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Conversion Factors and Datum

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
mile (mi) 1.609 kilometer (km)
Area
square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)
Flow rate
cubic foot per second (ft/s) 0.02832 cubic meter per second (m?/s)
Slope
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Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD
83).
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the calendar year in which it ends. Thus, the water year ending September 30, 2005 is called
“water year 2005.”
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Techniques for Estimating the Magnitude and Frequency
of Peak Flows on Small Streams in Minnesota Based on

Data through Water Year 2005

By David L. Lorenz, Chris A. Sanocki, and Matthew J. Kocian

Abstract

Knowledge of the peak flow of floods of a given recur-
rence interval is essential for regulation and planning of water
resources and for design of bridges, culverts, and dams along
Minnesota’s rivers and streams. Statistical techniques are
needed to estimate peak flow at ungaged sites because long-
term streamflow records are available at relatively few places.
Because of the need to have up-to-date peak-flow frequency
information in order to estimate peak flows at ungaged sites,
the U.S. Geological Survey (USGS) conducted a peak-flow
frequency study in cooperation with the Minnesota Depart-
ment of Transportation and the Minnesota Pollution Control
Agency.

Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-,
25-, 50-, 100-, and 500-year recurrence intervals are presented
for 330 streamflow-gaging stations in Minnesota and adja-
cent areas in lowa and South Dakota based on data through
water year 2005. The peak-flow frequency information was
subsequently used in regression analyses to develop equa-
tions relating peak flows for selected recurrence intervals to
various basin and climatic characteristics. Two statistically
derived techniques—tregional regression equation and region
of influence regression—can be used to estimate peak flow
on ungaged streams smaller than 3,000 square miles in Min-
nesota. Regional regression equations were developed for
selected recurrence intervals in each of six regions in Min-
nesota: A (northwestern), B (north central and east central),

C (northeastern), D (west central and south central), E
(southwestern), and F (southeastern). The regression equa-
tions can be used to estimate peak flows at ungaged sites. The
region of influence regression technique dynamically selects
streamflow-gaging stations with characteristics similar to a site
of interest. Thus, the region of influence regression technique
allows use of a potentially unique set of gaging stations for
estimating peak flow at each site of interest. Two methods of
selecting streamflow-gaging stations, similarity and proximity,
can be used for the region of influence regression technique.

The regional regression equation technique is the pre-
ferred technique as an estimate of peak flow in all six regions

for ungaged sites. The region of influence regression tech-
nique is not appropriate for regions C, E, and F because the
interrelations of some characteristics of those regions do not
agree with the interrelations throughout the rest of the State.
Both the similarity and proximity methods for the region of
influence technique can be used in the other regions (A, B, and
D) to provide additional estimates of peak flow. The peak-
flow-frequency estimates and basin characteristics for selected
streamflow-gaging stations and regional peak-flow regression
equations are included in this report.

Introduction

Knowledge of the peak flow of floods of a given recur-
rence interval is essential for regulation and planning of
water resources and for design of bridges, culverts, and dams
along Minnesota’s rivers and streams. Statistical techniques
are needed to estimate peak flow at ungaged sites because
long-term streamflow records are available at relatively few
locations.

For the purpose of estimating peak-flow frequencies,
continuous daily streamflow records for streamflow-gaging
stations (hereinafter referred to as gaging station) in Minne-
sota span a relatively short period. The longest record is for
the Mississippi River at St. Paul, which is continuous from
1867 to 2005, except for 1871. Gaging of several streams to
obtain daily streamflow records was started in about 1909. The
number of gaging stations decreased between 1912 and 1920.
During the late 1920s and early 1930s, the number of gaging
stations increased and many of those stations have been in
operation through 2005. Over the years, gaging stations were
added where flow information was needed, and other stations
were discontinued where additional data were not as critical.
Gaging stations operated to obtain daily records generally are
located on streams that drain areas greater than 300 square
miles (mi?) and flow continuously, although in 2008 about
18 percent of daily-record gaging stations in Minnesota had
drainage areas of less than 300 miZ.
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In the 1950s, planners for the Interstate Highway System
learned that little peak-flow information was available for
streams smaller than about 60 mi®. This information was
needed to determine the bridge and culvert sizes to use at road
crossings. As a result, small-stream flood investigation studies
were initiated nationwide. The program in Minnesota began
in 1958 and during the next 6 years about 150 gaging stations
were established to determine annual peak flow and stage on
streams draining about 60 mi” or less. These peak-flow gaging
stations differ from daily-record gaging stations in that stream-
flow record generally is not continuous—only peak stream-
flows are recorded. Most of those stations were operated
through the 1970s. In the 1980s, gaging for annual peak flow
and stage for most of the drainage basins of less than 10 mi?
was discontinued. In the past few years, new peak-flow gag-
ing stations were established throughout the State on streams
draining areas from 10 mi* to several hundred square miles.

Several previous studies (Prior, 1949; Prior and Hess,
1961; Wiitala, 1965; Patterson and Gamble, 1968; Guetzkow,
1977; Jacques and Lorenz, 1987; Lorenz and others, 1997)
have provided peak-flow frequency information at selected
gaging stations and presented methods for calculating peak-
flow frequency data at ungaged sites in Minnesota. Analysis
of annual peak-flow records for the first of these reports that
used the Log Pearson Type III method of analysis (Guetzkow,
1977) may not have included information about historical
floods that occurred before the systematic collection of data
and the period of record for many streams was very short from
the standpoint of flood history. Gueztzkow (1977) included
most of the long-term record stations with low annual peaks
from the 1930s drought and high annual peaks during the
1950s and 1960s. Historical flood information was incorpo-
rated in the analysis done in subsequent reports. Jacques and
Lorenz (1987) also used fewer regions than Guetzkow (1977),
which resulted in larger standard errors of estimate for the
regional equations. Because of the need to have up-to-date
peak-flow frequency information in order to estimate peak
flows at ungaged sites, the U.S. Geological Survey (USGS)
conducted a peak-flow frequency study in cooperation with the
Minnesota Department of Transportation and the Minnesota
Pollution Control Agency.

Purpose and Scope

The purpose of this report is to (1) describe the methods
and results of the analysis of peak-flow frequency at selected
gaging stations in Minnesota and to present the results in adja-
cent areas in lowa and South Dakota, and (2) document two
statistically derived techniques for estimating peak-flow data
at ungaged sites on small unregulated streams in Minnesota.
The peak-flow frequency estimates were developed for 330
gaging stations using data through water year 2005. Two tech-
niques—regional regression equation and region of influence
regression— for estimating peak-flow data at ungaged sites
are described. Because no streams used in this analysis were

substantially affected by development, care is needed when
applying the results in urban areas.

Gaging stations that have drainage areas greater than
3,000 mi® were not included in this analysis because regula-
tion is prevalent on rivers of that size. River basins affected
by regulation include the Red Lake, Minnesota, Mississippi,
Rainy, St. Louis, and Red River of the North (Red River).
Other gaging stations that were not included in this analysis
had peak flows that were affected by controlled storage or
regulated releases.

Acknowledgments

The authors thank David Eash and Joyce Williamson
(USGS) for providing basin characteristics and peak-flow
analyses of gaging stations in lowa and South Dakota.

Techniques for Estimating Peak-Flow
Frequency

This section describes the techniques and computations
of the analysis of peak-flow frequency at selected gaging
stations in Minnesota and adjacent areas in lowa and South
Dakota and the methods and analyses that were required
to develop the techniques for estimating peak-flow data on
small ungaged streams. This section also presents preliminary
computations of basin characteristics required for regression
analysis.

Frequency Analysis of Annual Peak-Flow Data
at Selected Gaging Stations

The frequency analysis of annual peak-flow data for
selected recurrence intervals (table 1, at the back of this
report) was computed for 330 gaging stations (fig. 1) using
data through water year 2005. Peak-flow records for gag-
ing stations in Minnesota are available online at Attp://nwis.
waterdata.usgs.gov/mn/nwis/peak. All gaging stations for
which peak-flow data were determined had at least 10 years of
peak-flow record that could be analyzed. Peak-flow frequency
estimates for most gaging stations were determined by fitting
a log-Pearson Type III probability distribution to the recorded
annual peak flows according to the procedures outlined in Bul-
letin 17B (Interagency Advisory Committee on Water Data,
1982). The computer program PEAKFQ (Flynn and others,
2006) was used to compute the frequency estimates for those
gaging stations. The procedures in Bulletin 17B include tests
for unusually high and low peaks, called outliers, that can
affect the analysis. Peaks flagged as high outliers require user
judgment about putting the outlier into some historical period
of record. Peaks flagged as low outliers generally are excluded
from the analysis and the conditional probability adjustment
described in appendix 5 of Bulletin 17B (Interagency Advisory
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Figure 1.

Steamflow-gaging stations for which peak-flow frequency estimates were determined and peak-flow hydrologic
regions for Minnesota.

3



4 Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota

Committee on Water Data, 1982) is applied to the analysis.
Bulletin 17B recommends the use of a skew coefficient that
is based on the skew of the log-series of the period of record
(commonly termed the “station skew”) weighted with a
generalized, or regional, skew coefficient. The weighting is
based on the length of the period of record and the estimated
standard error for the method used to determine the general-
ized skew coefficient. The generalized skew coefficients for
Minnesota gaging stations used in the peak-flow frequency
analysis for this report were based on Lorenz (1997).

The approach used in the Log-Pearson Type III analyses
for Minnesota gaging stations follows.

1. Where the period of record is continuous or has multiple
continuous periods and there is no indication of a histori-
cal flood, the record has been treated as though it was
a homogeneous systematic record. All gaging stations
not listed elsewhere in this section are included in this
category. These gaging stations include any where low
outliers were flagged and automatically excluded from the
analysis.

2. Some historical flood peaks that were estimated from
records such as newspaper reports were not included in
the Log-Pearson Type III analysis because of uncertainty
in magnitude, uncertainty in the correct historical period,
and because the estimated magnitudes of the peaks are
not unusual based on the systematic peaks. These gaging
stations were 05061000, 05078230, 05134200, 05217000,
05313500, 05355200, 05374000, and 05476010 (table 1).

3. Other historical peaks for short-record sites or well-docu-
mented peaks within a known period were included in the
Log-Pearson Type III analysis. These gaging stations were
05128500, 05278930, 05319500, 05338500, 05345000,
and 05379000 (table 1).

4. The relatively short records at gaging stations 05372800,
05372930, 05372950, and 05383850 (table 1) had sys-
tematic peaks that were substantially large outliers. Based
on correlation with the nearby long-record gaging station
05372995, those peaks could be placed into an historical
context that matched the 55-year record of that gaging sta-
tion. The peak-flow analyses for the short-record gaging
stations were modified to place the large outliers into the
55-year period that matched the longer-record station.

5. Exceptions to the Bulletin 17B procedure were gaging
stations 04015250, 04021690, 05131750, 05221020,
05229450, 05244200, 05272300, 05272950, 05278120,
05305200, 05318195, 05318897, 05384500, 05387030,
and 06482933, which had left-censored peak-flow data
(peak flows below the minimum flow that could be quan-
tified) and for which an alternate method was used (Cohn
and others, 1997). The alternate method, the expected
moments algorithm (EMA), was used to reduce bias
that results from the methods described in Bulletin 17B.
Both methods assume that the peaks have a log-Pearson

Type III distribution, which is characterized by the mean,
standard deviation, and skewness of the log-transformed
peak-flow values. EMA code for the R statistical package
was used (T.A. Cohn, U.S. Geological Survey, written
commun., 2006) for these Minnesota gaging stations that
had left-censored peak data.

The peak-flow frequency estimates for gaging stations in
Iowa and South Dakota were obtained from USGS offices in
those states. The peak-flow frequency estimates for stations
outside of Minnesota also are included in table 1. The analyses
for gaging stations outside of Minnesota were based on the
procedures applicable for the respective state (David Eash,
U.S. Geological Survey, written commun., 2006, for lowa; and
Joyce Williamson, U.S. Geological Survey, written commun.,
2007, for South Dakota). The peak-flow frequency estimates
for gaging stations outside of Minnesota were thought to be
very similar to the reported values if uniform procedures,
using consistent generalized skew coefficient and using EMA
for left-censored peaks, had been applied because those modi-
fications result in relatively small adjustments to the frequency
analysis of the station record.

Regional Peak-Flow Frequency Methods

Regional equations expressing peak-flow frequency as
a function of various explanatory variables were developed
using regression methods. The generalized least squares (GLS)
method was used to develop the regression equations within
each of six peak-flow hydrologic regions (fig. 1).

Estimating Basin Characteristics

Seven basin characteristics were used as possible
explanatory variables in the regression equations. The selec-
tions of basin characteristics for this study were based on the
results from previous studies and the availability of soil data
since the previous study (Lorenz and others, 1997). Drainage
area, main-channel slope, lake area, storage area, and general-
ized mean annual runoff were all used as explanatory variables
in previous studies. The selection of soil hydrologic groups
A (high infiltration rate and low runoff potential) and D (very
slow infiltration rate and high runoff potential) as basin char-
acteristics was based on recent studies that indicated soil could
be an important characteristic in estimating flood peaks (Perry
and others, 2004; Soong and others, 2004; Walker and Krug,
2003). All of those studies used soil permeability, but soil
hydrologic group was used in this study to avoid interpreting
large ranges of soil permeability in the State Soil Geographic
(STATSGO) database (U.S. Department of Agriculture, 1991).

Basin characteristics for the 330 gaging stations for
which peak-flow data were determined were estimated by
compiling applicable datasets, converting to common formats,
correcting anomalies, delineating boundaries, and computing
values of selected characteristics. Basins for USGS gaging sta-
tions were delineated using a geographic information system



(GIS) to analyze 10-meter digital elevation models (DEMs)
derived from 30-meters DEMs (Minnesota Department of
Natural Resources (MNDNR), 2009, Data Deli), which had
elevations lowered by stream traces to force mapped drainage
patterns. Level 6 (12-digit) hydrologic unit (HU) boundaries
(Natural Resources Conservation Service and others, 2004)
and lakeshed boundaries created by the Minnesota Lake
Watershed Delineation Project (Solstad and Vaughn, 2007)
were used to aid basin delineation. These boundaries were
used to force correct basin boundaries by adding elevation to
the DEMs along the boundaries. Several other data sources
were used to delineate basins that included areas outside
Minnesota. Canadian DEMs were obtained from the online
application Geobase (Canadian Council on Geomatics, 2008).
These Canadian DEMs had a resolution of 0.75 arc seconds,
or approximately 22.5 meters. The USGS National Elevation
Dataset (NED) was used for delineating basins in neighboring
states. The stream trace data used to force mapped drainage
patterns was the “DNR 24K Streams” from the MNDNR
(2009) Data Deli. The MNDNR streams layer was modified to
ensure correct directionality and checked to ensure that there
were no streams crossing Level 6 HUs or MNDNR lakeshed
boundaries. Arc Hydro, a geospatial hydrologic data structure
and suite of GIS tools for managing water-resources data
(Center for Research in Water Resources, 2003), was

used to delineate basins and to compute basin characteristics
(table 2, at the back of this report).

Basin polygons for the gaging stations were overlaid with
each of the characteristics layers, and a value (that is, mean or
percent) was computed. Due to Arc Hydro requirements, all
characteristics layers were in grid format; characteristics lay-
ers that were not in grid format when retrieved from the data
source were converted to grid format.

The drainage area, variable name DAREA (table 2), is the
area in square miles within the basin for each gaging station.
It represents the entire area within the basin and includes any
areas that might be considered noncontributing.

The main-channel slope, variable name SLOPE, is
defined as the slope of the main channel in feet per mile
between the 10th and 85th percentile of the distance between
the gaging station and the basin boundary. The Arc Hydro
tool identified the main channel based on the 10-m resolution
Level 2 DEMs, identified the 10- and 85-percentile points, and
extracted the elevation of the two percentile points. The differ-
ence in elevation between the points was divided by the main
channel stream length between the points to compute the slope
in feet per mile.

Lake area, variable name LAKFE, and storage area, vari-
able name STOR, were computed from National Wetlands
Inventory (NWI) data (U.S. Fish and Wildlife Service, 2008).
NWI data were extracted for the basin for each gaging station
to estimate the percentage of lake and storage area in each
basin. Lake area included all NWI polygons classified as
‘Lacustrine,” and storage area included all polygons classified
as ‘Lacustrine’ or ‘Palustrine.” The percentage for each vari-
able was computed as the total area of all extracted polygons
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divided by the drainage area, and multiplied by 100. The vari-
ables in the regression equations have a constant of 1 added to
them, so a computed value for percent lake area of 0 would be
1 when used in the regression equation.

The soil hydrologic group A, variable name SOILA, and
the soil hydrologic group D, variable name SOILD, were
computed from STATSGO (U.S. Department of Agriculture,
1991). Soils of hydrologic group A have a high infiltration rate
even when thoroughly wetted, and primarily consist of deep,
well-drained to excessively drained sands or gravels. Soils of
hydrologic group D have an extremely slow infiltration rate
when thoroughly wetted and primarily consist of clay soils
that have high swelling potentials, soils that have permanent
high water tables, soils that have claypan or clay layers at or
near the surface, or shallow soils over nearly impervious mate-
rial. The total area of soils classified as hydrologic group A or
D was computed for each STATSGO mapping unit from the
component soil information. The percent area for each variable
was computed as the total area of all extracted mapping units
divided by the drainage area and multiplied by 100. The vari-
ables in the regression equations have a constant of 1 added to
them, so a computed value for percent soil hydrologic group A
of 0 would be 1 when used in the regression equation.

Generalized mean annual runoff, variable name ROFF, is
an estimate of the mean regional streamflow in inches. A map
of mean annual runoff was prepared to provide updated, gen-
eralized mean annual runoff values for this study by using 261
daily-record gaging stations from Minnesota and the surround-
ing states of lowa, North and South Dakota, and Wisconsin
(fig. 2, table 3, at the back of this report). These gaging sta-
tions include 117 of the 330 peak-gaging stations (table 1) that
had at least 10 years of continuous streamflow data between
1940 and 2005. Some additional gaging stations within Min-
nesota were included in these gaging stations that could not
be used for the peak-flow analysis because of some condition,
such as regulation, that affects peak flow, but not the mean
annual flow. All complete water years from 1940 through 2005
were used in the analysis. This range of dates was selected
because most peak-flow records correspond to that period. The
loess() function in S-PLUS (Insightful, 2005) was used to cre-
ate the generalized mean annual runoff grid. The explanatory
variables were the easting and northing of the basin centroid in
meters of Universal Transverse Mercator (UTM) zone 15. The
following were control arguments of the final model for the
loess() function: span = 0.3, degree = 2, normalize = FALSE,
and family = “gaussian;” the documentation for the loess()
function (Insightful, 2005) provides details about the control
arguments. The predicted values for the centroids of each
basin are reported in the fitted annual runoff column in table 3.
The range of the residuals was from -4.13 to 4.23 in., and the
residual standard error was 1.29 in. The final generalized mean
annual runoff contour map for this study is shown in figure 2.
The generalized mean annual runoff values reported in table
2 were computed for the basin polygons, based on the mean
of grid cells within the basin (Center for Research in Water
Resources, 2003), for each gaging station using the Arc Hydro
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Figure 2. Generalized mean annual runoff in Minnesota for peak-flow estimation.



GIS extension and are not expected to agree exactly with those
reported in table 3.

Methods Used to Define Peak-Flow Hydrologic
Regions

Previous reports, including Jacques and Lorenz (1987)
and Lorenz and others (1997) , used an analysis of the pattern
of residuals of state-wide regressions to delineate initial peak-
flow hydrologic regions. Those regression equations included
drainage area, main-channel slope, lake area, storage area,
and mean annual runoff as explanatory variables. The initial
peak-flow hydrologic regions for those reports were refined by
residual analysis of the regional regression equations.

To better understand the most important explanatory
variables in each region, the concept of hydrologic landscape
units (Winter, 2001; Wolock and others, 2004) was used to
define initial peak-flow hydrologic regions for this analysis.
Those initial peak-flow hydrologic regions were validated and
updated based on regional regressions.

Wolock and others (2004) developed a map of the entire
United States that showed 20 different hydrologic landscape
units. To develop the initial hydrologic regions, data for Min-
nesota reported in Wolock and others (2004) were extracted
and reclustered into seven groups using the k-means algorithm
of Hartigan and Wong (1979). That k-means algorithm is an
iterative procedure that assigns observations to one of the
specified groups to minimize the squared Euclidean distance
from the center of the group. Only the variables percent sand,
mean slope, percent flatland in upland areas, percent flatland
in lowland areas, and precipitation minus potential evapotrans-
piration were used in the reclustering (Wolock, U.S. Geologi-
cal Survey, written commun., 2005). Bedrock permeability
class was not used in the reclustering because it is not likely
to affect surface runoff. The square root of the mean slope was
used and the precipitation minus potential evapotranspiration
was down-weighted by a factor of 2 for the k-means cluster-
ing. The results of the reclustering of the Minnesota data are
shown in figure 3. The characteristics of each of the seven
reclustered units are described in table 4.

Techniques for Estimating Peak-Flow Frequency 7

The initial peak-flow hydrologic regions also are shown
on figure 3. The initial regions were based on a subjective
assessment of the association of the seven reclustered groups
of hydrologic landscape units and by dividing the regions gen-
erally along drainage boundaries. Region A represents one of
the most heterogonous regions with low-slope groups 2 and 7
near the Red River, moderately sloped groups 3 and 4 near the
drainage boundary, and sandy groups 1 and 5 between those
areas. Region B is dominated by sandy groups 1, 3, and 5 with
varying slope and flat areas. Regions C and F are composed
primarily of moderately sloped groups 3 and 4. Region D is
composed of low-slope groups 2 and 7 adjacent to the upper
parts of the Minnesota River and moderately sloped group 4
with relatively low sand content in upland areas and the lower
part of the Minnesota River. Region E, in southwestern Min-
nesota, was separated from Region D although the associa-
tions in regions D and E appear similar, because the drainage
patterns are distinctly different (map 2 in Minnesota Depart-
ment of Natural Resources, 1997). Region F also shows a
drainage pattern different from region D (map 2 in Minnesota
Department of Natural Resources, 1997), and likewise was
separated from region D.

Regional regression equations were developed for these
initial regions, and the residuals were analyzed for consis-
tency—the residuals were required to be approximately
normally distributed, homoscedastic (having constant variance
throughout the range of fitted values), and show no regional
pattern. The only change between the initial (fig. 3) and the
final (fig. 1) regions is the change of the relatively high-slope
areas in northern Minnesota from initial region C to final
region B. The residuals for the gaging stations in that changed
area showed a consistent low bias when included in hydro-
logic region C, but showed no bias when included in hydro-
logic region B. No other areas with a distinct bias were noted.
The change from the initial regions can be partially explained
because the slope characteristics of the entire streams in the
final region C are different from slope characteristics of the
entire streams in the high-slope areas in northern Minnesota in
final region B and cluster analysis only considers the charac-
teristics of individual small units.

The region for each gaging station used in developing the
regional regression equations is listed in table 1. The regional

Table 4. Characteristics of the seven reclustered hydrologic landscape units for Minnesota.
g?(f::)u:::t:;gr Description Sand Slope . Upland flat Lowland flat :l‘:::(l:tl:::::irr::?::
(fig.1) (percent) (feet per mile) (percent) (percent) (inches)
1 Sandy/flat upland 59 0.40 54 29 1.80
2 Low slope/flat lowland 25 37 23 60 -.40
3 Sandy/moderate slope 64 1.23 8 26 4.50
4 Moderate slope 31 1.17 14 19 3.00
5 Sandy/flat lowland 54 46 11 70 2.60
6 High slope 34 2.39 2 6 7.30
7 Low slope/flat upland 21 .50 66 12 -1.00




Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota

98° 96° 94° 92° 90°

480 PP

-
(Lower)

EXPLANATION

Reclustered hydrologic landscape
unit and number (table 4)

46° - Peat land

7

Initial region boundary

AN W B W N =

A Initial region label

we -

50 100 MILES
| | |

I
50 100 KILOMETERS

o—1o

Base from Minnesota Department of Natural Resources, 1993, 1:24,000 and 1:100,000
Universal Transverse Mercator projection, Zone 15
Horizontal coordinate information is referenced to the North American Datum 1983 (NAD 83)
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boundaries generally follow small drainage divides so that the
drainage basin of a small stream will not overlap two regions,
making interpretation easier for all small streams.

Generalized Least Squares Method

Tasker and others (1986) described the use of GLS to
estimate the 100-year peak flow for an area in Arizona. They
showed that the GLS method provided better estimates than
the ordinary least squares method. The GLS method accounts
for variance in peak flow frequency estimates at each gaging
station because of the difference in record length—the vari-
ance decreases with increased record length. The GLS method
also accounts for cross-correlated peak-flow data between
stations having concurrent record. Cross correlation is the
correlation between peak flows at any two gaging stations
as a result of similar weather patterns affecting both gaging
stations. In ordinary least squares regression, cross-correlated
peak-flow data decrease the effective amount of information in
an analysis and can contribute to errors in predictive precision
(model error) and errors in determination of the coefficients of
the explanatory variables (Stedinger and Tasker, 1985).

The GLS method requires a reasonable estimate of
the cross correlation between flows at every pair of sta-
tions (Tasker and Stedinger, 1989). An estimate based on the
measured flows is not reliable because of the short concurrent
records usually encountered in peak-flow data. Therefore,
sample cross correlations are estimated by relating the distance
between each pair of stations to the correlation between peak
flows. For this analysis, the “distance” between stations has
two components: one is the geographic distance between sta-
tions, measured as the distance between stations in miles; the
second is related to the relative common area of the two sta-
tions. In Minnesota, large basins are more likely to be affected
in similar ways by large storms or spring thaws, and small
basins are more likely to be affected by local storms that occur
within a small area. To express the relative common area as a
distance between two stations, a relative distance function is
needed. The common area is defined as the square root of the
product of the areas of the basins in square miles. The relative
common area is expressed as a relative distance by dividing an
arbitrary large value by the common area (Equation 1); for this
study, the drainage area of the largest basin was chosen as the
arbitrary large value.

4= VA4, ()
Where
RCA = the relative common area;
4, and Aj. = the basin areas; and
A = the arbitrary large area.

m

The logarithm of that relative distance was used for this study
because it linearized the relation between observed cross cor-
relation and the relative common area distance.

Techniques for Estimating Peak-Flow Frequency 9

The relation between cross correlation and geographic
distance conditioned by the relative common area distance
is shown in figure 4. The magnitude of relation between
cross correlation and geographic distance, represented by the
smooth line in each plot, decreases as the similarity in area
decreases—the left plot represents the basins most similar in
size (large basins) and the right plot represents those basins
least similar (small basins).

A flexible function is needed to describe the decrease
in cross correlation as a function of distance. A function was
created to calculate the decrease in cross correlation as a func-
tion of distance that requires two arguments, the standardized
distance, and the rate of decrease.

exp((1 + D/ry -1)-1exp((1 + DAy -1)

=1 exp((1 + DAy -1)+ 1 (exp(1 + Diry-1) = ‘apse (D1) o
where
P = the estimated cross correlation;
D = the standardized distance;
r = the function decrease rate;
exp() = the exponentiation function; and
lapse() = the name used for the function.

The lapse function decreases for several selected values
of the decrease rate (fig. 5).

Stations with at least 30 years of record were selected for
the analysis of cross correlation and distance. From stations
with at least 30 years of concurrent record, 4,195 pairs of cor-
relations were available. These 4,195 data pairs were used in a
nonlinear regression model that related the observed cross cor-
relation to the distance between stations in miles, the relative
distance between stations in area, and a rate of decrease. The
final function was

Cor, = 0.968 lapse(Dist / 269 + RCA/ 8.44, 0.805)  (3)
where
Cor, = the estimated cross correlation;
0.968 = the intercept term;
lapse = the function defined in (2);
Dist = the geographic distance between gaging
stations, in miles;
269 = the coefficient to standardize the
geographic distance;
RCA = the relative distance between stations
defined previously in this section;
8.44 = the coefficient to standardize Area; and
0.805 = the decrease rate.

The lines on figure 5 are estimated values that describe the
general relation between cross correlation and geographic
distance.

The GLS method was used to develop preliminary equa-
tions relating the annual peak flow with a recurrence interval
within each of the six hydrologic regions in Minnesota. A
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Figure 4. The relation between station cross correlation and geographic distance by relative common area distance
for streamflow-gaging stations at A large, B intermediate or mixed, and C small basins.

manual selection of possible combinations of explanatory
variables were used in the regression analysis for selected
(2-, 25-, and 100-year) recurrence intervals, and the combina-
tion producing the minimum mean model error variance and
acceptable diagnostic residual plots for linearity, uniformity
of variance, and normality was considered the best. To make
consistent estimations at the selected recurrence intervals, a
consistent set of explanatory variables was used in all of the
regression equations. A set of consistent explanatory variables
that had logically consistent coefficients and were statistically
significant at the 5-percent level was selected for the regres-
sion equations for all recurrence intervals within that region.

Techniques for Estimating the
Magnitude and Frequency of Peak
Flows on Small Ungaged Streams

This section presents two statistically derived tech-
niques—regional regression equation (RRE) and region of
influence regression (ROI)—for estimating peak flows on

small, ungaged streams in Minnesota. Both of the techniques
relate physical and climatic characteristics to peak flows for
1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence inter-
vals. This section also describes the comparison between the
two techniques and describes the accuracy and limitations of
the techniques.

Regional Regression Equation Technique

As previously described, the GLS method was used to
develop regression equations for each recurrence interval and
for each region shown on figure 1. Regression equations, the
standard errors of the estimate (SEE), and the equivalent years
of record (EY) are described in a following section “Accuracy
and Limitations of the Estimating Techniques” and are listed
in table 5. The SEE values are included for comparison to
previous RRE. The basin characteristics storage area (STOR)
and soil hydrologic group D (SOILD) were not significant
explanatory variables in the regression equations for any of the
six regions.

The National Streamflow Statistics (NSS) Program, avail-
able online at Attp://water.usgs.gov/software/nss.html, provides
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a tool for estimating the magnitude and frequency of flood
characteristics for ungaged sites in Minnesota, the other states,
the Commonwealth of Puerto Rico, and American Samoa.
Using NSS reduces the possibility of computational errors
associated with manual computation. The basin characteristics
described in this report and used in NSS can be obtained from
topographic maps, or digital map data derived from various
sources. The USGS has developed a Web application named
StreamStats (http.//streamstats.usgs.gov/) that automates the
process of computing streamflow statistics for ungaged sites
and provides previously computed streamflow statistics for
USGS gaging stations. StreamStats provides a map-based
user interface that appears in a Web-browser window. Users
can obtain estimates of streamflow statistics for ungaged sites
by clicking on site locations in the interface. A GIS program
determines boundaries of the drainage basins for the ungaged
sites, measures the physical characteristics of the drainage
basins, and inserts the characteristics into the NSS program
to solve the regression equations in table 5 that estimate the
streamflow statistics for the sites. This process for measuring
the basin characteristics is faster, more accurate, and more
consistent than previous manual methods. Users also can
obtain previously published streamflow statistics and other
information for USGS gaging stations by clicking on station
locations in the user interface.

Region of Influence Regression Technique

The fundamental premise of the ROI technique is that
there is no need for distinct boundaries between regions (Burn,
1990). The ROI technique defines a new set of regression
equations for each ungaged site by selecting gaging stations
with characteristics that are similar to that ungaged site. Thus,
the ROI technique allows use of a potentially unique set of
gaging stations for each site of interest. Two methods are
available for this technique. The similarity method selects
gaging stations that have similar characteristics (variables).

The proximity method selects gaging stations that are nearby.
Predictions obtained by use of the ROI technique generally are
closer to the center of the data used to develop the equation
than predictions obtained by use of more traditional regres-
sion methods. Thus, extrapolation and other errors resulting
from assumption of linearity are reduced (Ensminger, 1998).
Because ROI computations are mathematically complex,
computer programs are necessary to solve the equations. NSS
contains the algorithms needed to perform the ROI procedure
for states where the ROI method was developed.

Comparison Between Regional Regression
Equation and Region of Influence Regression
Techniques

One method for comparing the RRE technique to the
ROI technique is to use the PRESS/n statistic, which is the
mean prediction error sum of squares. The PRESS/n statistic
is determined by removing each station (of # sites) from the
analysis, re-developing the regression equations, and com-
paring the re-estimated peak-flow value to the previously
determined value for that station in a region. The differences
between the re-estimated and previously determined values
are squared and the mean for all stations is computed. That
way, n analyses are made without the estimated station being
included. It is a reasonably unbiased comparison if the stations
are not highly cross correlated.

A listing of the PRESS/n statistics for regions A, B, and
D for the 2-, 25-, and 100-year recurrence intervals are in
table 6. Regions C, E, and F were excluded from the analysis
because the interrelations among some characteristics of these
regions are different from those for the rest of the state. For
example, regions C and F have larger slope-to-drainage-area
ratios than other regions in the state. The 2-, 25-, and 100-year
recurrence intervals were selected as representative of the
range of all eight recurrence intervals. The minimum PRESS/n
statistics indicate the preferred technique for each region.

The regional regression equation technique appears
preferable for all regions. Only the PRESS/n statistic for the
ROI proximity method for the 2-year recurrence interval in
region D is less than the corresponding PRESS/n statistic for
the RRE technique. However, the PRESS/n statistics for the
25- and 100-year recurrence intervals in region D are much
larger for the proximity ROI technique than for the RRE
technique. Therefore, the preferred technique for all regions
is RRE. The ROI techniques may be useful for reviewing the
value obtained by using the RRE technique, or to provide
a second or third estimate of peak flow. The smaller values
for the PRESS/n statistics for the regional RRE technique
than for either method in the ROI technique indicate that the
regions are relatively homogenous and that using hydrologic
landscape units and possibly other drainage characteristics is a
useful technique to define regions.
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Table 5. Regional regression equations, standard errors of the estimate, and the equivalent number of years of record.

[PK, peak flow for recurrence interval; DAREA, drainage area; SLOPE, main-channel slope; LAKE, lake area; SOILA, soil hydrologic group A; ROFF, gener-
alized mean annual runoff; log, common logarithm; regions are shown in figure 1]

Standard errors Equivalent years

Regression equation estimate (percent) of record

Region A (number of gaging stations used in regression = 47)

PK1.5 =7.15 DAREA"™® SLOPE *** (LAKE+1)1%* 33 7.9
PK2 = 8.85 DAREA"™' SLOPE *3* (LAKE+1)*° 31 8.2
PK5 =12.9 DAREA"7 SLOPE *® (LAKE+1)3¢7 31 10.8
PK10 = 15.3 DAREA*"SLOPE *%3* (LAKE+1)0414 33 12.8
PK25 =17.9 DAREA*™ SLOPE °™* (LAKE+1)47 37 14.9
PK50 = 19.6 DAREA™ SLOPE 3 (LAKE+1) 4% 40 159
PK100 = 21.2 DAREA"™5 SLOPE ** (LAKE+1)05% 43 16.5
PK500 =24.1 DAREA"” SLOPE ' (LAKE+1)%* 50 17.1
Region B (number of gaging stations used in regression = 91)
PK1.5 = 3.44 DAREA®0670-031 +106DARED) (T JKE+1)038 (SOILA+1)01% ROFF %' 33 3.7
PK2 =5.79 DAREA0750.719 +1oeDARED) (] AKE+1) 040" (SOILA+1)%1% ROFF %% 33 32
PKS - 159 DAREA0.088(5.879+log(DAREA)) (LAKE+1)—O.464 (SOILA+1)—O.155 ROFFO.735 37 37
PK10 = 26.5 DAREA95G-182 +1osDARED) (T AKE+1)04%5 (SOILA+1)%1%®° ROFF %™ 39 4.4
PK25 = 45.6 DAREA®01@-576 +1oeDARED) (T AKE+1)0526 (SOILA+1)1% ROFF %% 42 5.3
PK50 = 64.4 DAREA®10%3:233 +logDARED) (T AKE+1)05% (SOILA+1)1°' ROFF %3¢ 44 5.9
PK100 = 87.7 DAREA®1073.9%9 + loeDARED) (] AKFE+1)0561 (SOILA+1)01% ROFF *5% 47 6.4
PK500 = 163 DAREA" 12472+ 10eARED) (T AKF+1)05% (SOILA+1)?' ROFF % 53 7.2
Region C (number of gaging stations used in regression = 20)
PK1.5=42.2 DAREA*3% (LAKE+1)%* 40 2.8
PK2 =57.9 DAREA*** (LAKE~+1)55 42 24
PK5 =114 DAREA®" (LAKE+1)%° 45 2.8
PK10 = 167 DAREA" (LAKE+1)-0512 47 3.5
PK25 =256 DAREA"™" (LAKE+1)%* 49 4.5
PK50 =343 DAREA*™* (LAKE+1)% 51 5.1
PK100 = 449 DAREA""'S (LAKE+1)0¢7 53 5.7
PK500 =793 DAREA"%* (LAKE+1)°7 59 6.5
Region D (number of gaging stations used in regression = 107)
PK1.5=0.892 DAREA®"® SLOPE "*? (LAKE+1)°% ROFF "'* 56 3.1
PK2 =1.58 DAREA"" SLOPE *#¢ (LAKE+1)°3 ROFF ! 50 3.5
PK5=4.62 DAREA"" SLOPE %3 (LAKE+1)3% ROFF ™ 43 6.3
PK10="7.98 DAREA"™ SLOPE "¢ (LAKE+1)*%° ROFF *¢"! 42 8.8
PK25 =14 DAREA*? SLOPE °%¢ (LAKE+1)°%4 ROFF %3¢ 43 11.4
PK50 =19.9 DAREA"*% SLOPE **5 (LAKE+1)"%% ROFF %3 46 12.8
PK100 =27.1 DAREA*** SLOPE *#* (LAKE+1)°%° ROFF %4 48 13.8
PK500 = 48.9 DAREA*% SLOPE*** (LAKE+1)°4% ROFF 37 56 14.8

Region E (number of gaging stations used in regression = 23)

PK1.5=1.26 DAREA""" SLOPE %% 23 259
PK2 =0.49 DAREA'% SLOPE 3% 22 25.4
PK5 =4.53 DAREA"®® SLOPE 23 30.7
PK10 = 8.42 DAREA**™ SLOPE %% 26 32.6

PK25=9.29 DAREA"%¢ SLOPE 1% 30 353
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Table 5. Regional regression equations, standard errors of the estimate, and the equivalent number of years of record.—Continued

[PK, peak flow for recurrence interval; DAREA, drainage area; SLOPE, main-channel slope; LAKE, lake area; SOILA, soil hydrologic group A; ROFF, gener-
alized mean annual runoff; log, common logarithm; regions are shown in figure 1]

Regression equation

Standard errors Equivalent years

estimate (percent) of record
Region E (number of gaging stations used in regression = 23)—Continued
PK50 =30.8 DAREA**** SLOPE °3% 36 31.3
PK100 = 36.8 DAREA**' SLOPE %3 42 27.7
PK500 = 163 DAREA"7* SLOPE *°" 54 24.1
Region F (number of gaging stations used in regression = 44)
PK1.5=90.4 DAREA"®'> SLOPE %7 46 4.0
PK2 =104 DAREA*** SLOPE °%* 39 5.0
PK5 =140 DAREA*%¢ SLOPE 14 28 12.5
PK10 = 165 DAREA"* SLOPE %% 25 21.2
PK25 =197 DAREA"** SLOPE " 24 31.1
PK50 =220 DAREA**3 SLOPE 3% 25 34.6
PK100 =243 DAREA"%* SLOPE 3% 28 35.0
PK500 =298 DAREA"*** SLOPE 4% 35 31.1

Accuracy and Limitations of the Peak-Flow
Estimation Techniques

The accuracy of a statistically derived equation is mea-
sured by the closeness of the estimated value to the true value.
Regression analyses give an unbiased estimate of the true
value and statistics to assess the accuracy of the estimate.

The SEE, also called residual standard error, is a measure
of the fit of the observed data about the regression surface
(Riggs, 1968). The SEE is expressed as a percentage of the
estimated value. It has traditionally been used for comparing
the relative accuracy of the equations, although it is less useful
for GLS regressions.

The standard error of prediction (SEP) is an estimate of
the accuracy of the result of applying a regression equation to
a set of explanatory variables. It accounts for the regression
error and the uncertainty of the coefficients of the explanatory
variables (Riggs, 1968). It varies from site to site because it is
a function of the basin characteristics at a site.

Hardison (1971) presented an equation that defines the
EY represented by the regression equation. The EY is the ratio
of the mean variance of the logarithms of the annual peak flow
to the mean square error of prediction, multiplied by a factor
dependent on the recurrence interval. It is an estimate of the
number of years of record that would be needed at a site to
compute a peak flow at that recurrence interval with the same
confidence interval.

Table 6. Mean prediction error sum of squares (PRESS/n) statistics for selected regions

and recurrence intervals.

Recurrence interval  Regional regression

Similarity region of Proximity region of

(years) equations influence influence
Region A

2 0.02734 0.03048 0.03512

25 .03954 .04793 .05593

100 .05341 .06596 .07090
Region B

2 .02533 .03152 .03307

25 .04261 .05516 .06111

100 .05429 .07088 .07828
Region D

2 05173 .06435 .05015

25 .05021 .05740 .05588

100 .06612 .07522 .07674
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Table 7.
for each region.

mi%, square miles; ft/mi, feet per mile; in/yr, inches per year
q p

Maximum and minimum values and geometric mean of the basin characteristics used in the regional regression analysis

o Drainage area Main-channel Lake area Storage area Iso (;Iilch;’:l;::[; so';:‘:::gg'c n(::::r:l:lz::l
Statistic (DA!?EA) slope (Sl._OPE) (LAKE) (STOR) A (SOILA) (SOILD) runoff (ROFA
(mi?) (ft/mi) (percent) (percent) (percent) (percent) (infyr)
Region A
Minimum 2.81 1.74 0 4.79 0 0 2.34
Geometric mean 99.6 5.63 .67 20.5 4.82 1.46 3.49
Maximum 1,570 374 13.0 95.0 32.8 253 6.03
Region B
Minimum 23 0.67 0 1.84 0 0 3.03
Geometric mean 41.5 7.76 2.14 25.4 6.95 2.76 7.96
Maximum 1,700 238 23.7 63.9 54.5 39.0 12.24
Region C
Minimum 21 11.2 0 1.68 15 8.56 11.42
Geometric mean 9.27 52.6 .59 15.1 3.00 24.8 12.23
Maximum 607 235 11.8 30.2 36.4 86.0 12.70
Region D
Minimum 15 1.49 0 0 0 0 2.15
Geometric mean 33.8 8.12 71 3.74 77 78 4.52
Maximum 2,640 77.2 14.0 24.9 17.7 47.5 7.74
Region E
Minimum .09 4.04 0 0 0 0 2.90
Geometric mean 20.4 12.0 .01 1.53 18 17 3.81
Maximum 1,580 117 11 4.88 1.21 1.17 4.59
Region F
Minimum .06 4.64 0 0 0 0 6.67
Geometric mean 323 19.6 .03 1.30 71 1.44 7.66
Maximum 1,540 229 25 4.44 4.06 19.1 8.46

The 90-percent prediction interval is another measure of
the uncertainty of the estimated value. It is the estimated value
multiplied or divided by a factor that is dependent on the mean
SEP and the critical value of the t-distribution for a particular
model. The information necessary to compute prediction inter-
vals are included in the equations for Minnesota in the NSS
(U.S. Geological Survey, 2009).

The accuracy of the estimating equation is limited by
the uncertainty of the input data. Uncertainty has two com-
ponents: variance, a measure of the random variation about
the true value, and bias, the consistent deviation of the value
from the true value. How well the peak-flow estimates from
the log-Pearson Type III analysis of the recorded annual peak
flows predicts the actual population of peak flows depends on
the sample size, the accuracy of each recorded peak value, and
how well the log-Pearson Type III distribution fits the actual

distribution (Interagency Advisory Committee on Water Data,
1982).

The accuracy of the regression estimate is affected by
errors in the explanatory variables. Errors in quantifying
the drainage-basin characteristics result from an inability to
completely describe the effect of those characteristics. For
example, the effects of wetlands and lakes depend on their size
and location in the basin and in the stream channels, but the
explanatory variable storage is simply expressed as a percent-
age of total drainage area without regard to size or location.

Bias of an estimate can result from systematic errors in
the computation of the response variable. Bias in the computa-
tion of the response variable probably is the result of col-
lecting peak-flow data over a period that does not reflect the
long-term population of peak flows. Most short-term records
at gaging stations used in this analysis were from water years
1960 through 1985 and recent (through water year 2005)



periods. The derived peak-flow statistics reflect those periods,
which may not be representative of the long-term conditions.

The accuracy of an estimate made using the techniques
presented in this report also can be affected by the user. Each
user will make certain decisions based on their best judgment
about the actual outline of the drainage basin, the path of the
main channel, interpolation of generalized runoff, and the
source of lake and wetland data. These individual sources of
error can be reduced by use of shared computer datasets that
are updated as improved information becomes available and
the use of a GIS that provides consistent results.

The accuracy of peak-flow estimates made at sites imme-
diately downstream from a lake or ponded area where the
storage capacity could substantially alter peak-flow character-
istics can be improved by a routing adjustment. In such places,
the frequency relations could be used as an aid in developing
a hydrograph of the inflow and then a simulation of that flow
can be routed through the lake to determine the peak of the
outflow.

The values of the explanatory variables used in this
analysis were all computed from consistent datasets using a
GIS or spatial interpolation software. Careful analysis using
7"2-minute USGS topographic maps should provide accu-
rate estimates of drainage area, main-channel slope, percent
storage, and percent lake. Interpolation of generalized runoff
from figure 2 can be improved by using Fitted Annual Runoff
data from table 3 in conjunction with data from nearby gaging
stations.

Multi-collinearity among the explanatory variables can
have adverse effects on the accuracy of coefficients of those
variables in the regression equation (Helsel and Hirsch, 1992).
Freund and Minton (1979) indicated that estimations from
regressions where the explanatory variables exhibit multi-
collinearity are reliable when the correlation structure of the
estimated site is similar to that of the data used to construct the
regression equation. This condition likely is true for any site
in Minnesota using any of the techniques for estimating peak
flow described herein.

Collinearity can be intrinsic in the data, such as the
relation between main-channel slope and drainage area, or
introduced in the computation of variables, such as percent
lake area and percent storage area. The correlation (a measure
of collinearity) between slope and drainage area is about -0.77
in Minnesota. The correlation between percent storage and
percent lake is less than 0.54 for regions in Minnesota. A mea-
sure of multi-collinearity is the variance inflation factor (VIF).
Helsel and Hirsch (1992) stated that VIFs of less than 10 were
not a concern in multiple linear regression analyses. The VIF
for each explanatory variable in each RRE in this study was
less than 10.

Peak-flow frequency regression equations presented in
this report can be used to estimate the peak flows of sev-
eral recurrence intervals on most small ungaged streams in
Minnesota. The applicability and accuracy of these relations
depend partly on whether the basin characteristics of the site
are within the range of the characteristics used to define the
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peak-flow regression equations. The range in sampled basin
characteristics is large enough to allow the application of the
equations at most sites where streamflow is not affected by
regulation, diversion, or urbanization. The minimum, geomet-
ric mean (corrected for offsets, if necessary), and maximum
values for each basin characteristic for each region are listed
in table 7.

The geometric mean is included in table 7 because it rep-
resents the central value of the data better than the arithmetic
mean. Where runoff is included as an explanatory variable, the
range of those data is sufficient to ensure that any value in that
region is within the range. The NSS program (U.S. Geological
Survey, 2009) will issue a warning message if the estimated
peak flow is an extrapolation beyond the data on which the
estimation is based.

Summary

Knowledge of the peak flow of floods of a given recur-
rence interval is essential for regulation and planning of water
resources and for design of bridges, culverts, and dams along
Minnesota’s rivers and streams. Statistical techniques are
needed to estimate peak flow at ungaged sites because long-
term streamflow records are available at relatively few places.
Because of the need to have up-to-date peak-flow frequency
information in order to estimate peak flows at ungaged sites,
the U.S. Geological Survey (USGS) conducted a peak-flow
frequency study in cooperation with the Minnesota Depart-
ment of Transportation and the Minnesota Pollution Control
Agency.

Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-,
25-, 50-, 100-, and 500-year recurrence intervals are presented
for 330 streamflow-gaging stations in Minnesota and adja-
cent areas in lowa and South Dakota based on data through
water year 2005. The peak-flow frequency information was
subsequently used in regression analyses to develop equations
relating peak flows for selected recurrence intervals to various
basin and climatic characteristics.

Two statistically derived techniques—regional regres-
sion equation and region of influence regression—can be used
to estimate peak flow on small, ungaged streams in Minne-
sota. Regional regression equations were developed for each
recurrence interval in each of the six regions in Minnesota: A
(northwestern), B (north central and east central), C (north-
eastern), D (west central and south central), E (southwestern),
and F (southeastern). The regression equations can be used
to estimate peak flows at ungaged sites. The region of influ-
ence regression technique dynamically selects gaging stations
with characteristics similar to a site of interest. Two methods
of selecting gaging stations, similarity and proximity, can be
used in the region of influence regression technique. Thus, the
region of influence regression technique allows use of a poten-
tially unique set of gaging stations for estimating peak flow at
each site of interest.
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The regional regression equation technique is the
preferred technique as a first estimate of peak flow in all six
regions for ungaged sites. The region of influence regression
technique is not appropriate for regions C, E, and F because
the interrelations of some characteristics of those regions do
not agree with the interrelations throughout the rest of the
State. Both the similarity and proximity methods for the region
of influence technique can be used in the other regions (A, B,
and D) to review the value obtained by the regional regres-
sion equation, or to provide a second or third estimate of peak
flow. Tables showing the peak-flow-frequency estimates and
basin characteristics for selected streamflow-gaging stations,
and regional peak-flow regression equations, are presented.
Discussions of the accuracy and limitations are also included.
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Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota

Table 2. Basin characteristics of streamflow-gaging stations used in this report.

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :r:;:-A Ii ‘;'ilch;:::s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

04010500 607 11.2 11.8 254 2.48 34.6 11.73
04011370 7.36 48.6 2.85 22.9 15 8.85 12.37
04011390 .49 103 0 13.2 44 8.56 12.37
04011990 88.7 25.0 5.46 27.1 4.53 16.7 12.18
04012500 113 19.9 7.39 27.0 1.32 11.9 12.32
04013100 1.36 235 0 16.7 .86 15.3 12.66
04013200 23.0 50.8 0 15.9 2.24 13.2 12.56
04014500 138 40.7 .67 30.2 1.48 16.9 12.47
04015150 1.18 105 0 26.6 4.13 20.9 12.60
04015200 .94 203 0 1.68 2.52 11.1 12.65
04015250 3.89 142 0 4.76 2.28 57.7 12.70
04015300 4.82 50.7 0 16.8 3.21 50.4 12.56
04015330 86.0 33.1 0 18.7 3.14 41.8 12.49
04015360 1.18 139 0 4.93 2.40 74.8 12.47
04015370 5.87 85.3 0 13.9 1.38 31.8 12.39
04015500 21.8 15.0 1.68 19.2 22.9 8.44 10.81
04016000 153 5.43 2.84 34.1 10.9 5.55 11.15
04017000 94.5 2.89 3.51 38.2 21.2 8.77 10.82
04017700 23 238 0 4.93 4.52 6.46 10.43
04018800 3.67 50.1 1.14 8.50 19.8 9.23 10.10
04018900 41.7 6.67 3.32 18.2 11.6 7.51 10.12
04019000 66.3 8.28 3.40 19.0 11.0 7.47 9.83
04019300 153 9.95 0 15.0 8.97 5.32 9.08
04019500 136 5.64 1.86 30.9 12.1 6.64 9.50
04020480 16.4 6.74 35 46.4 1.51 3.06 11.76
04020700 24.5 11.5 0 30.8 3.37 1.74 11.49
04021205 204 3.53 52 63.9 13.8 3.53 9.54
04021690 40.8 15.3 1.12 54.6 7.14 1.12 12.24
04024095 124 14.6 1.00 28.3 32.1 13.1 11.42
04024098 7.55 38.7 0 17.7 9.87 40.1 11.65
04024100 4.82 35.5 0 5.09 1.94 54.9 11.72
04024110 .20 443 0 25.6 2.00 86.0 11.85
04024200 20.5 35.5 27 16.8 36.4 22.7 11.64
05040500 477 2.22 15.3 27.8 3.02 24 3.03
05047500 200 2.48 3.07 10.1 1.51 .26 2.80
05047970 8.25 10.4 0 2.38 11 0 2.38
05048000 722 2.28 1.64 7.50 93 3.91 2.55
05049000 788 2.50 1.52 7.12 93 3.93 2.52
05049200 50.2 4.81 0 2.34 1.03 22.0 2.15
05050700 113 5.21 1.35 5.12 2.85 1.39 2.58
05051000 252 3.89 .63 3.06 1.75 1.92 2.50



Tables 1-3 M

Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :r:;:-A Ii ‘;'ilch;:::s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05060800 91.9 4.54 13.0 33.0 9.69 0.34 348
05061000 336 5.59 5.91 18.5 3.77 .09 3.07
05061200 62.0 16.1 3.67 14.7 3.45 0 2.63
05061400 6.19 14.2 0 6.16 29.6 0 2.39
05061500 461 7.11 1.20 8.74 8.60 2.18 2.38
05062000 987 6.45 2.66 11.6 7.37 1.28 2.59
05062280 4.38 10.9 0 5.23 7.00 0 4.04
05062470 12.9 3.48 0 5.86 1.00 0 2.91
05062500 934 3.90 4.08 18.6 6.84 .62 3.41
05062700 5.01 11.8 0 9.93 32.8 .30 2.55
05062800 45.9 12.7 23 9.42 21.4 .14 2.58
05063200 5.45 15.3 54 20.0 1.45 0 3.12
05063500 249 6.53 .68 7.50 6.83 54 2.67
05064000 1,570 4.20 2.56 13.7 7.94 3.55 3.04
05067500 236 4.90 .10 4.82 9.71 18.2 2.34
05069000 460 4.76 1.92 9.53 4.74 19.4 2.68
05073600 2.81 6.62 2.23 28.6 13 7.61 6.03
05073750 8.30 154 42 32.0 1.00 4.99 5.55
05073800 3.36 7.22 0 66.6 1.00 2.56 5.51
05075700 183 2.39 0 53.7 1.01 17 3.77
05076000 967 1.74 1.38 53.6 2.10 2.54 3.52
05077700 46.7 10.1 2.28 18.2 23.0 1.18 3.97
05078000 554 3.33 1.34 22.9 15.2 71 3.74
05078100 533 9.02 5.42 21.1 .05 1.36 3.67
05078180 5.56 37.4 0 20.9 0 3.00 3.79
05078200 5.90 21.8 1.18 16.6 0 .26 3.82
05078230 249 5.02 1.24 17.1 4.76 .61 3.52
05078400 8.00 5.26 0 4.79 3.58 0 2.87
05078500 1,360 3.41 1.78 17.7 10.4 1.12 3.45
05079901 118 10.1 32 12.6 8.16 253 2.44
05086900 85.6 3.54 0 15.3 10.8 0 3.04
05087500 252 4.19 .03 11.7 15.3 11 2.84
05093000 272 3.39 13 13.3 6.85 1.34 3.28
05094000 558 3.04 15 12.3 6.32 1.28 3.28
05095500 691 3.81 13 11.9 6.05 1.77 3.19
05096000 31.6 3.80 0 134 10.9 .66 3.20
05103000 210 3.49 35 60.4 4.93 2.78 4.16
05104000 214 3.25 .03 36.5 5.93 5.58 3.76
05104500 428 3.63 .19 47.9 5.39 4.25 3.96
05107500 1,010 2.94 15 43.6 3.89 3.96 4.14

05112000 1,410 2.13 31 43.7 3.67 3.53 4.05
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :r:;:-A Ii ‘;'ilch;:::s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05124480 251 6.38 11.4 27.2 1.45 34.8 11.67
05124500 340 7.28 4.66 29.8 7.16 154 11.92
05124990 9.51 13.8 1.94 25.9 0 39.0 11.34
05125000 442 6.44 5.72 30.1 6.28 18.5 11.82
05125500 175 10.3 4.02 47.9 7.40 1.50 11.89
05125550 211 9.85 3.53 46.3 7.85 1.55 11.83
05126000 57.1 12.9 28 36.3 15.2 9.05 11.36
05126500 65.8 4.53 8.97 38.2 3.40 23.7 10.95
05127205 68.8 5.98 21.4 32.1 3.34 25.1 10.71
05127210 5.83 43.8 0 28.8 4.00 30.0 10.86
05127215 8.09 29.8 9.55 30.1 5.64 25.0 10.90
05127220 2.98 49.3 1.00 17.7 4.00 30.0 10.93
05127230 99.6 1.65 19.3 32.8 3.56 25.1 10.76
05127500 1,410 4.42 9.13 33.4 5.54 20.7 11.52
05128300 1.08 71.1 0 7.95 35.0 12.0 10.29
05128500 114 3.59 .65 348 25.5 4.15 10.17
05128700 2.88 8.35 3.26 42.1 9.30 2.35 10.47
05129000 488 1.86 17.1 38.9 10.0 13.7 10.20
05129650 63.4 3.23 1.81 53.6 2.90 13.3 9.89
05129710 8.14 4.19 15.1 44.7 28.4 57 9.79
05130300 14.6 12.8 .30 26.7 12.0 4.53 9.35
05130500 186 7.09 4.15 32.6 233 2.23 9.12
05131000 56.2 13.9 10.5 30.3 52.1 2.94 9.62
05131500 1,700 1.63 2.12 40.3 10.5 17.6 8.76
05131750 605 .67 9.32 44 .4 8.19 7.63 6.73
05131878 23.2 10.0 0 41.5 1.61 12.4 7.29
05132000 1,500 .98 5.24 46.5 6.79 12.8 7.10
05134100 174 3.05 0 94.3 5.39 .70 4.82
05134200 581 2.80 0 95.0 2.32 5.69 4.90
05137000 141 4.23 21 86.5 4.74 .96 5.14
05139500 168 5.44 13 77.4 5.23 1.10 4.53
05140000 11.2 8.20 0 18.5 72 22 4.68
05140500 51.1 5.12 0 64.4 6.07 1.35 4.77
05200200 41.5 5.55 2.19 13.8 2.38 4.79 4.58
05205200 288 1.75 18.2 353 7.32 0 6.61
05210200 7.83 31.0 .82 22.4 2.00 0 8.01
05216700 12.2 40.5 5.66 16.2 16.4 5.89 8.78
05216860 113 7.06 9.61 26.0 11.9 4.20 8.82
05216980 4.07 26.4 2.03 29.5 8.94 .10 8.91
05217000 245 2.92 7.74 29.8 10.2 343 8.68

05217700 1.45 7.58 0 28.3 54.5 1.00 8.92
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued
[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg‘;::l :X:J:-A Iso ';Iilchg:::;) g:::::':::l

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D (SOILD) runo_ff \ROF)

(percent) (percent) (in/yr)

05221020 513 1.91 2.60 439 11.3 2.36 8.13
05229450 266 3.06 7.37 27.0 22.3 0 6.34
05241500 8.92 11.6 23.7 34.8 1.12 7.88 7.83
05243725 59.0 5.81 1.65 9.31 435 .16 4.52
05244000 917 2.78 5.10 27.9 35.2 22 4.95
05244100 18.5 9.25 .56 19.7 7.08 4.87
05244200 47.9 5.54 21 31.6 10.6 5.02
05244440 858 3.95 1.13 22.8 15.4 .03 4.62
05245100 448 1.50 10.7 25.3 5.45 4.15
05245800 19.4 13.1 .07 14.2 37.5 6.12
05261520 188 3.64 4.75 28.6 18.4 .04 7.17
05267800 1.27 19.6 0 19.2 3.11 6.57
05267900 455 8.23 0 29.8 1.57 6.79
05268000 431 3.71 1.97 26.7 18.8 29 6.57
05270150 123 4.46 2.06 14.3 14.8 .06 4.10
05270300 7.16 10.3 0 4.53 0 0 4.25
05270310 32 70.3 0 1.84 3.41 .05 4.42
05270500 1,040 2.36 4.11 16.8 11.4 54 4.44
05271800 6.96 5.21 2.43 21.8 9.08 0 4.77
05272000 15.3 10.6 1.37 21.5 15.7 .08 4.82
05272300 45.1 10.7 58 21.4 29.2 23 4.88
05272950 79.9 11.4 2.60 16.9 3.88 77 4.59
05273700 3.22 21.2 0 9.47 0 1.72 5.52
05274200 2.40 9.43 0 22.2 0 0 5.67
05275000 554 2.86 1.31 20.2 30.3 18 5.65
05276000 210 3.83 .88 16.8 11.6 72 4.03
05276100 .67 34.6 0 8.97 A1 0 4.24
05276200 237 4.07 .80 17.0 12.7 78 4.04
05278120 775 3.17 4.69 20.1 11.5 1.26 4.16
05278350 6.52 2.72 1.74 24.9 0 4.28 495
05278500 234 2.77 6.34 14.3 .07 49 4.13
05278700 31.2 2.69 1.70 13.9 0 1.73 4.75
05278750 1.20 13.8 0 2.48 0 3.00 4.89
05278850 9.20 7.21 8.84 16.3 0 0 4.66
05278930 373 2.00 1.45 7.51 0 15 4.50
05279000 1,150 1.87 3.14 11.6 .04 .80 4.51
05280000 2,640 2.61 5.80 21.6 8.11 1.57 4.44
05280300 4.26 7.48 134 24.1 0 1.11 5.36
05284100 .56 33.5 0 20.7 49.8 0 8.27
05284620 2.79 10.9 0 325 0 12 7.18
05284920 1.23 44.6 0 15.7 1.00 5.00 7.01
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :Z’:;:-A If) ‘;'ilch;:::s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05286000 1,390 2.92 16.1 38.8 13.1 0.86 7.21
05287890 86.9 5.89 1.84 22.0 .03 1.44 5.65
05292704 209 18.1 .66 5.12 1.00 7.64 2.44
05293000 460 11.9 74 6.29 78 6.76 2.57
05293371 317 4.05 14.0 24.5 3.86 0 3.23
05294000 865 2.26 6.77 14.6 4.90 .01 2.99
05299100 3.03 55.2 0 4.87 0 2.86 2.96
05299750 73.4 7.53 .16 6.50 .36 .81 2.61
05300000 960 7.27 .86 6.17 .30 4.27 2.85
05302500 95.4 6.18 10.6 21.9 1.12 0 3.52
05302970 15 63.6 0 5.39 1.00 0 3.33
05303450 7.36 353 0 14.9 2.02 0 3.33
05304500 1,870 2.84 5.04 13.9 5.28 A48 343
05305000 2,040 2.75 4.62 12.9 4.98 44 342
05305200 16.7 4.61 0 .86 0 .05 3.38
05311200 14.8 8.50 0 4.97 .02 0 3.00
05311250 27 77.2 0 0 0 0 3.13
05311300 3.82 38.1 0 2.18 0 34 3.11
05311400 115 12.2 .90 5.82 .02 1.59 3.36
05313500 668 6.86 73 4.57 .19 1.99 3.37
05313800 .86 11.7 0 12 0 0 3.96
05314900 5.79 27.0 0 2.60 .60 0 3.54
05315000 259 8.38 2.39 7.89 21 11 3.50
05315200 5.52 8.12 0 3.84 0 2.58 3.67
05316500 624 6.68 1.27 5.01 .56 97 3.66
05316538 63.8 2.02 0 40 1.02 0 3.96
05316550 8.60 2.88 0 2.36 0 4.03
05316570 198 4.00 0 2.32 0 .02 4.07
05316690 3.47 7.87 0 .16 0 1.00 4.74
05316700 32.8 2.10 0 2.61 0 .50 4.64
05316800 1.58 26.1 0 2.59 0 0 3.74
05316850 .49 51.1 0 0 0 3.00 3.81
05316900 3.18 47.7 0 1.82 0 0 4.58
05316920 .35 46.2 0 1.86 6.89 .29 4.54
05316950 777 5.85 52 3.37 1.84 .49 4.20
05317000 1,310 4.60 43 3.30 1.88 37 4.34
05317200 169 6.77 25 3.09 8.47 .92 5.01
05317845 30.3 9.02 0 Sl 0 0 7.06
05317850 2.17 24.8 0 .08 2.91 0 7.10
05318000 120 5.86 1.69 4.66 .16 0 6.99
05318100 9.39 6.84 0 27 0 0 6.67
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :r:;:-A Ii ‘;Iilch;:lt:s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05318195 76.5 9.02 0.32 1.70 0.35 0 5.22
05318300 13.0 14.7 .54 3.37 3.67 0 4.71
05318890 107 6.37 1.74 3.07 .67 0 5.16
05318897 107 6.30 1.73 3.05 .66 0 5.17
05319500 847 4.96 1.09 3.51 4.01 .05 5.40
05320200 1.31 17.8 0 11.6 0 11.7 6.12
05320300 8.04 8.14 0 1.40 0 12.3 6.40
05320400 5.77 10.4 0 34 0 47.5 6.42
05320440 19.4 6.96 0 .81 0 31 6.29
05320480 339 2.46 1.53 3.53 0 12.3 6.54
05320500 1,110 3.88 1.50 491 .10 7.01 6.65
05326100 67.5 3.53 0 1.27 0 0 4.78
05327000 240 3.27 1.93 10.1 .62 .80 4.83
05330150 22 64.2 0 0 0 .61 5.97
05330200 3.06 11.6 0 124 0 1.96 5.96
05330300 62.9 2.33 421 17.3 0 3.16 5.88
05330550 22.2 9.86 .76 16.0 0 0 5.70
05330600 2.67 13.8 0 12.7 0 0 5.55
05335170 93.1 12.0 .82 31.5 4.26 1.77 10.68
05336200 26.4 9.39 0 434 5.44 4.41 10.74
05336300 1.42 37.9 0 18.4 1.00 8.00 10.80
05336550 6.16 6.61 0 18.2 2.90 6.83 9.97
05336600 45 20.8 0 18.7 1.00 8.00 9.97
05336700 870 5.26 1.63 35.6 12.5 4.40 10.50
05337400 104 8.93 2.00 28.8 2.33 46 8.23
05338200 3.28 19.0 0 24.0 0 0 9.25
05338500 969 4.33 1.24 30.4 3.10 1.51 8.41
05339747 43.9 3.61 5.49 34.0 7.27 4.38 7.63
05340000 168 2.95 7.97 39.7 30.7 21 7.07
05340050 240 2.41 10.3 38.5 234 .40 7.22
05345000 129 8.37 .88 10.8 8.95 .63 6.04
05345900 38.4 5.90 .09 2.51 17.7 0 6.26
05348550 87.8 1.49 6.42 20.5 0 2.89 6.10
05352700 1.03 29.0 0 1.76 0 1.31 7.15
05352800 5.04 15.5 0 .19 0 0 7.12
05353800 436 3.59 .59 3.93 0 .90 6.97
05355024 928 1.87 3.43 9.64 .86 1.27 6.61
05355100 2.22 51.5 0 2.58 0 0 6.58
05355150 20.6 11.8 0 .81 12.9 4.72 6.37
05355200 1,340 3.24 2.55 8.11 2.24 1.19 6.54

05355230 .06 79.9 0 0 0 0 6.67
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosg(:::I :r:;:-A Ii ‘;'ilch;:::s;) S:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05372800 155 7.51 0.13 4.44 0 3.23 7.39
05372930 78.4 19.6 0 3.68 2.97 19.1 7.53
05372950 17.7 27.2 0 3.28 .39 3.78 7.50
05372990 38.2 14.7 .09 1.91 0 .01 7.36
05372995 301 7.55 1 3.77 1.32 7.02 7.43
05373080 21.8 5.46 0 .60 0 0 7.06
05373350 12 143 0 0 0 0 7.23
05373700 10.0 18.2 0 2.13 0 0 6.81
05373900 .14 125 0 0 0 0 6.88
05374000 1,150 5.71 25 2.70 1.13 2.63 7.15
05374400 4.45 48.2 0 .50 0 0 7.41
05374900 1,420 5.02 .20 2.77 1.20 2.13 7.18
05376000 100 11.1 0 1.68 37 5.23 7.53
05376110 39.1 19.2 0 1.83 37 2.77 7.66
05376500 78.0 15.1 0 1.54 1.87 5.00 7.75
05376800 271 11.8 .02 2.14 2.17 3.96 7.65
05377500 288 11.6 .02 2.20 2.29 3.76 7.65
05378235 45.0 25.0 .06 .60 .08 .39 7.96
05378300 5.12 93.2 0 74 .03 .16 7.83
05379000 9.08 88.5 0 41 .16 .79 8.02
05383600 74 43.8 0 2.46 0 1.24 7.58
05383700 2.41 58.0 0 2.15 0 14.6 7.65
05383720 22.4 41.9 0 2.12 0 12.0 7.65
05383850 14.1 13.8 0 2.80 0 0 7.62
05384000 615 5.93 .03 2.05 .89 .94 7.67
05384100 3.85 63.8 0 1.18 3.78 1.42 8.02
05384120 284 9.02 .05 1.64 4.06 22 7.92
05384150 .08 229 0 0 0 0 7.98
05384200 7.88 73.4 0 .39 3.14 .39 8.01
05384300 13 58.3 0 0 0 0 7.89
05384350 992 5.48 .03 1.88 2.81 .65 7.77
05384400 28.3 15.6 0 .60 1.00 2.02 7.87
05384500 132 18.4 0 57 3.80 .95 7.92
05385000 1,250 5.26 .03 1.73 3.38 .69 7.82
05385500 275 10.9 0 78 .83 .55 8.13
05386000 1,540 5.20 .02 1.57 3.02 .65 7.88
05387030 44.5 38.2 13 75 31 .85 8.28
05387490 20.8 24.8 0 1.26 23 2.09 8.46
05387500 511 4.83 .03 1.41 54 2.38 8.12
05388000 568 4.64 .03 1.34 52 2.71 8.16

05388250 768 4.92 .02 1.20 49 3.65 8.22
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Table 2. Basin characteristics of streamflow-gaging stations used in this report—Continued

[mi?, square miles; ft/mi, feet per mile; in/yr, inches per year]

Station Drainage area  Main-channel Lake area Storage area Iosgtz::l :r:;:-A If) ‘;Iilch;:lt:s;) s:::r:::sgl

number (DAREA) slope (SLOPE) (LAKE) (STOR)

(table 1) (mi?) (ft/mi) (percent) (percent) (SOILA) D{(SOILD) runo_ﬂ \ROFA)

(percent) (percent) (in/yr)

05457000 398 3.01 0.73 2.22 0 3.53 7.36
05457080 .97 33.7 0 2.64 0 0 7.57
05457778 46.5 8.44 0 2.22 1.18 .02 7.74
05458960 29.2 5.61 0 Sl .08 .79 7.19
05474750 5.00 22.8 2.30 4.72 0 3.98
05474760 2.10 33.7 0 46 0 4.01
05474900 61.2 7.43 0 91 0 4.49
05475400 3.34 26.8 0 .29 .20 0 4.85
05475800 1.43 17.7 0 5.25 3.89 0 5.24
05475900 5.14 20.2 0 31 5.00 0 5.17
05476000 1,240 2.55 2.26 5.56 93 .09 4.41
05476010 6.25 43.8 0 1.26 5.00 0 5.30
05476100 26.1 21.2 0 75 3.36 0 5.35
05476900 15.5 13.8 0 .19 0 0 5.53
05476989 126 6.29 78 1.75 .01 0 5.55
06480400 61.3 10.1 0 .96 1.21 .90 2.97
06480650 101 7.83 0 3.30 34 57 3.19
06482500 31.0 11.9 0 2.14 .16 .83 3.40
06482600 2.12 41.3 0 .84 0 0 2.90
06482610 482 4.08 .03 1.91 .03 42 3.10
06482933 57.8 6.33 0 4.25 .14 1.17 3.85
06482950 2.47 19.4 0 4.88 0 0 3.45
06482960 .09 117 0 74 0 0 3.48
06482970 48.2 7.81 0 2.73 49 0 3.90
06483000 419 4.11 .01 3.49 .66 45 3.66
06483050 21 75.3 0 0 3.61
06483200 2.52 26.7 0 3.39 0 0 3.95
06483210 2.15 29.2 0 3.45 0 4.09
06483270 789 4.09 .03 2.87 98 24 3.78
06483350 39.5 7.18 0 1.68 .35 0 4.40
06483353 32.0 11.0 0 71 11 0 4.23
06483410 13.9 4.80 0 2.31 0 0 4.52
06483420 1.54 254 0 0 0 0 4.45
06483430 33.2 6.68 0 1.02 0 0 4.50
06483450 7.03 16.7 0 21 0 0 4.53
06483460 88.7 6.15 11 .67 0 0 4.59
06483495 30.1 14.4 0 15 0 0 4.05
06483500 1,580 4.04 .02 1.82 .59 12 3.95
06603000 15.6 6.74 0 2.62 0 0 491
06603500 7.65 4.47 0 .08 53 0 5.03
06603520 3.24 12.3 0 .26 0 0 4.87
06603530 41.1 6.73 0 1.26 .10 0 4.93
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Table 3. Streamflow-gaging stations used to estimate generalized mean annual runoff.

Station Map . Period of record Mean anm_lal Fitted annual
number nu_mber Station name (water years) runoff for _penod of runoff (inches)
(fig. 2) record (inches)
04010500 1 Pigeon River at Middle Falls near Grand 1940-2005 11.15 11.47
Portage, Minn.
04012500 2 Poplar River at Lutsen, Minn. 194047, 1953-61 12.37 12.39
04014500 3 Baptism River near Beaver Bay, Minn. 1940-47, 1950-93 16.71 12.75
04015330 4 Knife River near Two Harbors, Minn. 1975-2005 14.76 12.94
04015475 5 Partridge River above Colby Lake at Hoyt 1979-88 11.22 11.40
Lakes, Minn.
04015500 6 Second Creek near Aurora, Minn. 1956-80 10.50 10.86
04016000 7 Partridge River near Aurora, Minn. 1943-82 9.42 11.27
04016500 8 St. Louis River near Aurora, Minn. 1943-87 11.00 11.49
04017000 9 Embarrass River at Embarrass, Minn. 1943-64 9.89 10.85
04018750 10 St. Louis River at Forbes, Minn. 1965-89 10.64 11.12
04018900 11 East Two River near Iron Junction, Minn. 1967-79 10.72 10.16
04019000 12 West Two River near Iron Junction, Minn. 1954-62, 196679 9.35 9.86
04019300 13 West Swan River near Silica, Minn. 1964-78 8.57 9.11
04019500 14 East Swan River near Toivola, Minn. 1954-62, 1965-71 11.36 9.54
04024000 15 St. Louis River at Scanlon, Minn. 1940-2005 10.32 10.80
04024098 16 Deer Creek near Holyoke, Minn. 1977-2001 12.86 12.13
04024430 17 Nemadji River near South Superior, Wisc. 1975-2005 12.63 12.43
040263491 18 North Fish Creek near Moquah, Wisc. 1990-91, 1995-97, 15.85 14.37
2001-05
05030000 19 Otter Tail River near Detroit Lakes, Minn. 1940-71 2.82 4.66
05030500 20 Otter Tail River near Elizabeth, Minn. 1993-2005 4.65 4.58
05040000 21 Pelican River near Detroit Lakes, Minn. 1943-53 4.30 3.95
05040500 22 Pelican River near Fergus Falls, Minn. 1943-80 2.29 3.48
05046000 23 Otter Tail River below Orwell Dam near Fer- 1940-2005 3.23 4.16
gus Falls, Minn.
05049000 24 Mustinka River above Wheaton, Minn. 1940-58, 2005 1.12 2.47
05050000 25 Bois De Sioux River near White Rock, S. Dak. 1942-2005 1.33 2.23
05051300 26 Bois De Sioux River near Doran, Minn. 1944-98, 2000-03 2.38 2.18
05051500 27 Red River of the North at Wahpeton, N. Dak. 1944-98, 2000-03 2.12 2.86
05051522 28 Red River of the North at Hickson, N. Dak. 19762005 2.59 2.09
05051600 29 Wild Rice River near Rutland, N. Dak. 1960-82, 1984 21 .29
05051650 30 La Belle Creek near Veblen, S. Dak. 1988-99 3.41 1.45
05051700 31 Wild Rice River near Cayuga, N. Dak. 1957-79 27 41
05053000 32 Wild Rice River near Abercrombie, N. Dak. 1940-2005 74 93
05059600 33 Maple River near Hope, N. Dak. 1965-82 1.90 .84
05059700 34 Maple River near Enderlin, N. Dak. 1957-2005 .92 74
05060000 35 Maple River near Mapleton, N. Dak. 1959-75 .90 91
05060100 36 Maple River below Mapleton, N. Dak. 1945-58, 1996 1.02 91
2005
05060500 37 Rush River at Amenia, N. Dak. 1947-2005 1.48 1.16
05061000 38 Buffalo River near Hawley, Minn. 1946-80, 1986— 3.57 3.47

2005
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Station Map . Period of record Mean anm_lal Fitted annual
number nu_mber Station name (water years) runoff for _penod of runoff (inches)
(fig. 2) record (inches)
05061500 39 South Branch Buffalo River at Sabin, Minn. 1946-80, 19862005 2.00 2.57
05062000 40 Buffalo River near Dilworth, Minn. 1940-2005 243 2.82
05062500 41 Wild Rice River at Twin Valley, Minn. 1940-83, 1990-2005 3.41 3.96
05064000 42 Wild Rice River at Hendrum, Minn. 1945-84, 19862005 2.96 3.39
05064900 43 Beaver Creek near Finley, N. Dak. 1965-2003 .96 .95
05065500 44 Goose River near Portland, N. Dak. 1940-75, 1981-82 78 1.02
05066500 45 Goose River at Hillsboro, N. Dak. 1940-2005 1.21 1.08
05067500 46 Marsh River near Shelly, Minn. 1945-83, 198689 3.90 2.41
05068000 47 Sand Hill River at Beltrami, Minn. 1945-58 21 3.18
05069000 48 Sand Hill River at Climax, Minn. 1947-84, 19862005 2.80 2.81
05074500 49 Red Lake River near Red Lake, Minn. 1940-94, 2000-05 3.65 5.20
05075000 50 Red Lake River at High Landing near Goodridge, 1940-2000, 2002-05 3.88 5.01
Minn.
05076000 51 Thief River near Thief River Falls, Minn. 1940-81, 1983-2005 3.20 3.46
05077700 52 Rufty Brook near Gonvick, Minn. 1961-78 4.06 4.50
05078000 53 Clearwater River at Plummer, Minn. 1940-79, 1983-2005 4.37 4.11
05078230 54 Lost River at Oklee, Minn. 1961-81, 1983-2005 4.00 3.88
05078500 55 Clearwater River at Red Lake Falls, Minn. 1940-81, 1983-2005 3.60 3.75
05082625 56 Turtle River at Turtle River State Park near Arvilla, 1993-2005 2.12 1.15
N. Dak.
05083000 57 Turtle River at Manvel, N. Dak. 1946-70 1.13 1.37
05084000 58 Forest River near Fordville, N. Dak. 1941-2005 1.22 1.15
05085000 59 Forest River at Minto, N. Dak. 1945-2005 .98 1.35
05087500 60 Middle River at Argyle, Minn. 1951-81, 1983-2005 2.79 2.80
05088000 61 South Branch Park River near Park River, N. Dak. 1940-50 1.82 2.47
05089000 62 South Branch Park River below Homme Dam, N. 1950-94 1.50 1.40
Dak.
05089500 63 Cart Creek at Mountain, N. Dak. 1955-84 2.24 1.69
05090000 64 Park River at Grafton, N. Dak. 1940-2005 1.36 1.49
05092200 65 Pembina County Drain 20 near Glasston, N. Dak. 1972-82 .39 2.11
05094000 66 South Branch Two Rivers at Lake Bronson, Minn. 194243, 194647, 3.86 3.18
1954-81, 1986—
2005
05095500 67 Two Rivers below Hallock, Minn. 1946-55 2.16 3.16
05096000 68 North Branch Two Rivers near Lancaster, Minn. 1942-55 5.50 3.23
05096500 69 State Ditch #85 near Lancaster, Minn. 1943-55 3.65 3.83
05099600 70 Pembina River at Walhalla, N. Dak. 1940-90, 1994-95, 1.02 1.34
2001-05
05100000 71 Pembina River at Neche, N. Dak. 1940-2005 1.13 1.36
05100500 72 Herzog Creek near Concrete, N. Dak. 1955-77 2.23 1.75
05101000 73 Tongue River at Akra, N. Dak. 1952-82 1.81 1.68
05101500 74 Tongue River at Cavalier, N. Dak. 1940-51 1.86 1.68
05106000 75 Sprague Creek near Sprague, Manitoba, Canada 1941-81, 2000-05 4.97 4.87
05107000 76 Pine Creek near Pine Creek, Minn. 1940-53 5.61 4.47
05107500 77 Roseau River at Ross, Minn. 1940-91, 1996-2005 4.01 4.18
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Table 3. Streamflow-gaging stations used to estimate generalized mean annual runoff.—Continued

Station Map . Period of record (water Mean anm_lal Fitted annual
number nu_mber Station name years) runoff for _perlod of runoff (inches)
(fig. 2) record (inches)
05112000 78 Roseau River below State Ditch 51 near Caribou, 194143, 1973-2005 3.71 4.10
Minn.
05124480 79 Kawishiwi River near Ely, Minn. 1967-2005 10.52 11.71
05124500 80 Isabella River near Isabella, Minn. 1953-61, 1977 10.81 12.02
05124990 81 Filson Creek near Ely, Minn. 1975-85 10.64 11.38
05125500 82 Stony River near Isabella, Minn. 1953-64 9.56 11.98
05126000 83 Dunka River near Babbitt, Minn. 1952-62, 1976-80 9.69 11.47
05126500 84 Bear Island River near Ely, Minn. 1953-62, 1976-77 8.16 10.97
05127000 85 Kawishiwi River near Winton, Minn. 1940-2005 11.86 11.72
05127210 86 Armstrong Creek near Ely, Minn. 1968-78 11.94 10.85
05127215 87 Longstorff Creek near Ely, Minn. 1968-78 12.13 10.91
05127220 88 Burgo Creek near Ely, Minn. 1968-78 14.85 10.93
05127230 89 Shagawa River at Ely, Minn. 1968-78 12.36 10.75
05127500 90 Basswood River near Winton, Minn. 1940-2005 11.02 11.60
05128500 91 Pike River near Embarrass, Minn. 1954-64, 1978 9.40 10.15
05129000 92 Vermilion River below Vermilion Lake near 1940-81 9.42 10.14
Tower, Minn.
05129115 93 Vermilion River near Crane Lake, Minn. 1980-2005 9.48 9.75
05130500 94 Sturgeon River near Chisholm, Minn. 1943-2005 9.41 9.07
05131000 95 Dark River near Chisholm, Minn. 1943-61, 1966-79 9.80 9.56
05131448 96 Wood Duck Creek near Nett Lake, Minn. 1996-2005 9.07 8.60
05131455 97 Nett Lake River near Nett Lake, Minn. 1996-2005 9.64 8.70
05131500 98 Little Fork River at Littlefork, Minn. 1940-2005 9.05 8.66
05132000 99 Big Fork River at Big Falls, Minn. 1940-79, 1983-93, 7.43 7.18
1998-2005
05134200 100 Rapid River near Baudette, Minn. 1957-85 8.16 4.81
05139500 101 Warroad River near Warroad, Minn. 1947-80 3.62 4.40
05140000 102 Bulldog Run near Warroad, Minn. 1947-51, 1967-77 3.06 4.60
05140500 103 East Branch Warroad River near Warroad, Minn. 1947-54, 1967-77 3.03 4.67
05211000 104 Mississippi River at Grand Rapids, Minn. 1940-2005 5.51 6.65
05212700 105 Prairie River near Taconite, Minn. 1968-83, 2002-05 7.99 8.41
05216860 106 Swan River near Calumet, Minn. 1965-90 7.71 8.86
05217000 107 Swan River near Warba, Minn. 1954-69 6.94 8.76
05241500 108 Rabbit River near Crosby, Minn. 194662 9.36 8.55
05244000 109 Crow Wing River at Nimrod, Minn. 1940-81, 1992-2005 6.34 6.02
05245100 110 Long Prairie River at Long Prairie, Minn. 1972-2005 5.18 4.56
05247500 111 Crow Wing River near Pillager, Minn. 1969-86, 1988-2005 5.31 6.14
05270500 112 Sauk River near St. Cloud, Minn. 1940-81, 1991-2005 4.49 4.49
05275000 113 Elk River near Big Lake, Minn. 1940-87, 1991-2005 6.91 5.59
05276000 114 North Fork Crow River near Regal, Minn. 1944-54 3.90 4.00
05278000 115 Middle Fork Crow River near Spicer, Minn. 1950-87 5.05 4.01
05278500 116 South Fork Crow River at Cosmos, Minn. 1946-64 2.67 4.25
05279000 117 South Fork Crow River near Mayer, Minn. 1940-79 3.24 4.57
05280000 118 Crow River at Rockford, Minn. 1940-2005 4.65 4.53
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Station Map . Period of record (water Mean annua_ll Fitted annual
number nu_mber Station name years) runoff for _perlod runoff (inches)
(fig. 2) of record (inches)
05286000 119 Rum River near St. Francis, Minn. 1940-2005 6.77 7.14
05287890 120 Elm Creek near Champlin, Minn. 1979-2005 6.17 5.64
05289500 121 Minnehaha Creek at Minnetonka Mills, Minn. 1954-64 1.33 5.46
05290000 122 Little Minnesota River near Peever, S. Dak. 1940-81, 1990-2002 1.62 1.18
05291000 123 Whetstone River near Big Stone City, S. Dak. 1940-2005 2.18 1.67
05292000 124 Minnesota River at Ortonville, Minn. 1940-2005 1.54 1.51
05292500 125 Minnesota River near Odessa, Minn. 1945-62 1.30 1.60
05292704 126 North Fork Yellow Bank River near Odessa, Minn.  1992-99, 2001-02 5.41 2.08
05293000 127 Yellow Bank River near Odessa, Minn. 1940-99, 2002-2005 2.05 2.24
05294000 128 Pomme de Terre River at Appleton, Minn. 1940-99, 2004-2005 2.07 2.94
05300000 129 Lac Qui Parle River near Lac Qui Parle, Minn. 1940-99, 2002-2005 2.43 2.87
05301000 130 Minnesota River near Lac Qui Parle, Minn. 1943-94, 1999-2005 2.80 2.34
05304500 131 Chippewa River near Milan, Minn. 1940-2005 2.82 332
05311400 132 South Branch Yellow Medicine River at Minneota, 1961-81, 198387 3.36 3.37
Minn.
05313500 133 Yellow Medicine River near Granite Falls, Minn. 1940-2005 2.98 3.46
05315000 134 Redwood River near Marshall, Minn. 1941-2005 3.64 3.53
05316500 135 Redwood River near Redwood Falls, Minn. 1940-2005 3.49 3.82
05317000 136 Cottonwood River near New Ulm, Minn. 1940-2005 4.18 4.57
05317200 137 Little Cottonwood River near Courtland, Minn. 1974-2005 5.78 5.20
05318000 138 East Branch Blue Earth River near Bricelyn, Minn.  1952-70 4.23 6.99
05319500 139 Watonwan River near Garden City, Minn. 1941-45, 1977-2005 6.23 5.50
05320000 140 Blue Earth River near Rapidan, Minn. 194045, 1950-2005 6.01 6.02
05320500 141 Le Sueur River near Rapidan, Minn. 194045, 1950-2005 6.72 6.70
05327000 142 High Island Creek near Henderson, Minn. 1974-2005 5.87 4.82
05332500 143 Namekagon River near Trego, Wisc. 1940-70, 1988-2005 13.80 12.99
05333500 144 St. Croix River near Danbury, Wisc. 1940-81, 1985-2005 11.90 13.11
05336000 145 St. Croix River near Grantsburg, Wisc. 1940-70 12.05 9.96
05336200 146 Glaisby Brook near Kettle River, Minn. 1960-70 10.07 11.18
05336700 147 Kettle River below Sandstone, Minn. 1968-2005 11.06 11.08
05337400 148 Knife River near Mora, Minn. 19752001 8.18 8.51
05338500 149 Snake River near Pine City, Minn. 1952-81, 1992-2005 8.58 8.68
05340000 150 Sunrise River near Stacy, Minn. 1950-64 5.17 7.13
05340050 151 Sunrise River near Lindstrom, Minn. 196685 5.96 7.18
05341500 152 Apple River near Somerset, Wisc. 1940-70, 1987-2005 8.36 8.66
05345000 153 Vermillion River near Empire, Minn. 1943, 1974-2005 7.39 6.02
05353800 154 Straight River near Faribault, Minn. 19662005 8.98 7.00
05355200 155 Cannon River at Welch, Minn. 1940-71, 1992-2005 7.02 6.62
05356000 156 Chippewa River at Bishops Bridge near Winter, 1940-2005 12.78 13.61
Wisc.
05356500 157 Chippewa River near Bruce, Wisc. 1940-2005 12.72 12.80
05360500 158 Flambeau River near Bruce, Wisc. 1952-2005 13.13 13.22
05364000 159 Yellow River at Cadott, Wisc. 1943-61 10.18 11.05
05365000 160 Duncan Creek at Chippewa Falls, Wisc. 1943-55 10.07 9.60
05366500 161 Eau Claire River near Fall Creek, Wisc. 1943-55 9.67 9.78
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Station Map . Period of record (water Mean a“""?' Fitted annual
number nu_mber Station name years) runoff for _penod runoff (inches)
(fig. 2) of record (inches)
053674464 162 Yellow River at Barron, Wisc. 1992-2005 10.59 10.12
05367500 163 Red Cedar River near Colfax, Wisc. 1940-61, 1990 9.67 10.44
05368000 164 Hay River at Wheeler, Wisc. 1951-2005 10.53 8.93
05369000 165 Red Cedar River at Menomonie, Wisc. 1940-2005 10.59 9.82
05369945 166 Eau Galle River at Low-Water Bridge at Spring 1983, 1987-95 8.18 7.77
Valley, Wisc.
05370000 167 Eau Galle River at Spring Valley, Wisc. 1969-2005 7.47 7.74
05370500 168 Eau Galle River at Elmwood, Wisc. 1943-53 6.40 7.68
05372000 169 Buffalo River near Tell, Wisc. 1940-51 8.37 8.31
05372995 170 South Fork Zumbro River at Rochester, Minn. 1982-2005 8.47 7.43
05373000 171 South Fork Zumbro River near Rochester, Minn. 1953-81 6.84 7.43
05374000 172 Zumbro River at Zumbro Falls, Minn. 1940-80, 2003, 2005 6.58 7.17
05374500 173 Zumbro River at Theilman, Minn. 1940-56 6.36 7.17
05374900 174 Zumbro River at Kellogg, Minn. 1976-90 8.53 7.17
05376000 175 North Fork Whitewater River near Elba, Minn. 194041, 1968-93 6.61 7.53
05376500 176 South Fork Whitewater River near Altura, Minn. 1940-71 4.87 7.77
05376800 177 Whitewater River near Beaver, Minn. 1976-85, 1994-99 8.64 7.66
05377500 178 Whitewater River at Beaver, Minn. 1940-56 6.26 7.66
05378300 179 Straight Valley Creek near Rollingstone, Minn. 1971-85 6.20 7.89
05379000 180 Gilmore Creek at Winona, Minn. 1940-62 5.57 8.02
05379400 181 Trempealeau River at Arcadia, Wisc. 1961-77, 200204 9.71 8.27
05379500 182 Trempealeau River at Dodge, Wisc. 1940-2005 9.74 8.47
05382000 183 Black River near Galesville, Wisc. 1940-2005 11.62 9.76
05383000 184 La Crosse River near West Salem, Wisc. 1940-70 9.46 8.79
05384000 185 Root River near Lanesboro, Minn. 1941-85, 1987-90 7.82 7.66
05384500 186 Rush Creek near Rushford, Minn. 1943-79 5.66 7.94
05385000 187 Root River near Houston, Minn. 1940-83, 1991-2000, 8.46 7.80
2005
05385500 188 South Fork Root River near Houston, Minn. 1954-83 7.02 8.13
05386000 189 Root River below South Fork near Houston, Minn.  1940-61 7.02 7.90
05387500 190 Upper lowa River at Decorah, lowa 1952-83, 2003-05 8.74 8.13
05388000 191 Upper lowa River near Decorah, lowa 1940-51 9.25 8.17
05388250 192 Upper lowa River near Dorchester, [owa 1976-2005 10.79 8.23
05388500 193 Paint Creek at Waterville, lowa 1953-73 5.03 8.54
05389000 194  Yellow River at Ion, Towa 1940-51, 2005 9.28 8.61
05389400 195 Bloody Run Creek near Marquette, lowa 1992-2005 8.91 8.71
05411400 196 Sny Magill Creek near Clayton, lowa 1992-2001 10.32 8.76
05411600 197 Turkey River at Spillville, lowa 1957-73, 1978-91 9.40 8.33
05412060 198 Silver Creek near Luana, Iowa 1987-98 9.84 8.72
05412100 199 Roberts Creek above St. Olaf, lowa 1987-2001 5.31 8.74
05412500 200  Turkey River at Garber, Iowa 1940-2005 9.32 8.78
05414500 201 Little Maquoketa River near Durango, lowa 1940-81 8.99 9.05
05420560 202 Wapsipinicon River near Elma, lowa 1959-92 9.44 8.04
05448500 203 West Branch Iowa River near Klemme, lowa 1949-58 4.62 7.48
05449000 204 East Branch Iowa River near Klemme, lowa 1949-76, 1978-95 7.40 7.70
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05449500 205 Iowa River near Rowan, lowa 1941-76, 1978-2005 791 7.80
05457000 206 Cedar River near Austin, Minn. 1945-2005 8.57 7.35
05457700 207 Cedar River at Charles City, [owa 1965-95, 1997, 9.82 7.65
2001-05

05458000 208 Little Cedar River near Ionia, lowa 1955-2005 8.35 8.06
05458500 209 Cedar River at Janesville, lowa 194042, 19462005 8.60 7.92
05458900 210 West Fork Cedar River at Finchford, lowa 19462005 9.00 8.59
05459000 211 Shell Rock River near Northwood, Iowa 1946-86 7.31 7.33
05459500 212 Winnebago River at Mason City, lowa 1940-2005 7.88 7.43
05460500 213 Shell Rock River at Marble Rock, lowa 1943-53 7.24 7.58
05462000 214 Shell Rock River at Shell Rock, Iowa 1954-2005 8.49 7.86
05463000 215 Beaver Creek at New Hartford, Iowa 1946-2005 8.75 9.18
05476000 216 Des Moines River at Jackson, Minn. 1940-2005 4.88 4.44
05476500 217 Des Moines River at Estherville, lowa 1952-94 438 4.52
05476750 218 Des Moines River at Humboldt, lowa 1965-2005 6.43 5.37
05478000 219 East Fork Des Moines River near Burt, lowa 1952-74 422 6.04
05479000 220 East Fork Des Moines River at Dakota City, lowa 1941-2005 6.86 6.68
05480000 221 Lizard Creek near Clare, lowa 1941-81 5.09 7.36
05480500 222 Des Moines River at Fort Dodge, lowa 1947-2005 6.07 5.94
05482135 223 North Raccoon River near Newell, lowa 1983-95 10.83 6.72
05482170 224 Big Cedar Creek near Varina, lowa 1960-91 7.30 6.94
06478052 225 Enemy Creek near Mitchell, S. Dak. 197680, 1982—-87 1.66 .61
06478390 226 Wolf Creek near Clayton, S. Dak. 1976-88 1.38 1.26
06478540 227 Little Vermillion R near Salem, S. Dak. 1967-2005 1.31 1.57
06478600 228 East Fork Vermillion River near Parker, S. Dak. 19962005 1.58 2.10
06478690 229 West Fork Vermillion River near Parker, S. Dak. 1962-2005 1.53 1.95
06479000 230 Vermillion River near Wakonda, S. Dak. 1946-83 1.01 2.56
06479010 231 Vermillion River near Vermillion, S. Dak. 1984-2005 2.20 2.75
06479215 232 Big Sioux River near Florence, S. Dak. 1985-2005 31 1.24
06479438 233 Big Sioux River near Watertown, S. Dak. 1973-2005 .56 1.48
06479500 234 Big Sioux River at Watertown, S. Dak. 194672, 200005 .39 1.57
06479515 235 Willow Creek near Watertown, S. Dak. 1972-86 2.32 1.74
06479520 236 Big Sioux River below Watertown, S. Dak. 1995-2005 .89 1.79
06479525 237 Big Sioux River near Castlewood, S. Dak. 1977-2005 .66 1.84
06479529 238 Stray Horse Creek near Castlewood, S. Dak. 1969-85 221 1.98
06479640 239 Hidewood Creek near Estelline, S. Dak. 1969-85 2.14 2.12
06479910 240 Sixmile Creek near Brookings, S. Dak. 1971-80 1.85 2.49
06479980 241 Medary Creek near Brookings, S. Dak. 1981-90 3.82 2.50
06480000 242 Big Sioux River near Brookings, S. Dak. 1954-2005 1.06 2.53
06480400 243 Spring Creek near Flandreau, S. Dak. 1983-93 4.52 2.81
06480650 244 Flandreau Creek above Flandreau, S. Dak. 1982-91 4.74 2.99
06481000 245 Big Sioux River near Dell Rapids, S. Dak. 1949-2005 1.28 2.60
06481500 246 Skunk Creek at Sioux Falls, S. Dak. 1949-2001, 2004-05 2.02 2.63
06482610 247 Split Rock Creek at Corson, S. Dak. 1966-89, 200205 2.90 2.99
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Station Map . Period of record (water Mean an““?' Fitted annual
number nu_mber Station name years) runoff for _perlod runoff (inches)
(fig. 2) of record (inches)

06483000 248 Rock River at Luverne, Minn. 1996-97 5.49 3.65
06483270 249 Rock River at Rock Rapids, lowa 1960-74 2.82 3.76
06483500 250 Rock River near Rock Valley, lowa 1949-2005 4.30 3.94
06484000 251 Dry Creek at Hawarden, lowa 1949-69 2.26 3.79
06485696 252 Brule Creek near Elk Point, S. Dak. 1983-94 4.42 3.30
06600000 253 Perry Creek at 38th Street, Sioux City, [owa 1946-69, 1982-2004 3.94 421
06600100 254 Floyd River at Alton, lowa 19562005 4.18 4.72
06600300 255 West Branch Floyd River near Struble, lowa 1956-94 3.86 4.25
06600500 256 Floyd River at James, lowa 1940-2005 3.97 4.56
06603000 257 Little Sioux River near Lakefield, Minn. 1949-62 3.08 487
06603500 258 Jackson County Ditch #11 near Lakefield, Minn. 1949-60 3.17 5.00
06605000 259 Ocheyedan River near Spencer, lowa 1978-2005 6.88 5.01
06605600 260 Little Sioux River at Gillett Grove, lowa 1959-73 3.86 5.29
06605850 261 Little Sioux River at Linn Grove, lowa 1973-2005 6.40 5.37
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