/07 9:46 7.96 7.21 0.75
17PS-02 7/21/05 10:56 7.90 6.09 1.81
17PS-02 2/16/06 10:37 7.90 4.09 3.81
17PS-02 5/31/06 10:11 7.90 6.84 1.06
17PS-02 6/1/06 11:22 7.90 6.92 0.98
17PS-02 6/28/06 10:07 7.90 6.22 1.68
17PS-02 8/10/06 10:57 7.90 7.31 0.59
17PS-02 7/17/07 14:59 7.90 6.1 1.80
17PS-02 8/1/07 8:43 7.90 4.38 3.52
17PS-02 5/5/08 11:16 7.90 6.29 1.61
17PS-02 5/13/09 9:48 7.90 7.01 0.89
17PS-03 6/29/05 15:14 7.80 3.77 4.03
17PS-03 2/16/06 10:40 7.80 3.98 3.82
17PS-03 5/31/06 10:37 7.80 6.76 1.04
17PS-03 5/31/06 10:37 7.80 6.76 1.04
17PS-03 6/1/06 11:23 7.80 6.85 0.95
17PS-03 6/28/06 10:08 7.80 6.15 1.65
17PS-03 8/10/06 10:59 7.80 7.24 0.56
17PS-03 8/22/07 9:49 7.80 6.54 1.26

17PS-03 8/22/07 9:51 7.80 6.54 1.26
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Appendix 2. Synoptic water-level measurements in wells during high and low tides, Solid Waste Management Unit 17, Naval Weapons
Station Charleston, North Charleston, South Carolina, 2008—2009.

[NAVD 88, North American Vertical Datum of 1988; ---, data not collected]

Synoptic water levels near high tide (17:54), Synoptic water levels near low tide (11:01),
September 10, 2008 September 10, 2008
Depth to Depth to
Datum water Water level Datum water Water level
Well Dat_e and (feet (feet (feet above Well Dat_e and (feet (feet (feet above
time above below NAVD 88) time above below NAVD 88)
NAVD 88)  top of NAVD 88) top of
casing) casing)
16MW-01S 9/10/08 16:46 7.78 6.38 1.40 16MW-01S —- — — —
16MW-02S 9/10/08 16:51 4.77 2.98 1.79 16MW-02S 9/10/08 11:16 4.77 3.29 1.48
16MW-03S 9/10/08 17:00 4.74 2.53 2.21 16MW-03S 9/10/08 11:38 4.74 2.97 1.77
16MW-04S 9/10/08 17:15 4.28 2.25 2.03 16MW-04S 9/10/08 11:50 4.28 3.65 0.63
16MW-05S 9/10/08 17:10 4.40 2.23 2.17 16MW-05S 9/10/08 11:46 4.40 3.24 1.16
17MW-02S 9/10/08 16:45 7.66 4.85 2.81 17MW-02S 9/10/08 12:39 7.66 4.68 2.98
17MW-03S 9/10/08 17:43 8.74 6.16 2.58 17MW-03S 9/10/08 12:16 8.74 5.91 2.83
17MW-04S 9/10/08 16:20 7.15 3.96 3.19 17MW-04S 9/10/08 12:25 7.15 3.82 3.33
17MW-05S 9/10/08 16:32 7.77 4.58 3.19 17MW-05S 9/10/08 12:31 7.77 4.45 3.32
17MW-06D 9/10/08 16:28 7.62 4.57 3.05 17MW-06D 9/10/08 12:29 7.62 4.49 3.13
17MW-06S 9/10/08 16:30 7.88 4.7 3.18 17MW-06S 9/10/08 12:30 7.88 4.60 3.28
17MW-07S 9/10/08 16:26 7.92 4.74 3.18 17MW-07S 9/10/08 12:27 7.92 4.63 3.29
17MW-11S 9/10/08 17:34 9.67 6.95 2.72 17MW-118S 9/10/08 12:15 9.67 6.87 2.80
17MW-12D 9/10/08 17:26 7.17 5.45 1.72 17MW-12D 9/10/08 12:20 7.17 4.46 2.71
17MW-12S 9/10/08 17:24 7.37 4.21 3.16 17MW-12S 9/10/08 12:21 7.37 4.10 3.27
17MW-13S 9/10/08 17:40 7.49 6.2 1.29 17MW-13S 9/10/08 12:06 7.49 6.17 1.32
17MW-14D 9/10/08 16:52 6.63 4.51 2.12 17MW-14D 9/10/08 12:50 6.63 4.51 2.12
17MW-14S 9/10/08 16:50 6.27 3.59 2.68 17MW-14S 9/10/08 12:48 6.27 3.54 2.73
17MW-15D 9/10/08 16:56 5.90 3.74 2.16 17MW-15D 9/10/08 12:54 5.90 3.80 2.10
17MW-15S 9/10/08 16:58 6.00 2.92 3.08 17MW-15S 9/10/08 12:57 6.00 2.90 3.10
17MW-16D 9/10/08 17:02 5.89 3.71 2.18 17MW-16D 9/10/08 13:02 5.89 3.73 2.16
17MW-161 9/10/08 17:00 6.02 3.36 2.66 17MW-161 9/10/08 12:59 6.02 3.35 2.67
17MW-16S 9/10/08 17:05 5.80 2.63 3.17 17MW-16S  9/10/08 13:04 5.80 2.64 3.16
17MW-17D 9/10/08 17:14 5.97 3.75 2.22 17MW-17D 9/10/08 13:11 5.97 3.77 2.20
17MW-171 9/10/08 17:08 6.03 3.54 2.49 17MW-171 9/10/08 13:07 6.03 3.57 2.46
17MW-17S 9/10/08 17:11 6.15 2.94 3.21 17MW-17S 9/10/08 13:10 6.15 2.95 3.20
17MW-18D 9/10/08 17:19 5.42 3.16 2.26 17MW-18D 9/10/08 13:16 5.42 3.18 2.24
17MW-18S 9/10/08 17:17 5.36 2.36 3.00 17MW-18S 9/10/08 13:18 5.36 2.22 3.14
17MW19S 9/10/08 17:55 7.72 4.53 3.19 17MW19S 9/10/08 13:24 7.72 4.40 3.32
17MW-20S 9/10/08 16:24 7.32 4.12 3.20 17MW-20S 9/10/08 12:26 7.32 4.00 3.32
17MW-21S 9/10/08 17:40 10.37 8.04 2.33 17MW-21S 9/10/08 12:11 10.37 8.01 2.36
17MW-22S 9/10/08 17:37 10.18 7.68 2.50 17MW-228 9/10/08 12:13 10.18 7.61 257
17MW23S 9/10/08 17:30 7.06 4 3.06 17MW23S 9/10/08 12:18 7.06 3.91 3.15
17PS-01 9/10/08 16:40 7.96 4.75 3.21 17PS-01 9/10/08 12:34 7.96 4.63 3.33
17PS-02 9/10/08 16:38 7.90 4.66 3.24 17PS-02 9/10/08 12:33 7.90 4.60 3.30
17PS-03 9/10/08 16:35 7.80 4.56 3.24 17PS-03 9/10/08 12:32 7.80 4.53 3.27
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[NAVD 88, North American Vertical Datum of 1988; ---, data not collected]

Synoptic water levels near low tide (12:24),
April 21, 2009

Depth to
0 Datum water Water level
Well at_e and (feet (fest (feet above
time above below NAVD 88)
NAVD 88) top of
casing)
16MW-01S 4/21/09 13:54 7.78 4.74 3.04
16MW-02S 4/21/09 13:42 4.77 435 0.42
16MW-03S 4/21/09 13:36 4.74 3.04 1.70
16MW-04S 4/21/09 13:24 428 3.64 0.64
16MW-05S 4/21/09 13:27 4.40 3.28 1.12
17MW-02S 4/21/09 12:37 7.66 3.65 4.01
17MW-03S 4/21/09 14:15 8.74 4.67 4.07
17MW-04S 4/21/09 14:26 7.15 3.35 3.80
17MW-05S 4/21/09 12:47 7.77 3.79 3.98
17MW-06D 4/21/09 12:54 7.62 3.88 3.74
17MW-06S 4/21/09 12:48 7.88 3.92 3.96
17MW-07S 4/21/09 12:50 7.92 3.99 3.93
17MW-11S 4/21/09 14:09 9.67 5.71 3.96
17MW-12D 4/21/09 13:03 7.17 421 2.96
17MW-12S 4/21/09 13:04 7.37 3.37 4.00
17MW-13S 4/21/09 12:32 7.49 3.60 3.89
17MW-14D 4/21/09 12:20 6.63 4.02 2.61
17MW-14S 4/21/09 12:21 6.27 3.17 3.10
17MW-15D 4/21/09 12:18 5.90 3.25 2.65
17MW-15S 4/21/09 12:17 6.00 2.69 3.31
17MW-16D 4/21/09 12:15 5.89 3.25 2.64
17MW-161 4/21/09 12:14 6.02 3.07 2.95
17MW-16S 4/21/09 12:15 5.80 2.49 3.31
17"MW-17D 4/21/09 12:06 5.97 3.30 2.67
17TMW-171 4/21/09 12:05 6.03 3.16 2.87
17TMW-17S 4/21/09 12:04 6.15 2.73 3.42
17MW-18D 4/21/09 12:02 5.42 2.75 2.67
17MW-18S 4/21/09 12:01 5.36 2.09 3.27
17MW19S 4/21/09 12:45 7.72 3.70 4.02
17MW-20S 4/21/09 11:58 7.32 3.46 3.86
17MW-21S 4/21/09 14:14 10.37 6.42 3.95
17MW-22S 4/21/09 14:10 10.18 6.24 3.94
17MW23S 4/21/09 14:06 7.06 3.07 3.99
17PS-01 4/21/09 12:42 7.96 4.07 3.89
17PS-02 4/21/09 12:43 7.90 4.01 3.89

17PS-03 4/21/09 12:41 7.80 3.92 3.88
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