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Summary of Hydrologic Data for the Tuscarawas River 
Basin, Ohio, with an Annotated Bibliography

By Ralph J. Haefner and Laura A. Simonson

Abstract
The Tuscarawas River Basin drains approximately 2,600 

square miles in eastern Ohio and is home to 600,000 residents 
that rely on the water resources of the basin. This report sum-
marizes the hydrologic conditions in the basin, describes over 
400 publications related to the many factors that affect the 
groundwater and surface-water resources, and presents new 
water-quality information and a new water-level map designed 
to provide decisionmakers with information to assist in future 
data-collection efforts and land-use decisions.

 The Tuscarawas River is 130 miles long, and the drain-
age basin includes four major tributary basins and seven 
man-made reservoirs designed primarily for flood control. The 
basin lies within two physiographic provinces—the Glaciated 
Appalachian Plateaus to the north and the unglaciated Allegh-
eny Plateaus to the south. Topography, soil types, surficial 
geology, and the overall hydrology of the basin were strongly 
affected by glaciation, which covered the northern one-third 
of the basin over 10,000 years ago. Within the glaciated 
region, unconsolidated glacial deposits, which are predomi-
nantly clay-rich till, overlie gently sloping Pennsylvanian-age 
sandstone, limestone, coal, and shale bedrock. Stream valleys 
throughout the basin are filled with sands and gravels derived 
from glacial outwash and alluvial processes. The southern 
two-thirds of the basin is characterized by similar bedrock 
units; however, till is absent and topographic relief is greater. 
The primary aquifers are sand- and gravel-filled valleys and 
sandstone bedrock. These sands and gravels are part of a 
complex system of aquifers that may exceed 400 feet in thick-
ness and fill glacially incised valleys. Sand and gravel aquifers 
in this basin are capable of supporting sustained well yields 
exceeding 1,000 gallons per minute. Underlying sandstones 
within 300 feet of the surface also provide substantial quanti-
ties of water, with typical well yields of up to 100 gallons per 
minute. Although hydraulic connection between the sandstone 
bedrock and the sands and gravels in valleys is likely, it has 
not been assessed in the Tuscarawas River Basin.

In 2001, the major land uses in the basin were approxi-
mately 40 percent forested, 39 percent agricultural, and 17 
percent urban/residential. Between 1992 and 2001, forested 
land use decreased by 2 percent with correspondingly small 

increases in agricultural and urban land uses, but from 1980 to 
2005, the 13-county area that encompasses the basin experi-
enced a 7.1-percent increase in population. Higher population 
density and percentages of urban land use were typical of the 
northern, headwaters parts of the basin in and around the cities 
of Akron, Canton, and New Philadelphia; the southern area 
was rural.

The basin receives approximately 38 inches of precipi-
tation per year that exits the basin through evapotranspira-
tion, streamflow, and groundwater withdrawals. Recharge to 
groundwater is estimated to range from 6 to 10 inches per year 
across the basin. In 2000, approximately 89 percent of the 116 
million gallons per day of water used in the basin came from 
groundwater sources, whereas 11 percent came from surface-
water sources. To examine directions of groundwater flow in 
the basin, a new dataset of water-level contours was developed 
by the Ohio Department of Natural Resources. The contours 
were compiled on a map that shows that groundwater flows 
from the uplands towards the valleys and that the water-level 
surface mimics surface topography; however, there are areas 
where data were too sparse to adequately map the water-level 
surface. Additionally, little is known about deep groundwater 
that may be flowing into the basin from outside the basin and 
groundwater interactions with surface-water bodies.

Many previous reports as well as new data collected as 
part of this study show that water quality in the streams and 
aquifers in the Tuscarawas River Basin has been degraded 
by urban, suburban, and rural agricultural activity, discharges 
from municipal and industrial wastewater treatment and 
thermoelectric power plants, mining, and disposal of solid and 
hazardous wastes. Environmental effects from mining coal 
during the 1800s through the mid- to late-1900s continue to 
affect water quality and aquatic habitat in the basin.

As part of this study, seven groundwater samples and 
two surface-water samples were collected and analyzed for 
a wide variety of constituents. Several samples exceeded the 
U.S. Environmental Protection Agency Secondary Maximum 
Contaminant Levels for pH, iron, manganese, sulfate, and (or) 
residue on evaporation. Most of the analyses for pesticides, 
volatile organic compounds, and fecal indicator bacteria 
resulted in concentrations at or below detection limits; how-
ever, surface-water samples typically had more detections of 
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these constituents than did groundwater. Wastewater com-
pounds derived from urban wastewater discharges (including 
septic systems) were detected in only one of seven groundwa-
ter samples. Fecal coliform bacteria and E. Coli were detected 
in this same groundwater sample, indicating that this sample 
may have been affected by a nearby septic system. Analysis of 
age-dating tracers in the seven groundwater samples, including 
chlorofluorocarbons, tritium/helium, and sulfur hexafluoride, 
indicated that the average residence time of shallow ground-
water was less than 50 years, confirming that shallow ground-
water is relatively young and its quality is susceptible to 
contamination from current land-use practices. Tritium/helium 
and sulfur hexafluoride offer the best age-dating tools in this 
setting because the data indicate that chlorofluorocarbons were 
likely degraded under anoxic conditions.

As of 2009, a multitude of weather stations, 17 
streamgages, 6 water-quality monitors, and 27 observation 
wells that monitor local hydrologic conditions were operating 
in and around the basin. Substantial historical water-quality 
data from surface-water and groundwater sites that were 
sampled on rotating schedules by other agencies provide 
a basis for analyzing trends in water quality. The data are 
consistent with the results of water-quality analyses obtained 
in this study; however, monitoring data collected during 
extreme events such as floods and droughts are lacking. To 
support future land-use decisions and document the influ-
ences of land-use change (which might include, for example, 
zoning, stormwater best management practices, and mine 
reclamation), additional continuously collected data would be 
needed to understand short- and long-term temporal changes 
in water quality. 

Introduction
The Tuscarawas River Basin in eastern Ohio provides 

water to almost 600,000 people (U.S. Census Bureau, 2008) 
and is home to agricultural, mining, and industrial activities. 
The Cities of Akron, Canton, Wooster, New Philadelphia, 
Coshocton (fig. 1), and numerous smaller towns and com-
munities rely on the abundant water resources of the basin 
for their economic and population growth. Census data for 
1980 and 2006 show population growth of approximately 
7.1 percent within counties that lie within or partly within the 
basin (U.S. Census Bureau, 2008). Although the overall water 
use has decreased from approximately 185 Mgal/d in 1985 
to 119 Mgal/d in 2000, the percentage of water derived from 
groundwater sources has increased from 55 to 89 percent of 
the total withdrawals during this period because of a reduction 
in industrial surface-water uses (Hutson and others, 2004). 
Thus, pressures of development and changes in groundwater 
and surface-water uses are altering the stresses on the heavily 
utilized water resources of the basin. 

This study was conducted by the U.S. Geological Survey 
(USGS), in cooperation with the Stark-Tuscarawas-Wayne 
Joint Solid Waste Management District, to provide decision-
makers with land-use and water-resources data and acquaint 
them with the broad spectrum of hydrologic information 
available on the basin. The purpose of this report is to sum-
marize existing information regarding the geology, hydrology, 
and water quality in and around the Tuscarawas River Basin. 
The report includes a literature review and a summary of the 
hydrologic data available throughout the basin. Hydrologic 
data are evaluated in terms of spatial and temporal distribu-
tion to provide decisionmakers with information that may be 
required to make future data-collection and land-use decisions; 
however, only a small amount of the actual data are included 
in this report. In addition, water-quality data collected as part 
of this study in 2006 at two stream sites on the Tuscarawas 
River and at seven groundwater sites located across the basin 
are evaluated in relation to land use.

The scope of this report is limited to hydrologic infor-
mation available as of 2009 for the Tuscarawas River Basin 
and parts of adjoining basins that have similar hydrogeologic 
settings. Reports and datasets described in this report varied in 
scale and extent (for example, township, county, subbasin, or 
region), and only minimal attempts were made to redefine the 
extent of these data based on basin boundaries or other bound-
aries. Therefore, the text, figures, and tables in this report often 
include information from geographic areas adjacent to the 
Tuscarawas River Basin (usually within 10 miles of the basin 
boundary). This additional information may help the reader 
more clearly evaluate data that may be relevant to understand-
ing the hydrology of the Tuscarawas River Basin.

Literature Review
Many studies have been done on different aspects of the 

geology, hydrology, water quality, and water use in and around 
the Tuscarawas River Basin. To gain a better understanding 
of these studies, a literature review was completed through 
library and Internet searches. The focus of this review was on 
water resources, sustainability, and other information that may 
be needed by decisionmakers to ensure the long-term viability 
of the water resources in the basin. Approximately 400 refer-
ences from published reports, maps, digital and hard- copy 
datasets, and World Wide Web sites were compiled during this 
review. Most of the references are cited in the sections below, 
along with supporting information in the Annotated Bibliogra-
phy. Additionally, these references are categorized in appendix 
1 under topical headings to provide readers with a means of 
quickly obtaining references that pertain to a particular water-
resources topic. Many of the references are listed more than 
once because they contain information on multiple topics.
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General Basin Characteristics

The Tuscarawas River Basin covers approximately 
2,600 square miles within 13 counties in eastern Ohio, specifi-
cally Belmont, Carroll, Columbiana, Coshocton, Guernsey, 
Harrison, Holmes, Medina, Portage, Stark, Summit, Tus-
carawas, and Wayne County (fig. 1). The Tuscarawas River 
is 129.9 miles long. The headwaters are to the north and east 
of the Portage Lakes in northern Stark, Summit, and Medina 
Counties. The river flows south to Newcomerstown, then 
westward from Newcomerstown to Coshocton. In Coshocton, 
the river joins the Walhonding River to form the Muskingum 
River, which flows southward to the Ohio River shown on 
the inset map on figure 1. According to the U.S. Geological 
Survey Geographic Names Information System (U.S. Geologi-
cal Survey, 2008a), the Tuscarawas River also has been known 
by the names Little Muskingum River, Mashongam River, 
Tuscarawa River, and Tuskarawas Creek. The word Tuscara-
was was likely derived from the Native American capital 
at Bolivar, also known as Tuscarawas Town or Tuscarora 
(Heritage Pursuit, 2009). The name reportedly originates from 
the Tuscarora tribe of Native Americans, who occupied this 
region, and has been defined as “open mouth” or “old town” 
(Old Town was the name of the ancient Indian town opposite 
the mouth of Sandy Creek).

Physiographic Provinces
As defined by Fenneman (1938), the Tuscarawas River 

Basin lies within two physiographic regions: the Glaciated 
Appalachian Plateaus to the north and the unglaciated Allegh-
eny Plateaus to the south (fig. 2). The glaciated portion is 
characterized by gently rolling hills, whereas the unglaciated 
portion has much steeper topography with higher hilltops 
and deeper valleys. Ecoregions (areas of general similarity 
in the type, quality, and quantity of environmental resources) 
developed by Omernick (1987) and later refined by Woods and 
others (1998) within the basin are similar to the physiographic 
regions/provinces. Parts of two primary ecoregions, the Erie 
Drift Plains and the Erie Gorges, are within the Tuscarawas 
River Basin. The Erie Drift Plains, which includes the Low 
Lime Drift Plain, the Summit Interlobate Area, and the Erie 
Gorges (shown in shades of green in figure 2) are character-
ized by low rounded hills, scattered end moraines, kettles, 
and areas of wetlands. The Western Allegheny Plateau, which 
includes the Unglaciated Upper Muskingum Basin, the Pitts-
burgh Low Plateau, and the Monongahela Transition Zone 
(shown in shades of blue on fig. 2) is characterized by hilly 
and wooded terrain.

Climate
Climate within the basin is generally temperate with 

cold winters and warm, humid summers. Temperature and 
rainfall data compiled from 18 stations within the basin for 
the period 1970 to 2000 (National Oceanic and Atmospheric 

Administration, 2002) indicate that mean annual temperature 
was 50.1 deg F (10.0 deg C) with mean maximum and mini-
mum monthly temperatures of 72 deg F (22.2 deg C) in July 
and 26 deg F (-3.3 deg C) in January. Mean annual rainfall 
was 38.7 inches with the maximum monthly mean rainfall 
occurring in July (4.1 inches) and the minimum monthly mean 
temperature occurring in February (2.2 inches). Lake-effect 
weather from Lake Erie in the northern part of basin causes 
increased snowfall, winter cloudiness, and length of growing 
season relative to the rest of the basin.

Elevation and Topography
Elevation ranges from about 820 ft (250 m) above mean 

sea level (North American Vertical Datum of 1988) near 
Coshocton to about 1,400 ft (427 m) in the uplands near the 
outer edges of the basin (fig. 3). Glaciation probably had 
the greatest effect on the topography of the northern part of 
the basin, whereas stream erosion and sedimentation likely 
had the greatest effect on the southern part. As noted in the 
description of physiography and ecoregions, the northern, gla-
ciated part of the basin has rolling hills with moderate changes 
in topography, whereas the southern, unglaciated part of the 
basin has steeper slopes. 

Soils
Information on soils was compiled from county and 

regional maps published by the Natural Resources Conserva-
tion Service (1998a, 1998b, 2002, and 2005), formerly known 
as the U.S. Soil Conservation Service (1967, 1971, 1977, 
1978, 1981, 1983, 1984, 1986, and 1990). The soil regions 
shown in figure 4 were generalized by drainage characteris-
tics and parent materials and reflect the basin’s glacial history 
(R.M. Gehring, U.S. Department of Agriculture, Natural 
Resources Conservations Service, written commun., 2008). 
Soils in the Tuscarawas River Basin are characterized by 
poorly to well-drained soils formed on till plains to the north 
of the glacial boundary and well-drained soils on sandstone 
and shale parent material over the southern part of the basin. 
Throughout the entire basin, poorly to well-drained soils in 
lacustrine (lake) sediments and alluvium are typical in the 
river valleys (shaded dark green on figure 4). Soils in the 
northern area are low in organic matter and are acidic. The 
soils generally are low in fertility, and the primary agriculture 
in this region involves farming and dairy operations. Soils in 
the southern, unglaciated area also are acidic and often are low 
in organic matter and natural fertility. Because the unglaciated 
area has greater relief than the glaciated areas, steep hillsides 
and narrow ridges lead to rapid runoff and erosion. Therefore, 
much of the land in this region is too hilly or the soils are too 
shallow for farming, resulting in land usually consisting of 
pasture or forest. In general, crops are grown on more gentle 
slopes or within the floodplains, which can be up to 1.5 mi 
wide along the Tuscarawas River between New Philadelphia 
and Coshocton.



!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

§̈¦76

MAHONING

JEFFERSON

MUSKINGUM

£¤172

£¤83

£¤14

£¤258

£¤241

£¤43

£¤332

£¤151

£¤212

£¤9

£¤241

£¤39

£¤39

£¤183

£¤800

£¤43

£¤9

£¤800

£¤39

£¤83

£¤43

£¤9

£¤250

£¤62

£¤36

£¤62

£¤36

£¤30

£¤250

£¤250

£¤22

£¤250

£¤30

£¤62

§̈¦77

§̈¦70

§̈¦76

§̈¦7
1

§̈¦470

§̈¦77

STARK

WAYNE

BELMONT

PORTAGE
MEDINA

HOLMES

GUERNSEY

SUMMIT

COSHOCTON

CARROLL

TUSCARAWAS

HARRISON

COLUMBIANA

81°82°

41°

40°

Stillwater Cr

Conotton Cr

Akron

Massillon

New 
Philadelphia

Coshocton

Tuscarawas R

Chippewa Cr
North 
Canton

Carrollton

Figure 1.

EXPLANATION

Canton

Cuyahoga 
    Falls

Alliance

Wooster

Millersburg

Medina

Cadiz

Cambridge

8-digit hydrologic unit boundary

Base from Natural Resources Conservation Service, 1999; 
scale 1:24,000; North American Datum, 1983.

Urban area

Major roadway

Wadsworth

Dover

Surface water

Newcomerstown

Barberton

Piedmont 
Lake

Sugar Cr

Tu
sc

ara
was

 R

Sandy Cr

N
im

is
hi

lle
n 

C
r

Barberton 
Reservoir

Atwood 
Lake

Tappan 
Lake

Clendening 
Lake

Chippewa 
Lake

Lake 
Mohawk

Leesville 
Lake

Nimisila 
Reservoir

Portage 
Lakes

Little Stillwater Cr

The Tuscarawas River Basin, Ohio.

Walhonding
River

Muskingum
River

Ohio
 R

ive
r

0 10 205 MILES

0 10 205 KILOMETERS

Beach City
Lake

County boundary

!. City

So
ut

h 
Fo

rk

Ohio and Erie Canal

\
Jackson
Bog

\Singer
Lake

\

Reifsnyder
Wetlands

\
Killbuck Marsh
Wildlife Area

\ Stillfork
Swamp

\ Wetland

4    Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

Figure 1.  The Tuscarawas River Basin, Ohio. 
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Figure 2.  Ecoregions in and around the Tuscarawas River Basin, Ohio. (Modified from Fenneman, 1938; Wood 
and others, 1998)�
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Figure 3.  Land-surface topography in and around the Tuscarawas River Basin, Ohio. 
(From U.S. Geological Survey, 1981)
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Figure 4.  Generalized soil regions in the Tuscarawas River Basin, Ohio.  (Modified from R.M. Gehring, Natural Resources 
Conservation Service, written commun., 2008)
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Population
Population estimated by the U.S. Census Bureau (2008) 

for the Tuscarawas River Basin in 2006 was approximately 
600,000; however, population within the 13 counties that 
encompass the Tuscarawas River Basin was approximately 
1.8 million (table 1). The estimate for the entire 13-county 
area is much larger than that of the basin itself and reflects 
the fact that many high-density residential areas are in close 
proximity to the basin.

The northern, headwaters areas of the basin are the most 
densely populated part of the basin (fig. 5). Stark and Summit 
Counties had estimated populations of 380,575 and 545,931 
in 2006, respectively, with the greatest density centered on the 
city of Akron, which is only partly within the basin (table 1). 
Approximately 51 percent of the total population in the basin 
resides in Summit and Stark Counties, yet these counties 
make up only 26 percent of the basin land area. Akron had 
an estimated 210,795 residents in 2006 (U.S. Census Bureau, 
2008). Portage and Medina Counties also were relatively 
heavily populated with estimated populations of 155,012 and 

169,353, respectively. Wayne and Columbiana Counties were 
the only other counties in the basin with populations greater 
than 100,000. In addition to Akron, major urban areas in the 
basin with estimated populations greater than 25,000 in 2006 
include Canton, Massillon, and Medina, all of which are 
located in the northern half of the basin (U.S. Census Bureau, 
2008). Thus, the population distribution in the Tuscarawas 
River Basin is unlike many other basins in Ohio, including the 
Maumee and Great Miami River Basins, in that the Tuscara-
was has the greatest population density in the headwaters area, 
whereas other basins have the greatest population densities in 
the lowland areas, towards the river mouths.

From 1980 to 2006, the overall population for the 13 
counties that encompass the Tuscarawas River Basin increased 
by 7.1 percent (table 1). In the northern and western parts 
of the basin, Medina and Holmes Counties had the largest 
population increase at 49.7 and 41.3 percent, respectively. 
In contrast, population in counties in the southern part of the 
basin, including Harrison and Belmont Counties, decreased by 
13.0 and 16.7 percent, respectively.

Table 1.  Population of counties that encompass the Tuscarawas River Basin, Ohio, 1980, 1990, 
2000, and 2006. 

[From U.S. Census Bureau, 2008]

County 1980 1990 2000
Estimated 

2006

Change from 
1980 to 2006 

(percent)

Belmont 82,569 71,074 70,226 68,771 -16.7

Carroll 25,598 26,521 28,836 29,189 14.0

Columbiana 113,572 108,276 112,075 110,542 -2.7

Coshocton 36,024 35,427 36,655 36,976 2.6

Guernsey 42,024 39,024 40,792 40,876 -2.7

Harrison 18,152 16,085 15,856 15,799 -13.0

Holmes 29,416 32,849 38,943 41,574 41.3

Medina 113,150 122,354 151,095 169,353 49.7

Portage 135,856 142,585 152,061 155,012 14.1

Stark 378,823 367,585 378,098 380,575 .5

Summit 524,472 514,990 542,899 545,931 4.1

Tuscarawas 84,614 84,090 90,914 91,766 8.5

Wayne 97,408 101,461 111,564 113,950 17.0

Total 1,681,678 1,662,321 1,770,014 1,800,314 7.1
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Figure 5.  Population of townships in and around the Tuscarawas River Basin, Ohio, 2000. 
(U.S. Census Bureau, 2008)
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Land Use
Land use throughout Ohio has been evaluated using dif-

ferent techniques serving different purposes (for this study, 
the terms land use and land cover are used interchangeably). 
An early land-use assessment was done by Morse (1939), who 
examined erosion related to land-use conditions in the Musk-
ingum River Basin. (As noted above, the Tuscarawas River is 
part of the Muskingum River drainage basin.) Wright (1953) 
described the economic geography of Ohio and noted the 
abundance of natural resources, including water and mineral 
commodities. The first state-wide land-use classification was 
done as part of the Ohio Capability Analysis Program (OCAP) 
initiated by the Ohio Department of Natural Resources in 
1972. OCAP was created to produce a natural-resources inven-
tory of Ohio, including soils, land use, water resources, and 
geology, to provide technical-resource information for people 
at the local level who make land-use decisions (Gordon, 1978; 
Vertrees, 1985). Analyses of OCAP data were done by Maxson 
(1975) for Stark County and by Ondecko and Schultz (1981) 
for Portage County. 

As the focus on environmental issues increased in the 
mid-1970s, Groenewold (1974), Van Horn (1976), and Hull 
(1984) examined environmental conditions in Stark, Portage, 
and Summit Counties, respectively, for suitable locations for 
solid-waste disposal facilities from a geologic perspective. All 
three authors concluded that upland areas where thick layers 
of relatively impermeable glacial till overlie shale or clay pro-
vide the best locations for new solid-waste disposal facilities. 
The authors also stated that areas on floodplains above highly 
permeable sands and gravels associated with glacial and (or) 
alluvial deposits should be avoided for these purposes.

Several entities in the Tuscarawas River Basin have pub-
lished watershed plans that include different aspects of land-
use data. The Stark County Regional Planning Commission 
(1997) and the Stark County Regional Planning Commission 
and Stark County Area Transportation Study (2005) developed 
land-use plans through the year 2020 and identified water 
resources that relate to stormwater, solid-waste disposal, and 
central sewer and water services as major issues. The North-
east Ohio Four County Regional Planning and Development 
Organization published watershed action plans for Portage, 
Stark, Summit, and Wayne Counties (Northeast Ohio Four 
County Regional Planning and Development Organization, 
1975, 1985) along with water-resource inventories, watershed 
assessments, and management plans for the Upper Tuscarawas 
River Basin (Northeast Ohio Four County Regional Planning 
and Development Organization, 1999a, 1999b, 2004), Upper 
Wolf Creek (Northeast Ohio Four County Regional Plan-
ning and Development Organization, 1999c), and Nimishil-
len Creek (Northeast Ohio Four County Regional Planning 
and Development Organization, 2001b; Akin, 2006). Each 
of the Northeast Ohio Four County Regional Planning and 
Development Organization publications provided land-use 
analyses relative to their potential effects on water resources. 
The Wayne County Comprehensive Plan (Wayne County 

Planning Department, 2006) recommends constraints for 
residential development to protect groundwater resources near 
Killbuck Creek. 

Evaluation of land-use change over time can be use-
ful for planning and management of water resources. For 
example, land-use changes are an important factor in dam 
safety because as development downstream from dams 
brings people and infrastructure nearer to the dam and into a 
floodplain, redesign of the dams to protect life and property 
is often needed (Natural Resources Conservation Service, 
2001). A specific example of the effect of land-use changes 
on water resources within the basin was given by Bauder 
(1994), who documented unusual dewatering of a wetland in 
Summit County due to the construction of roads, increased 
industrial water use, and construction of a dike. But changes 
in land use through time can be difficult to assess because 
available land-use datasets are often created using different 
methods with different classification schemes. For this report, 
the National Land Cover Dataset (NLCD) 1992/2001 Retro-
fit Change Product (Multi-Resolution Land Characteristics 
Consortium, 2008) was examined to develop an understand-
ing of land-use change in the Tuscarawas River Basin. This 
dataset was designed specifically for regional-scale compari-
son of land-cover change over the time period. It is not simply 
a crosswalk| comparison of the 1992 NLCD and 2001 NLCD 
but a re-creation of broad scale (Anderson Level I) land use 
in 1992 and 2001, using a multiple-stage process. The dataset 
includes “from-to” change classification values representing 
the change in land use from 1992 to 2001 at a resolution of 
30 m. Land-use categories were based on definitions described 
on the Multi-Resolution Land Characteristics Consortium Web 
site (http://www.mrlc.gov/changeproduct.php). Because of 
the differences in classification methodologies, the land-use 
percentages presented in this report may not precisely match 
data in the 1992 NLCD or 2001 NLCD.

Initially, land use in the basin was grouped into seven 
major classifications as described by the National Land Cover 
Dataset Retrofit Change Product (Multi-Resolution Land 
Characteristics Consortium, 2008). Those classifications were 
open water, forest, grassland/shrub, agriculture, wetlands, 
urban, and barren. The barren class included strip mines and 
gravel pits. The urban class included industrial, commercial, 
and residential development of varying intensities. On the 
basis of the 1992/2001 Retrofit Change Product, the dominant 
land uses in the basin in 2001 were forested (40 percent of 
the basin area) and agriculture (39 percent of the basin area); 
however, these land uses were not distributed evenly through-
out the basin. Agriculture was dominant in the northern part of 
the basin, whereas forested was dominant in the south (fig. 6 
and table 2A). The remaining land uses in the basin in 2001 
consisted of urban/residential (17 percent), grassland/shrub 
(1.8 percent), open water (1.5 percent), wetland (0.7 percent), 
and barren (0.1 percent. (Data for grassland/shrub, open water, 
wetland, and barren were removed from table 2 and figure 6 
because they accounted for less than 2 percent of the area for 
all classes.)

http://www.mrlc.gov/changeproduct.php
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Figure 6.  Generalized land use in and around the Tuscarawas River Basin, Ohio, 2001.  (Modified from Multi-Resolution 
Land Characteristics Consortium, 2008)
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Table 2.  Land use in and around the Tuscarawas River Basin, Ohio, (A) as percentage of basin area, and 
(B) as percentage of county area, 1992 and 2001.

[Data from Multi-Resolution Land Characteristics Consortium, 2009; tables do not sum to 100 percent because not all land-use 
categories are shown; <, less than]

A. Land use in basin, as percentage of basin area

Agricultural Forested Urban

1992 2001 Change 1992 2001 Change 1992 2001 Change

Belmont 1.1 1.0 0.1 2.1 2.1 < 0.1 0.2 0.2 <0.1

Carroll 4.1 4.3 .2 6.8 6.6 - .2 .9 .9 < .1

Columbiana 1.1 1.2 .1 .7 .6 - .1 .2 .2 < .1

Coshocton 2.0 2.1 .1 1.9 1.8 - .1 .4 .4 < .1

Guernsey 0.4 0.4 < .1 1.2 1.2 < .1 .1 .1 < .1

Harrison 2.5 2.5 < .1 7.8 7.8 < .1 .8 .7 < .1

Holmes 2.6 2.6 < .1 .8 .7 - .1 .2 .2 < .1

Medina 2.3 2.2 - .1 1.1 1.1 < .1 .8 .9 .1

Portage < .1 < .1 < .1 < .1 < .1 < .1 < .1 < .1 < .1

Stark 7.8 8.0 .2 5.2 4.6 - .6 5.9 6.2 .3

Summit 1.0 0.8 - .2 1.5 1.4 - .1 3.1 3.3 .2

Tuscarawas 6.4 6.7 .3 11.8 11.4 - .5 2.3 2.4 .1

Wayne 6.7 6.9 .2 1.2 .9 - .3 1.1 1.2 .1

TOTAL BASIN 38.0 38.9 .9 42.3 40.3 -2.0 16.1 16.8 .7

B. Land use in basin, as percentage of county area

Agricultural Forested Urban

1992 2001 Change 1992 2001 Change 1992 2001 Change

Belmont 28.9 28.0 -0.9 57.8 57.2 -0.6 6.5 6.4 -0.1

Carroll 33.3 35.1 1.7 55.8 53.9 -2.0 7.2 7.2 < .1

Columbiana 53.1 59.0 6.0 36.5 30.0 -6.4 8.6 8.8 .2

Coshocton 44.9 47.5 2.6 44.0 40.7 -3.2 9.1 9.4 .3

Guernsey 24.2 23.5 - .8 67.0 67.3 .3 6.5 6.7 .2

Harrison 21.7 21.8 .1 67.5 67.2 - .3 6.6 6.4 - .2

Holmes 71.3 73.1 1.9 21.4 19.3 -2.2 6.3 6.4 .2

Medina 52.7 50.6 -2.1 24.4 25.0 .6 19.2 20.4 1.2

Portage 43.0 43.3 .4 33.3 32.2 -1.0 19.7 19.9 .2

Stark 40.0 40.9 .9 26.7 23.8 -2.9 30.2 31.7 1.6

Summit 15.9 13.5 -2.4 24.9 23.6 -1.3 51.2 54.2 3.0

Tuscarawas 30.1 31.5 1.4 55.3 53.1 -2.2 10.8 11.1 .2

Wayne 73.3 75.1 1.8 13.0 10.2 -2.8 12.0 12.8 0.8
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In 1992 and 2001, 5 of the 13 counties that encompass 
the Tuscarawas River Basin had greater than 50 percent 
forested land use (Belmont, Carroll, Guernsey, Harrison, and 
Tuscarawas) and four counties had greater than 50 percent 
agricultural land use (Columbiana, Holmes, Medina, and 
Wayne; table 2B). In 2001, Stark County had the greatest 
percentage of agricultural land use in the basin (8 percent of 
the total agricultural land use in the basin and 41 percent in the 
county), whereas Tuscarawas County had the greatest percent-
age of forested land use in the basin (11 percent of the total 
forested land use in the basin and 53 percent in the county). 

The metropolitan areas of Canton and Akron in Stark 
and Summit Counties are located in and around the northern 
headwaters of the basin. Approximately 56 percent of all 
urban land use in the basin was in these two counties (table 
2A). As noted above, the distribution of population (and 
resulting urban land uses) within the basin is atypical of other 
large basins in Ohio, such as the Maumee and Great Miami 
River Basins. The Tuscarawas River Basin is characterized by 
population centers that include industrial and residential land 
uses in the headwaters areas of the basin with agricultural and 
forested land uses towards the mouth, whereas in the Maumee 
and Great Miami River Basins, most of the agricultural and 
forested land uses are in the headwaters areas, and industrial 
and residential land uses are near or at the river mouth near 
major cities that include Toledo and Cincinnati, respectively.

In general, only a small amount of localized change has 
occurred in the land use in the basin between 1992 and 2001. 
During this time, approximately 2 percent of the basin area 
that was previously devoted to forested land use was converted 
to agricultural and urban land uses, but the dominant land use 
within each individual county remained the same (table 2B). 
A similar observation was made by the Stark County Regional 
Planning Commission (1997) which noted that, between 1975 
and 1994, land uses in the Stark County area changed very 
slowly towards greater urbanization.

Geology

 A large amount of work was done in the early to mid-
1900s to define the geology of the basin because of interest in 
local coal, oil and gas, and mineral reserves. Reports pub-
lished through the Ohio Department of Natural Resources by 
Stout (1916, 1918, 1943), Conrey (1921), Stout and Lamborn 
(1924), Lamborn (1930, 1954, 1956), Lamborn and others 
(1938), White (1949), White and Lamborn (1949), DeLong 
and White (1963), DeLong (1965a, 1965b), and Winslow 
and White (1966) provide much of the early framework upon 
which current understanding of Tuscarawas River Basin geol-
ogy is based.

Bedrock
The rocks of greatest importance to the water resources of 

the basin are those that are within 300 ft of land surface; how-
ever, a brief description of rocks found at greater depths also 
is warranted. At depths ranging from approximately 5,500 ft 
below sea level (NAVD 88) in the western part of the basin to 
almost 12,000 feet in the southeast part of the basin, the “base-
ment” beneath the Tuscarawas River Basin is composed of 
Precambrian-age metamorphic and igneous rocks. The lithol-
ogy and structure of these rocks have been investigated by 
McCormick (1961), Summerson (1962), Owens (1966), Smith 
(1969), Risser (1976, 1983a), Vormelker, (1981a, 1981b), and 
Baranoski (2002). The map produced by Baranoski (2002) 
shows that the surface of the top of Precambrian-age rocks in 
the basin slopes at about 60 ft per mile to the southeast. The 
Precambrian-age rocks are overlain by thick sequences of 
Cambrian-, Ordovician-, Silurian-, and Devonian-age sedi-
mentary rocks that primarily consist of sandstone, shale, and 
limestone (Stauffer, 1909; Prosser, 1912; Hoover, 1960; Dow, 
1962; Calvert, 1963; Ulteig, 1964; Owens, 1970; Janssens, 
1973, 1977; Gray and others, 1982). A cross section by Shear-
row (1957) shows that the sedimentary rocks dip to the south-
east, typically at a slope slightly less than that of the basement 
rocks, and that the sedimentary rocks thicken towards the east.

Within 300 ft of the surface, the rocks are Upper Devo-
nian-, Mississippian-, Pennsylvanian-, and Permian-age sand-
stones, coals, shales, and limestones (fig. 7). A generalized 
stratigraphic section of the shallow sequence of rocks modified 
from the U.S. Geological Survey (2009) and Hull (1990) is 
provided in figure 8. Bedrock units that serve as regional aqui-
fers in and around the basin are identified on this figure. The 
oldest rocks within 300 ft of the surface are Upper Devonian- 
or Lower Mississippian-age sandstones that include the Berea 
and the Cussewago Sandstones described by Winslow and 
White (1966), DeLong (1968, 1969), Rau (1969), and Struble 
and Hodges (1982). Mississippian-age rocks in eastern Ohio 
are mostly sandstones (Morse, 1910; Hyde, 1953; Owens, 
1970; and Majchszak, 1984) but include limestones, such 
as the Maxville Limestone (Morse, 1910; Lamborn, 1945, 
1951). The Maxville Limestone is unconformably overlain 
by the Pennsylvanian-age Sharon Conglomerate, which is a 
substantial source of groundwater to wells and springs in the 
northern part of the basin. Fuller (1955) describes the Sharon 
Conglomerate in detail and provides an explanation of its 
geologic origin. Pennsylvanian-age rocks in southeastern Ohio 
are dominated by coal sequences that are described later in 
this section. The youngest consolidated rocks include Permian 
(?) and Upper Pennsylvanian-age Dunkard Group mudstones, 
shales, and sandstones that are present only in small areas in 
the southeast part of the basin in Belmont County (Stauffer 
and Schroyer, 1920; Martin, 1998).
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Figure 7.  Generalized bedrock geology in and around the Tuscarawas River Basin, Ohio. (From U.S. Geological 
Survey, 2005)
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Figure 8.  Generalized stratigraphic section of rocks within 300 feet of the surface in the Tuscarawas River Basin, Ohio. 
(Modified from U.S. Geological Survey (2009) and Hull (1990); shaded rock units are regional aquifers (other units may be 
local aquifers))
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Unconsolidated Sediments
Unconsolidated sediments in the northern part of the Tus-

carawas River Basin are dominated by glacially derived till, 
sand, and gravel; however, reworked glacial deposits and allu-
vial deposits also fill the valleys elsewhere in the basin (for the 
purposes of this description, unconsolidated sediments include 
both glacial and alluvial sediments). The glacial history of the 
Tuscarawas River Basin is fairly complex and has been stud-
ied by many investigators, including White (1951, 1967, 1973, 
1979, 1982, 1984), Forsyth (1961), Goldthwait and others 
(1967), Ohio Department of Natural Resources (1978a, 1983, 
1993a, 1993b), White and Guckenheimer (1979), White and 
Totten (1979, 1982, 1985), Totten (1988), and Pavey and oth-
ers (1999). At least two distinct periods of glaciation occurred 
in Ohio within the past 150,000 years: the Illinoian age (which 
ended approximately 125,000 years ago) and the Wisconsinan 
age (which ended approximately 10,000 years ago). In general 
glaciers advanced southward from Canada, across the Great 
Lakes and into Ohio and covered the upper third of the basin. 
Much of the area covered by the Illinoian glaciers was overrun 
and reworked by Wisconsinan-age glaciers. The only remain-
ing Illinoian glacial sediments exposed at the surface in the 
Tuscarawas River Basin are along a relatively thin east-west 
band in Columbiana County shown in red on the map of gen-
eralized soil regions (fig. 4). 

Much of the unconsolidated sediment derived from 
glaciers is fine-grained silt and clay that forms a blanket 
over the bedrock, generally less than 100 ft thick. However, 
the unconsolidated sediments also contain sand and gravel 
outwash that fills incised river valleys. These outwash deposits 
extend well beyond the extent of glaciation because meltwater 
carried the sediments away from the glacier towards the Ohio 
River (fig. 9; note that surface water and unconsolidated sur-
ficial sediments may not necessarily coincide in river valleys 
in figure 9 because of the different source scales of these two 
map layers). Additionally, alluvial sediments, which are undif-
ferentiated from the glacial sediments in figure 9, fill valleys 
in unglaciated areas.. Other sand and gravel deposits of glacial 
origin, including terraces, kames, and eskers, are in Coshocton 
County and in the Akron, Canton, and Massillon areas (Smith, 
1949; Van Horn, 1979; Hull, 1980; and Himes, 1982).

Mineral Resources
Considerable mineral resources are within the rocks and 

sediments of the Tuscarawas River Basin, and these resources 
have helped to define the economy and industry of the area 
(Bownocker and Stout, 1928; Stout, 1946; Ohio Department 
of Natural Resources, 1963; and Carlson, 1991). In 2006, total 
revenue from Ohio’s mineral-based commodities since records 
have been kept was estimated at more than $2.6 billion (Ohio 
Department of Natural Resources, 2007a). Oil and gas pro-
duction produced the most revenue in Ohio, totaling slightly 
more than $1 billion, whereas coal production resulted in a net 
value of approximately $618 million. Mineral commodities 

production numbers are available through the Ohio Depart-
ment of Natural Resources Web site at http://www.dnr.state.
oh.us/. 

Mining operations (fig. 10) include those that extract and 
(or) process coal, metals (chromium, sulfur, and tin), minerals, 
unconsolidated materials, and rocks.  Dimension stone and 
sand and gravel are used for construction. Clay, shale, lime-
stone, dolomite, sand, gravel, sandstone, conglomerate, and 
other deposits are used as aggregate. Oil and gas wells were 
too numerous to show in figure 10. 

Oil and Gas
Oil and gas production has been and continues to be 

a major economic boon to residents and industries in the 
Tuscarawas River Basin. In Ohio, oil wells were first drilled 
northeast of the Tuscarawas River Basin in Trumbull County 
in 1859 (Ohio Department of Natural Resources, 2007b). 
Publications and maps describing the occurrence of oil and gas 
were produced by Bownocker (1903), Multer (1963), Jans-
sens and de Witt (1976), Struble and Hodges (1982), and Ohio 
Department of Natural Resources (2007b). In general, oil and 
gas reservoirs are much deeper than potable-water aquifers in 
the basin; therefore, drilling and extraction of oil through wells 
requires penetration through the shallow aquifers. Drilling 
through the aquifers and extracting oil and gas requires special 
precautions to avoid contamination of overlying aquifers 
and nearby surface-water bodies from oil-field brines (brines 
are extremely saline waters from deep geologic formations 
that contain high concentrations of dissolved constituents as 
described by Lamborn (1952) and Breen and others (1985)). 

Coal
Coal is present in Pennsylvanian-age rocks in all coun-

ties within the basin (figs. 8 and 10). The sheer number and 
volume of coal-related documents verify coal’s importance to 
the economy of eastern Ohio (see, for example, Bownocker 
and others, 1908; Condit, 1912; Stout, 1929, Lamborn, 
1942; White, 1947; Brant, 1954, 1956; DeLong, 1955, 1957; 
DeBrosse 1957; Granchi, 1958; Brant and DeLong, 1960; 
Denton, 1960; Couchot, 1978; Couchot and others, 1980; 
and Axon, 1996). In Ohio, coal deposits are characterized by 
repetitive sequences of sandstone, shale, limestone, coal, and 
clay. In the Tuscarawas River Basin, coal occurs in seams that 
range from a couple of inches to several feet thick. 

Coal has been mined and used for domestic purposes 
by Native Americans and early settlers since before records 
were kept. The first written record of coal in Ohio is in a 1748 
report of a coal mine fire at the mouth of Sandy Creek near 
Bolivar, Tuscarawas County (Ohio Department of Natural 
Resources, 1997a). Documentation of the amount of coal pro-
duced in Ohio began around 1800, and between that time and 
the present, more than 5 billion tons of coal has been mined. 
At least two peaks in production have occurred, the first dur-
ing World War I and the second during the early 1970’s, when 
large surface-mining operations were in production. For the 

http://www.dnr.state.oh.us
http://www.dnr.state.oh.us
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Figure 9.  Unconsolidated surficial sediments in and around the Tuscarawas River Basin, Ohio. (Modified from Ohio 
Department of Natural Resources, 2000a)
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Figure 10.  Locations of mining operations in and around the Tuscarawas River Basin, Ohio. (From Ohio Department of 
Natural Resources (1999a, 1999b) and U.S. Geological Survey (2005))
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interested reader, the history of the coal-mining industry in 
Ohio is further described in Crowell (1995) and Ohio Depart-
ment of Natural Resources (1997a).

Within the Tuscarawas River Basin, several counties are 
among the leaders in Ohio coal production (Ohio Department 
of Natural Resources, 2007a). As of 1997, Belmont County 
produced over 774 million tons of coal and was (and continues 
to be) the leading coal-producing county in Ohio. Harrison, 
Tuscarawas, and Guernsey Counties also are among the top 
10 coal-producing counties in Ohio. Production of coal within 
the basin and throughout eastern Ohio is closely correlated 
with oil and gas prices and the increasing costs associated 
with air-quality requirements of the Clean Air Act of 1970 and 
its amendments in 1977. Ohio coal typically contains from 
2 to 7 percent sulfur, requiring special measures to reduce or 
eliminate sulfur-rich emissions that may be discharged to the 
atmosphere. Also, Ohio coal may contain other minerals and 
trace elements that can cause environmental concerns related 
to disposal of ash, air emissions, and degraded water qual-
ity (Bownocker and Dean, 1929; Dean, 1948; Knapp, 1977; 
Botoman and Stieglitz, 1978; Botoman and Stith, 1978, 1981, 
1986, 1988; Bragg and others, 1998; Haefner, 2002).

Other Mineral Resources
In addition to oil, gas, and coal, there are many other 

mineral deposits of economic significance in the Tuscarawas 
River Basin. Carlson (1991) and the 2006 Ohio Minerals 
Report (Ohio Department of Natural Resources, 2007a) list 
economically viable mineral reserves of sand and gravel, salt, 
clay, limestone, sandstone, silica, gypsum, and peat in Ohio. 
Iron ore and flint also have been produced in Ohio (Stout, 
1944; Stout and Schoenlaub, 1945). Unconsolidated surficial 
sediments shown in figure 9, which include sand and gravel 
deposits, can be found throughout the basin (Smith, 1949; 
Hull, 1980, 1987; Risser, 1981, 1986, 1987). Sand and gravel 
has many uses, most importantly as aggregate in concrete used 
for construction and repair of buildings and roads. Salt depos-
its in Silurian-age rocks are present deep below the surface 
of the basin. The salt is typically extracted by injecting water 
into injection wells, which causes the salt to dissolve, and 
the resulting salt solution is pumped to the surface (Pepper, 
1947; Clifford, 1973; Ohio Department of Natural Resources, 
2007a). There is a long history of clay mining and production 
of ceramics and pottery within the basin. Parts of east-central 
Ohio are internationally known for their pottery (Lamborn and 
others, 1938; Stout, 1940a; Stout and others, 1923; Kent State 
University Museum, 2008; and Ohio History Central, 2008). 
Limestone resources were described by Orton and Peppel 
(1906) and Lamborn (1945, 1951); however, as is the case for 
peat, marl, tufa rock, travertine, and bog ore in Ohio, they are 
not found in large quantities and are not a substantial source 
of revenue within the basin (Dachnowski, 1912; Stout 1940b; 
Ohio Department of Natural Resources, 2007a).

The mineral deposits described above are not only 
important economically to the residents and industry of the 
Tuscarawas River Basin, but also hydrologically because the 
mining and extraction activities have the potential to affect 
water quality and (or) alter local and regional groundwater 
and surface-water flow paths. As described in the upcoming 
sections of this report, disturbances of the natural hydrologic 
system are evident in many areas of the basin, and the legacy 
of early mining practices continues to be one of the dominant 
water-quality issues in the basin.

Hydrology

The major water feature within the basin is the Tus-
carawas River. Basic information regarding the basin can be 
found on the U.S. Environmental Protection Agency’s “Surf 
your Watershed” Web site at http://cfpub.epa.gov/surf/huc.
cfm?huc_code=05040001. The earliest reports describing the 
water resources of the Tuscarawas River Basin focused on 
water quantity and sources of potable water rather than water 
quality (Foulk, 1925; Ohio Department of Public Works and 
Dayton Morgan Engineering Co., 1931; Harker, 1943a, 1943b, 
1943c; Stout and others, 1943; Van Tuyl 1947; Kazman, 
1949; Smith and White, 1953; Stafford, 1954; Walker, 1959; 
Kaser, 1960; Ohio Water Commission, 1960). Major water 
inventories were conducted for the entire Muskingum River 
Basin (Ohio Department of Natural Resources, 1968) and for 
the Tuscarawas River, Nimisilla Creek, Portage Lakes, and 
Nimisilla Reservoir (Stafford, 1954). These publications docu-
ment the similarity between the hydrology of the Tuscarawas 
River Basin and other basins in the Midwestern United States 
in terms of sources, quantity, quality, and sinks of water. The 
primary source of water to the basin is precipitation; however, 
unknown amounts of water may be entering through ground-
water flow within aquifers whose boundaries do not necessar-
ily coincide with surface-water divides. Surface-water divides 
are defined by topography, whereas groundwater divides are 
defined by the water table and may be affected by withdraw-
als, geologic structure, or other factors. Groundwater inflow 
into the Tuscarawas River Basin from outside the basin has 
not been evaluated; however, Stout and others (1943) note that 
groundwater flow directions in deep consolidated rock forma-
tions are generally from west to east. Discharge/Loss of water 
is through evapotranspiration, groundwater (well) withdraw-
als that are generally unaccounted for, and streamflow at the 
mouth of the Tuscarawas River near Coshocton. 

To understand the most important components of the 
hydrology of the basin, the Ohio Department of Natural 
Resources published the general water budget shown below 
(Ohio Department of Natural Resources, 2008c). Two assump-
tions with this budget are that, in the long term, there are no 
net gains or losses in the overall amount of water in the basin 
and that all precipitation that falls in the basin leaves the basin 
through runoff to streams, evaporation, transpiration by plants, 
or well withdrawals.

http://cfpub.epa.gov/surf/huc.cfm?huc_code=05040001
http://cfpub.epa.gov/surf/huc.cfm?huc_code=05040001
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Annual Water Budget for Ohio 
[Modified from Ohio Department of Natural Resources, 2008c]

Begin with an average of 38 inches annual precipitation as rainfall 
or snowfall.

Of the 38 inches of precipitation,
10 inches runoff to streams 

2 inches are lost to evaporation

26 inches infiltrate into the ground

Of the 26 inches that infiltrate into the ground,

 20 inches are lost to evapotranspiration

6 inches recharge groundwater

Of the 6 inches that recharge groundwater,
2 inches discharge to surface water

4 inches are lost to evapotranspiration or to well 
withdrawals

The following section describes the major components of this 
water budget— evapotranspiration, surface water, and ground-
water— and concludes with the overall water-use characteris-
tics in the Tuscarawas River Basin.

Evapotranspiration
Relatively large amounts of water leave the basin through 

evapotranspiration, or water lost through evaporation and tran-
spiration by plants (Ohio Department of Natural Resources, 
2008c). Thornthwaite (1948) and Allen and others (1998) 
summarize different methods of estimating or measuring 
evapotranspiration. Typically, estimation of evapotranspira-
tion involves the use of equations through a water- or energy-
balance approach (water or energy inputs equal outputs plus 
or minus a change in storage) or through other equations that 
include atmospheric, hydrologic, and (or) vegetation data. 
Evapotranspiration also can be estimated through calibration 
of groundwater flow models, where recharge rates (which 
include losses due to evapotranspiration) are adjusted until the 
models produce realistic groundwater levels and streamflows.

Harstine (1991) provided measurements of potential 
evaporation rates for nine sites in Ohio for the months of May 
through October. No measurements were obtained within the 
Tuscarawas River Basin; however, measurements were made 
for nearby sites Coshocton Agricultural Research Station 
(34.2 in/yr: Coshocton County), Seneca Lake (31.2 in/yr; 
Guernsey County), and Wooster Experimental Station 
(31.2 in/yr; Wayne County). The average potential evaporation 
rate for all nine sites was 30.8 in/yr. Through measurements 
obtained at the Ohio Agricultural Research and Development 
Center in Wooster (Wayne County), Breen and others (1995) 
used an evapotranspiration rate of 24 in/yr, obtained from 
measurements provided by the Ohio Agricultural Research 
and Development Center in Wooster (Wayne County), in their 

groundwater flow model. Cohen and Randall (1998) estimated 
evapotranspiration for the entire glaciated region of the north-
eastern United States, including the Tuscarawas River Basin 
area that was estimated at about 22 in/yr.

Surface Water
Four major tributaries of the Tuscarawas River are Sandy 

Creek (with inflows from Nimishillen Creek), Conotton Creek, 
Stillwater Creek, and Sugar Creek (fig. 1). The Ohio and Erie 
Canal was constructed next to the river in the early 1800s 
and served as a major transportation route for about 20 years, 
but its use declined in the 1850s as railroads gained popular-
ity. The canal suffered substantial damage from flooding in 
1913, and only small portions of the canal’s towpath route 
are still maintained for recreational uses such as hiking and 
bicycle trails. The history, operation, and hydraulics of the 
Ohio and Erie Canal are further described in Ohio Department 
of Natural Resources (1997b); however, the canal’s effects 
on the hydrology of the basin have not been investigated. 
The largest surface-water bodies in the basin are a series of 
man-made reservoirs constructed for flood control, including 
Atwood Lake, Beach City Lake, Leesville Lake, Tappan Lake, 
Clendening Lake, and Piedmont Lake (fig. 1). These reservoirs 
and the associated dams are maintained by the Muskingum 
Watershed Conservancy District (MWCD) and the U.S. 
Army Corps of Engineers and are further described in Dames 
& Moore and U.S. Army Corps of Engineers Huntington 
District (1975), U.S. Army Corps of Engineers (1977, 2006a), 
and Muskingum Watershed Conservancy District (2002). 
In addition to flood control, the reservoirs are important for 
recreation, thermoelectric power, and, to a lesser degree, water 
supply. As of 2009, only Tappan Lake was used for public 
water supply for the Village of Cadiz (Muskingum Watershed 
Conservancy District, 2008). The largest natural lakes (which 
undoubtedly also have been somewhat affected by human 
activities) include the Portage Lakes in Summit County, which 
are much smaller than the man-made reservoirs. Studies and 
inventories of the reservoirs and lakes of Ohio and within the 
Tuscarawas River Basin have been done by Wright (1950), 
Tobin and Youger (1978, 1979), Bowell (1980), Black (1991), 
Davic and others (1997), and the Muskingum River Basin 
initiative (2005).

Wetlands
Wetlands throughout Ohio have been mapped and 

cataloged by the U.S. Fish and Wildlife Service (U.S. Fish 
and Wildlife Service, 2009a). Wetlands are far more numer-
ous in the northern, glaciated parts of the basin (including 
Stark, Summit, and Portage Counties) than in the southern, 
unglaciated parts of the basin. Many of the wetlands, such as 
Jackson Bog in Stark County and Singer Lake Bog in Sum-
mit County, include kettle holes that formed where large 
chunks of ice left behind by receding glaciers were partially 
or wholly buried within glacial sediments (Denny, 1988; 
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Cleveland Museum of Natural History, 2008; fig. 1). Other 
important wetlands within and adjacent to the basin include 
Stillfork Swamp, Killbuck Marsh Wildlife Area, and Reifs-
nyder Wetlands. Carroll County’s Stillfork Swamp is one of 
the most extensive inland marshes in the unglaciated Western 
Allegheny Plateau Ecoregion of eastern Ohio. It covers over 
600 acres within the Stillfork Valley and drains into Sandy 
Creek. This swamp has long been recognized for its impor-
tance as nesting grounds for a variety of waterfowl and marsh 
birds (The Nature Conservancy, 2006). The Killbuck Marsh 
Wildlife Area in Wayne and Holmes County (outside and to 
the west of the Tuscarawas River Basin) is owned by the Ohio 
Department of Natural Resources and is the largest freshwater 
wildlife marsh site in Ohio at 5,492 acres (U.S. Department of 
Transportation, 2008).

The wetlands described above were created by natural 
processes; however, Reifsnyder Wetland is a constructed 
wetland designed to reduce nitrate concentrations flowing into 
Nimishillin Creek (Earth Action Partnership, Inc., 2006). In 
addition to Reifsnyder Wetland, other artificial wetlands have 
been built to intercept and ameliorate acid-mine drainage from 
coal mines (Bralek and others, 2002; U.S. Environmental Pro-
tection Agency, 2006c). Thus, wetlands hold substantial value 
not only for providing habitat for birds and other wildlife, but 
also for the abatement of degraded water quality.

Floods
Flooding has been and continues to be a problem in the 

Tuscarawas River Basin. Records of floods in the basin within 
the last century begin with the flood of 1913 (Horton and 
Jackson, 1913). Floods are documented for the years 1935 
(Youngquist and others, 1941), 1959 (Cross and Brooks, 1959; 
Edelen, Ruggles, and Cross, 1962; Edelen, Somers, and Cross, 
1962, Somers and others, 1962), 1998 (Koltun, 1999), and 
2005 (The Times Reporter, 2005). The flooding that occurred 
in 1913 spurred the development of the Muskingum Water-
shed Conservancy District in 1933 and the construction of a 
dam and reservoir network later that decade. Within the past 
20 years, flood-insurance studies have been done (or updated) 
for small regions throughout the basin by the U.S. Federal 
Emergency Management Agency. Past and current flood stud-
ies in the basin are available at http://msc.fema.gov/. 

Groundwater/Surface-Water Interactions
The relation between groundwater and surface water 

is complex and the streams within the basin may receive 
water from aquifers (gaining streams) and contribute water 
to aquifers (losing streams) over relatively short distances. 
Well fields installed for public supply are often placed near 
streams to take advantage of the thick sand and gravel deposits 
in the area and to induce infiltration of surface water into the 
aquifer. Van Tuyl (1947) measured streamflow in Nimishillin 
Creek near Canton and showed that losses of surface water to 
groundwater occur in varying amounts depending on the stage 

of the stream and on local groundwater levels. Infiltration 
rates varied from 0 to more than 3 Mgal/d per acre of stream 
bottom. Van Tuyl also documented that as much as 33 percent 
of the total streamflow infiltrated the aquifer. Rizzo (1993) 
determined that streams in Medina and Wayne Counties lose a 
substantial amount of water as the streams flow across perme-
able sands and gravels within the valleys. Water is initially 
discharged at the contact between the Sharon Sandstone/Con-
glomerate and the underlying Wooster Shale. (The Wooster 
Shale is not present in the Tuscarawas River Basin; however, it 
is typically found at the same interval as the Black Hand mem-
ber within the Cuyahoga Formation.) Breen and others (1995) 
confirmed through a series of seepage-meter experiments that 
complex surface-water/groundwater interactions occur along 
Killbuck Creek and its tributaries near Wooster by identifying 
specific reaches where streamflow increased or decreased due 
to stream/aquifer interactions.

In addition to groundwater interaction with streams, 
groundwater interaction with ponds and lakes probably occurs; 
however, the authors are unaware of any documented interac-
tions between groundwater and lakes or ponds in the basin. A 
study by Barton and others (1998) on Mosquito Creek Lake 
in Trumbull County (to the northeast of the Tuscarawas River 
Basin) revealed that there is a west-to-east component of 
groundwater flow into and out of the lake with higher ground-
water levels on the western shore than on the eastern shore, 
making Mosquito Creek Lake a flow-through lake.

Groundwater
The primary sources of groundwater used by the residents 

and industry in the Tuscarawas River Basin are sandstones of 
Devonian, Mississippian, and Pennsylvanian age and uncon-
solidated sands and gravels. As noted in the section describing 
the geology of the basin, the focus of this report is on consoli-
dated rocks within about 300 ft of the surface and the overly-
ing unconsolidated sands and gravels that fill buried valleys. 
Water in the upper part of the Devonian-age rocks and lower 
part of the Mississippian-age rocks becomes brackish and may 
still be included as part of the potable water resources of the 
basin (Sedam and Stein, 1970); however, for the purposes of 
this report, the Upper Devonian- and Lower Mississippian-age 
rocks will be considered the lower extent of the aquifer system 
within the basin.

The groundwater resources of the entire Muskingum 
River Basin were first described by the Ohio Department of 
Public Works and Dayton Morgan Engineering (1931). Stout 
and others (1943) followed with the “Geology of Water in 
Ohio” and stated that “...the thick fill of the valley should 
provide abundant water and that “Rock Water” found in con-
solidated Pennsylvanian shales and some sandstones provide 
fair local supplies.” Harker (1943a, 1944a) also documents 
the abundance of groundwater in the basin, particularly in the 
buried valleys along the Tuscarawas River.

Several state-wide maps describing groundwater 
resources within Ohio have been published by the Ohio 

http://msc.fema.gov/
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Department of Natural Resources Statewide Aquifer Mapping 
Project and include “Hydrogeologic Settings of the Uncon-
solidated Aquifers in Ohio” (Angle and others, 2000), “Drift 
Thickness of Ohio” (Ohio Department of Natural Resources, 
2000a), “Primary Lithology of the Unconsolidated Deposits 
of Ohio” (Ohio Department of Natural Resources, 2000b), 
“Yields of the Unconsolidated Aquifers in Ohio” (Ohio 
Department of Natural Resources, 2000c), and “Yields of the 
Uppermost Bedrock Aquifers of Ohio” (Ohio Department 
of Natural Resources, 2000d). County-scale investigations 
compiled as part of this literature review are listed in appendix 
1 and include general water-resources studies (some of which 
also include surface-water resources), groundwater resources 
investigations, pollution-potential maps, and water-level maps.

Bedrock Aquifers
As shown by the shaded rock unit names in the strati-

graphic column in figure 8, the sandstone aquifers that provide 
much of the water to wells are found in the lower part of the 
column and include the Cussewago Sandstone, the Berea 
Sandstone, the Black Hand Sandstone, the Logan Formation, 
the Maxville Limestone, the Sharon Conglomerate Member, 
the Massillon sandstone, the Homewood Sandstone, the Upper 
Freeport sandstone, and the Buffalo Sandstone. Locally, sand-
stones, coals, and limestones in the upper Pennsylvanian-age 
and Permian-age rocks also provide water to wells; however, 
quantities of water withdrawn from these rocks through wells 
are much smaller than the quantities from above-listed units.

Most of the results of evaluations of groundwater and 
aquifers are presented in terms of well yields (for example, 
how much water can be withdrawn before a well goes dry). 
Well yields in the sandstone aquifers are generally less than 
100 gal/min (gallons per minute) (Sedam, 1973; Ohio Depart-
ment of Natural Resources, 2000c, 2000d). The relatively poor 
yield of wells in sandstone aquifers has led to investigation of 
water in abandoned underground coal mines as an additional 
source of water (Crouch and others, 1980); however, this 
water is often of poor chemical quality with elevated concen-
trations of iron, manganese, and sulfate (Razem and Sedam, 
1985). Estimation of aquifer properties including hydrau-
lic conductivity and transmissivity has been done through 
aquifer tests and calibration of digital computer models, but 
few references are available for aquifer properties in the 
consolidated bedrock in the Tuscarawas River Basin. Breen 
and others (1995) estimated hydraulic conductivity values for 
the Logan and Cuyahoga Formations near Wooster of 0.25 
to 100 gal/d/ft2 (0.033 to 13 ft/d), using aquifer test results 
and model calibration. Rau (1969) estimated that the aver-
age transmissivity of the Berea Sandstone was 2,400 gal/d/ft 
(320 ft2/d). Lacking other basin-specific data, textbook 
hydraulic conductivity values may be used; the values for 
sandstone range from 1 to 1,000 gal/d/ft2 (0.13 to 130 ft/d) and 
for unfractured limestone, 1x10-1 to 1x10-5 gal/d/ft2 (1.3x10-2 
to 1.3x10-6 ft/d) (Domenico and Schwartz, 1990; Freeze and 
Cherry, 1979). Textbook porosity values for sandstone range 

from 5 to 30 percent, and specific yield values range from 21 
to 27 percent. Similar values for limestones range from 0 to 
20 percent porosity and about 14 percent specific yield.

Unconsolidated Aquifers
The sands and gravels that fill buried valleys in north-

eastern Ohio are among the most prolific aquifers in the 
State (Harker and Bernhagen, 1943a; Cummins, 1959; Ohio 
Department of Natural Resources, 2000c). Indeed, production 
wells in all of the major cities within the basin obtain water 
from wells screened within sand and gravel aquifers. The 
thicknesses of the sand and gravel deposits in the Tuscarawas 
River Basin typically are greater than 100 ft within the buried 
valleys and may reach up to 400 ft in some localities near the 
center of the larger valleys in the northern, glaciated regions. 
These buried valleys also may contain layers of fine sand, silt, 
and (or) clay, which may hinder the utilization of groundwater 
resources, as was the case reported by Harker (1944a) in the 
vicinity of Akron. Little information is available regarding 
the degree of hydraulic connection between unconsolidated 
valley-fill sediments and bedrock aquifers; however, Breen 
and others (1995) simulated groundwater flow from upland 
bedrock areas into sand- and gravel-filled valleys near Wooster 
with full horizontal and vertical hydraulic connectivity.

Well yields in the sands and gravels can be greater than 
500 gal/min (Sedam, 1973; Ohio Department of Natural 
Resources, 2000c, 2000d). Fine-grained sediments found at 
the surface throughout the glaciated uplands and over some 
parts of the sand and gravel aquifers may serve as a protec-
tive barrier to the downward movement of contaminants into 
underlying aquifers; however, joints and fractures within these 
fine-grained sediments have recently been a focus of studies 
elsewhere in Ohio (Weatherington-Rice, 2004). Estimated 
hydraulic conductivity for the sand and gravel aquifers ranges 
from about 120 to more than 1,000 gal/d/ft2 (16 to 134 ft/d) 
with corresponding transmissivities ranging from 12,000 
to 94,000 gal/d/ft (1,600 to 12,600 ft2/d; Jones and others, 
1958; Mayhew, 1985; Springer 1987; Garvey, 1988; Breen 
and others, 1995; Chowdhury and others, 2003). Aquifer 
porosity and specific yield data are scarce for sand and gravel 
aquifers in the Tuscarawas River Basin; however, published 
estimates from hydrology textbooks provide a range of poros-
ity from 25 to 50 percent, whereas specific yields range from 
10 to 30 percent (Domenico and Schwartz, 1990; Freeze and 
Cherry, 1979).

Recharge
The amount of water that recharges aquifers has been 

estimated by a number of different methods. The average 
value in the water budget presented above of 6 in. per year 
was derived by subtracting all estimated withdrawals and 
outflows from the known amount of rainfall that occurs in 
the area (Ohio Department of Natural Resources, 2008c). A 
recharge value also is included as one of the index variables in 
the groundwater pollution potential maps developed through 
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the methods of Aller and others (1985). As of 2009, ground-
water pollution potential maps for the Tuscarawas River Basin 
are available for all counties except Guernsey County and 
are referenced in appendix 1. These maps show that recharge 
varies as a function of meteorological conditions (including 
temperature and the type and intensity of precipitation), soil 
type, slope, and geology.

Breen and others (1995) estimated recharge in the 
Killbuck Creek Valley through groundwater-flow-model 
calibration to be about 5 in/yr in the uplands and as much 
as to 13 in/yr in the valleys. Breen and others (1995) also 
determined that a substantial amount of runoff from the 
bedrock uplands could not recharge the groundwater system 
in the uplands, but still recharged the sand- and gravel-filled 
valleys. (Breen and others (1995) used the term “rejected 
recharge” to describe this runoff). Bonta and Muller (1999) 
estimated annual, long-term groundwater recharge rates to 
be 5.5 to 15.4 in/yr, using a method devised by Glugla and 
Tiemer (1971). This method uses long-term average annual 
precipitation, runoff, potential evaporation, and crop-yield 
information along with a set of empirical parameter curves to 
derive recharge estimates. Dumouchelle and Schiefer (2002) 
used streamflow records and basin characteristics to estimate 
recharge rates at Sandy Creek of 9 to 10 in/yr and at Home 
Creek near New Philadelphia of 6 in/yr. Chowdhury and oth-
ers (2003) estimated recharge of 14 in/yr within the outwash 
along Chippewa Creek in Wayne and Medina Counties.

Source-Water Protection Areas
To protect the quality of water derived from production 

wells and surface-water intakes, the Ohio EPA administers 
Ohio’s Source Water Assessment and Protection Program 
(http://www.epa.state.oh.us/ddagw/pdu/swap_protection.
html). As of 2009, source-water areas have been defined for 10 
public-supply water systems in or near the Tuscarawas River 
Basin (Ohio Environmental Protection Agency, 2009b; table 
3). In another effort to protect groundwater supplies, the U.S. 
Environmental Protection Agency (2005) developed criteria to 
define aquifers as “Sole-Source Aquifers,” specifying that they 
are a sole source of water and thereby require special protec-
tion status. As of 2009, there were no Sole-Source Aquifers 
within the basin and only four within Ohio. The nearest (and, 
perhaps, the most hydrologically similar to the Tuscarawas 
River Basin) designated Sole-Source Aquifer is the sand and 
gravel aquifer near Pleasant City in Guernsey County (just 
south of the basin), which was designated in 1987 (http://www.
epa.state.oh.us/ddagw/Documents/SSA_pleasantcity_FR.pdf).

Water Use
Water-use estimates were summarized for two different 

geographic areas: the entire 13-county area that includes the 
Tuscarawas River Basin and for the 8-digit hydrologic unit 
code area of the Tuscarawas River Basin itself (05040001). 
Five categories of water-use were evaluated: public supply, 

Table 3.  Source Water Assessment and Protection Program 
areas by county within the Tuscarawas River Basin, Ohio, on 
record with the Ohio Environmental Protection Agency as of 2009.

[From Ohio Environmental Protection Agency, 2009b; PWS, Public Water 
System]

Public Supply Water System Population served

Belmont County

Belmont Co. Sanitary District 3 PWS 24,387

Holloway PWS 345

Shadyside PWS 3,812

Coshocton County

Warsaw Village PWS 890

Stark County

Aqua Ohio, Inc.–Massillon 90,000

Summit County

Hudson City PWS 5,750

Tuscarawas County

Dover City PWS 13,570

New Philadelphia City PWS 18,000

Wilkshire Hills PWS 6,072

Wayne County

Wooster City PWS 25,801

domestic supply, agricultural (including livestock, aquaculture, 
and irrigation), industrial/mining, and thermoelectric power 
(U.S. Geological Survey, 2008c). For the 13 counties that 
encompass the Tuscarawas River Basin, total estimated water 
withdrawal in 2000 was 825 Mgal/d (table 4; U.S. Geologi-
cal Survey, 2008c). (Data for the year 2000 were used here 
because, at the time of this publication, water-use estimates 
were available, but not published, for 2005.) The distribution 
of groundwater and surface-water use by county for 1985, 
1990, 1995, and 2000 is shown in figure 11. The most impor-
tant change between years is the change from predominantly 
surface-water use in 1985 to predominantly groundwater 
use in 2000. This change can be attributed to the decrease 
of surface-water use due to the closing of major steel mills 
and other large water-using industries throughout the basin. 
Additionally, the distribution of water use is not consistent 
throughout the 13-county area. Coshocton and Belmont Coun-
ties used water at a rate an order of magnitude greater than any 
of the other counties because almost 68 percent of the total 
water used in the 13-county area was used for thermoelectric 
power in the form of cooling water for coal-fired power plants 

http://www.epa.state.oh.us/ddagw/pdu/swap_protection.html
http://www.epa.state.oh.us/ddagw/pdu/swap_protection.html
http://www.epa.state.oh.us/ddagw/pdu/swap_protection.html
http://www.epa.state.oh.us/ddagw/Documents/SSA_pleasantcity_FR.pdf
http://www.epa.state.oh.us/ddagw/Documents/SSA_pleasantcity_FR.pdf
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in these two counties (table 4; fig. 11). If water used for ther-
moelectric power water is excluded from this tabulation, as 
shown on the bottom of table 4, the dominant water use in all 
counties except Carroll County is public supply. (The domi-
nant water use in Carroll County is domestic supply through 
private wells.) The 13-county water-use data are closely 
related to land-use data (table 2). Counties with higher popula-
tions and greater percentages of land use devoted to industry 
use greater quantities of water. Specifically, Stark and Summit 
Counties have the greatest population and withdraw the most 
water for public supply, industry, and mining, and these coun-
ties also have the greatest percentage of high-intensity urban 
development (which includes industrial land uses).Wayne 
County, which has the highest percentage of agricultural land 

use (75.1 percent in 2001), uses the greatest amount of water 
for agricultural purposes (2.0 Mgal/d; tables 2 and 4).

Water-use data for the Tuscarawas River Basin, which is 
defined by the 8-digit hydrologic unit code 05040001, were 
summarized using the same water-use categories described 
above; however, additional data were available to discriminate 
between groundwater and surface-water sources for four years 
(1985, 1990, 1995, and 2000; table 5). Total water-use values 
reported for the 13-county area are more than seven times 
those reported for the Tuscarawas River Basin area because 
some heavily populated areas lie just outside the basin bound-
ary, but are still within the county. From 1985 to 2000, total 
groundwater use remained about the same, whereas surface-
water use declined from 82.5 Mgal/d in 1985 to 12.9 Mgal/d 

Table 4  Estimated total water use by water-use category in the counties that encompass the Tuscarawas River Basin, Ohio, 2000. 

[Modified from U.S. Geological Survey, 2008c; Mgal/d, million gallons per day; rows may not add up to 100 percent due to rounding; na, not applicable]

Total withdrawal (Mgal/d) Percentage of total for each county

County Public 
supply1

Domestic 
supply2

Agri-
cultural3

Industrial/
mining

Thermo-
electric 
power

Total
Public 
supply

Domestic 
supply

Agri-
cultural

Industrial/
mining

Thermo-
electric 
power

Total

Belmont 8.3 0.0 0.3 1.3 247.0 256.9 3.2 0.0 0.1 0.5 96.1 99.9

Carroll 1.1 1.6 .3 .4 .0 3.4 32.4 47.1 8.8 11.8 .0 100.1

Columbiana 11.0 3.3 .7 .7 .0 15.7 70.1 21.0 4.5 4.5 .0 100.1

Coshocton 8.4 1.2 .6 7.9 312.0 330.1 2.5 .4 .2 2.4 94.5 100.0

Guernsey 4.5 .6 .3 .0 .0 5.4 83.3 11.1 5.6 .0 .0 100.0

Harrison .7 .4 .2 .0 .0 1.3 53.8 30.8 15.4 .0 .0 100.0

Holmes 3.3 2.3 1.1 .6 .0 7.3 45.2 31.5 15.1 8.2 .0 100.0

Medina 6.6 6.1 .8 3.0 .0 16.5 40.0 37.0 4.8 18.2 .0 100.0

Portage 9.1 4.7 .6 3.2 .0 17.6 51.7 26.7 3.4 18.2 .0 100.0

Stark 33.0 6.0 1.2 11.0 .0 51.2 64.5 11.7 2.3 21.5 .0 100.0

Summit 52.0 8.8 .6 11.0 .0 72.4 71.8 12.2 .8 15.2 .0 100.0

Tuscarawas 18.0 2.0 1.1 8.9 .0 30.0 60.0 6.7 3.7 29.7 .0 100.1

Wayne 10.0 3.8 2.0 1.5 .2 17.5 57.1 21.7 11.4 8.6 1.1 99.9

TOTAL 166.0 40.8 9.8 49.5 559.2 825.3 20.1 4.9 1.2 6.0 67.8 100.0

Belmont4 83.8 .0 3.0 13.1 na 99.9

Coshocton4 46.4 6.6 3.3 43.6 na 99.9

TOTAL 62.3 15.3 3.7 18.6 na 99.9
1 Public supply is calculated as sum of public supply and self-supplied commercial water uses.
2 Domestic supply is for self-supplied domestic withdrawals for household purposes.
3 Agricultural withdrawals are calculated as the sum of self-supplied livestock, irrigation, and aquaculture water uses.
4 Because thermoelectric power water use greatly exceeds any other water-use category for these counties and little to no water is used for thermoelectric uses 

in the other counties in the basin, percentages of water use were recalculated for Belmont and Coshocton Counties excluding thermoelectric uses.
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in 2000 (table 5). As noted above, the decline in surface-water 
use is attributable primarily to decreases in industrial uses and 
likely reflects the closing of steel mills in the late 1980s. Over-
all, total water use over the 16-year period declined by almost 
37 percent from 183 Mgal/d in 1985 to 116 Mgal/d in 2000.

Water Quality
Water quality in a stream or reservoir, or within an aqui-

fer, can be affected by natural processes and human activi-
ties. As noted in Hem (1985), the primary natural processes 
that affect water quality are interaction with the atmosphere, 
weathering and erosion of rocks and soil, and chemical reac-
tions occurring below land surface. Some minerals, such as 
quartz, are relatively inert and may not contribute chemicals 
to water; however, other minerals, such as gypsum, pyrite, 
and calcite, readily dissolve and contribute elements such 
as calcium, sulfur, and iron to water. Within the Tuscarawas 
River Basin, the primary human activities that affect water 
quality are agriculture, mining, oil and gas drilling, waste dis-
posal, and many industrial activities. Taste, odor, and appear-
ance usually are the most commonly cited issues regarding 
degraded water quality, but dissolved chemicals at concentra-
tions lower than humans can detect by their senses alone may 
cause health issues.

The earliest publications specifically related to water-
quality information from the Tuscarawas River Basin typically 
provided data only on the basic properties of water or concen-
trations of major elements related to drinking-water supplies 
(see, for example, Stout and others, 1943; Cummins and 
Sanderson, 1947; Ohio River Valley Water Sanitation Com-
mission, 1951). These reports focus on water temperature and 
concentrations of calcium, magnesium, iron, sulfate, dissolved 
oxygen, and suspended sediment. Prior to the 1940s, most 
groundwater was distributed untreated, and the only treatment 
for Tuscarawas River Basin surface water was filtration (Stout 

and others, 1943). One of the earliest reports to describe a spe-
cific source of degraded water quality is by Harker and Bern-
hagen (1943a) who noted stream contamination and intrusion 
of saltwater and oil into aquifers due to oil and gas production 
in the Chatham oil field area (Medina County). After about 
1960, reports by Ohio Water Commission (1960), Thomas 
(1960), Ohio Department of Natural Resources (1968), and the 
Ohio Drilling Company (1971) document additional water-
quality issues related to agricultural practices, mining of coal 
and salt, and industry. This period also coincided with rapid 
improvements in the ability to accurately and precisely mea-
sure concentrations of dissolved chemicals in water.

Regional studies of water quality in the Tuscarawas 
River Basin by the Ohio Department of Health (1958), 
Weston (1968), the Ohio Department of Health and Ohio 
Water Pollution Control Board (1968), and the Ohio Depart-
ment of Natural Resources (1971 and 1978b) document 
wide-spread surface-water-quality issues related to municipal 
wastes, industrial wastes, organic pollution, and chloride 
contamination from salt mining and chemical processing. 
Another regional-scale water-quality study was done by the 
U.S. Environmental Protection Agency (1978) as part of the 
National Eutrophication Survey. This report provides summary 
data for Atwood Lake, Beach City Lake, and Tappan Lake 
that include morphology (drainage area, surface area, mean 
depth, total inflow, and retention time), physical and chemical 
characteristics (alkalinity, specific conductance, Secchi disk 
depth, phosphorus, orthophosphate, inorganic nitrate, and total 
nitrate), biological characteristics (chlorophyll a, algae, and 
phytoplankton), nutrient loadings, and nonpoint source nutri-
ent export.

Examples of surface-water inventories for water quality 
and (or) biology on smaller scales include those done by Prée 
(1962a, c); Ohio Department of Natural Resources (1972, 
1974a, 1974b); Northeast Ohio Four County Regional Plan-
ning and Development Organization for the Upper Tuscarawas 

Table 5.  Estimated groundwater and surface-water use for the Tuscarawas River Basin, Ohio, 1985–2000.

[Tuscarawas River Basin is defined by the 8-digit hydrologic unit code 05040001; data modified from U.S. Geological Survey, 2008c; all values are in million 
gallons per day; GW, groundwater; SW, surface water; T, total]

Public  
supply1

Domestic 
supply2 Agricultural3 Industrial / 

mining
Thermoelectric 

power
Total

Year GW SW T GW SW T GW SW T GW SW T GW SW T GW SW T

1985 58.0 6.8 64.8 21.0 0.0 21.0 2.5 1.7 4.2 0.2 52.0 52.2 19.0 22.0 41.0 100.7 82.5 183.2

1990 38.0 28.0 66.0 18.0 .4 18.4 1.3 2.4 3.7 12.0 10.0 22.0 .1 .0 .1 69.4 40.8 110.2

1995 61.0 8.8 69.8 19.0 .4 19.4 2.6 2.7 5.3 28.0 6.8 34.8 .2 .0 .2 110.8 18.7 129.5

2000 55.0 7.2 62.2 17.0 .4 17.4 2.0 2.3 4.3 29.0 3.0 32.0 .2 .0 .2 103.2 12.9 116.1
1 Public supply is calculated as sum of public supply and self-supplied commercial water uses.
2 Domestic supply is for self-supplied domestic withdrawals for household purposes.
3 Agricultural withdrawals are calculated as the sum of self-supplied livestock, irrigation, and aquaculture water uses.
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River Basin (1985, 1999a, 2004), for Upper Wolf Creek 
(1999c), and for Nimishillen Creek (2001b, 2003, 2005); Dai 
(1993); Ohio Environmental Protection Agency (1996c, 2003, 
2005); Wellman (1998); Gannett Fleming (2000); Carroll 
County Regional Planning Commission (2004); Akin (2006); 
U.S. Environmental Protection Agency (2006c); and Huff 
Run Watershed Restoration Partnership (2006a, b, c). These 
studies document cases of contamination of water, sediment, 
and soils due to agriculture, mining, and chemical spills, with 
specific reference to nutrients, metals, chloride, and a number 
of organic compounds (including gas, oil, volatile organic 
compounds, and solvents).

Water-quality inventories of lakes and reservoirs in the 
basin include those by Tobin and Youger (1979) and Davic 
and others (1997). Tobin and Youger (1979) report that most 
lakes in the Tuscarawas River Basin (and throughout Ohio) are 
shallow (less than 17 ft deep) and, as a result, do not develop 
stratification and are generally of poor water quality. Tobin 
and Youger (1979) also note that nitrate and phosphorus con-
centrations were characteristically high in all lakes. Davic and 
others (1997) detected lindane (an insecticide) in the waters 
of Atwood Reservoir and Tappan Lake and dieldrin (another 
insecticide) in Nimisila Reservoir. As noted above, interaction 
between groundwater and lakes and reservoirs has not been 
examined in the Tuscarawas River Basin.

Within the past few decades, biological indices that 
enumerate the species and general health of aquatic organisms 
have replaced some of the more traditional chemical analyses 
(see, for example, Hyland, 1982; McShaffrey and Olive, 1985; 
Barber and others, 1997; March, 2002; and numerous Ohio 
Environmental Protection Agency studies published from 1978 
through 2006). The Ohio Environmental Protection Agency 
also has done many studies on water quality with special atten-
tion given to aquatic insects, amphibians, and fish, including 
those for Nimishillen Creek (Ohio Environmental Protection 
Agency, 1994a, 2001); River Styx (Ohio Environmental Pro-
tection Agency, 1994b); parts of the Upper Tuscarawas River, 
Wolf Creek, and Hudson Run (Ohio Environmental Protection 
Agency, 1994c); Upper Sandy Creek and Still Fork Sandy 
Creek (Ohio Environmental Protection Agency, 1995a); parts 
of the Tuscarawas River and Sugar Creek (Ohio Environmen-
tal Protection Agency, 1995b); Upper Killbuck Creek (Ohio 
Environmental Protection Agency, 1996b); Upper Muskingum 
River (Ohio Environmental Protection Agency, 1996c), Sandy 
Creek (Ohio Environmental Protection Agency, 1998a); and 
Sugar Creek (Ohio Environmental Protection Agency, 1998b, 
2006d, 2006e). Results of these studies specifically describe 
the effects of agriculture and industry with regard to impaired 
aquatic habitat. 

The U.S. Environmental Protection Agency (2006a) pro-
vided summary data for the status of stream segments in 2002 
and 2004. The two datasets show that 10 out of 18 assessed 
stream segments were listed as impaired in 2002, whereas 
only 1 of 11 stream segments was listed as impaired in 2004. 
Although not all of the same stream segments were evaluated 
during these two studies, these data indicate that, overall, the 

fraction of sites that were impaired during this time period 
decreased and that water quality has been improving. 

The Ohio Environmental Protection Agency conducted 
integrated biological studies of fish and amphibians (Ohio 
Environmental Protection Agency 2002b, 2004, 2006b) and 
issued sport-fish advisories based on these findings (Ohio 
Environmental Protection Agency, 2006c). The results of these 
studies show that the tissue of some fish species in the basin 
contained elevated concentrations of polychlorinated biphe-
nyls (PCBs) and hexachlorobenzene, requiring advisories that 
recommend limited fish consumption by humans. 

As of 2009, 29 organisms (24 animals and 5 plants) were 
listed by the U.S. Fish and Wildlife Service (2009b) as threat-
ened or endangered species within Ohio. The only aquatic 
organisms on this list within the Tuscarawas River Basin were 
several species of mussels.

Effects of Land Use
Agriculture and mining are probably the most often cited 

land-use practices that have documented wide-spread effects 
on water quality in the basin (Ohio Department of Health and 
Ohio Water Pollution Control Board, 1968; Northeast Ohio 
Four County Regional Planning and Development Organi-
zation, 1985; Razem and Sedam, 1985; Sedam, 1991; and 
Sedam and Francy, 1993). Agriculture includes the clearing 
and preparation of land for growing crops; application of fer-
tilizers, pesticides, and manure; raising of farm animals; and 
delivery of medicines (including hormones and antibiotics) to 
these animals. Fertilizers contain nutrients such as nitrogen 
and phosphorous which commonly enter drainage ditches and 
groundwater and result in algal blooms in surface-water bod-
ies, such as those documented by Olive and Higgins (1981) 
and Hambrook and others (1999). Nutrients and pesticides 
are linked not only to agriculture, but also to residential areas 
where homeowners apply fertilizers and pesticides to their 
lawns and gardens. Elevated nutrients have been noted in 
water from Wayne County (Beck and others, undated a) and 
Coshocton County (Golden and others, undated a), and within 
the Sugar Creek Watershed (Parker and Webb, 2006). Prasad 
and others (2005) examined hydrologic and land characteris-
tics in the Sugar Creek Watershed in relation to nutrient loads 
and concluded that nitrate concentrations paralleled precipita-
tion patterns over time as a result of transport of land-applied 
fertilizers in stormwater, with high nitrate concentrations 
corresponding to high precipitation; however, only 35 percent 
of the nitrate load could be attributed to stormwater alone. 
The work also revealed correlations of nitrate, ammonia, and 
phosphate with geomorphologic characteristics, such as eleva-
tion and slope.

As with agriculture, much of the basin was (and con-
tinues to be) involved in coal mining. Prior to 1977 and the 
passage of the Surface Mining Control and Reclamation Act 
(Office of Surface Mining, 2009), there were no requirements 
to reclaim coal mines, and as a result, land was most often 
abandoned after the coal was removed. Through coal mining, 
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pyrite (a common iron sulfide mineral associated with coal) is 
exposed to the atmosphere and reacts with water and oxy-
gen. This process, known as pyrite oxidation, releases iron 
and sulfur into streams and groundwater. The iron and sulfur 
further react with water and oxygen to decrease pH, causing 
acid mine drainage. Regional studies of groundwater quality 
done by Prée (1962b), Engelke and Roth (1981), Majchszak 
(1984), Razem and Sedam (1985), Sedam (1991), Sedam 
and Francy (1993), and Breen and others (1995) indicate that 
most aquifers in the basin contain elevated concentrations of 
iron and manganese, due in part to the effects of coal mining. 
The legacy of coal mining also can be seen in many streams 
with low pH, excess sedimentation, and precipitation of iron 
hydroxides (also known as “yellow boy”) on stream beds, 
all of which often lead to degraded habitat for aquatic biota. 
Also, contamination from trace elements (such as arsenic) 
derived from coal and coal-combustion byproducts may cause 
water-quality concerns in some areas (Knapp, 1977; Khourey, 
1981; Matisoff and others, 1981; Matisoff and others, 1982; 
Haefner, 2002).

A secondary source of impaired water quality related to 
the mining of coal comes from coal combustion and gaseous 
emissions of sulfur, nitrogen, carbon, and mercury (Heit, 1985; 
Walk and Godfrey, 1990). The National Atmospheric Deposi-
tion Program (http://nadp.sws.uiuc.edu/) monitors atmospheric 
deposition throughout the United States, and although the 
quantity of atmospheric discharges has decreased since 1980 
(U.S. Environmental Protection Agency, 2008b), eastern Ohio 
remains one of the largest producers of gaseous emissions that 
affect not only the Tuscarawas River Basin, but much of the 
northeastern United States. 

As noted in the previous section on geology, substantial 
quantities of salt lie in thick beds thousands of feet below the 
surface in the basin. The briny solutions generated during salt 
mining are typically pumped into large ponds for evapora-
tion to remove the water. Historically, these ponds were often 
unlined, and the salt solution leaked into groundwater and 
surface water, causing chloride contamination in areas such 
as Barberton in Summit County. The effects of this contami-
nation have been observed great distances downstream over 
long periods (Ohio River Valley Water Sanitation Commis-
sion, 1951; Lamborn, 1952; Ohio Department of Health, 1958; 
Jones, 1961; Rau, 1972, 1974; Williams, 1973).

The other human activities related to land use in the 
Tuscarawas River Basin that have been documented to affect 
water quality include industry, transportation, wastewa-
ter facilities, domestic septic systems, and waste-disposal 
landfills. Major industrial activities in the basin include steel 
mills, petroleum refineries, and chemical plants. The presence 
of volatile organic compounds (VOCs) in water and sedi-
ments has been documented in Stark County (Stark County 
Health Department, 2005; Oelker and others, undated a), 
Summit County (Oelker and others, undated b), and Tus-
carawas County (Ohio Environmental Protection Agency, 
1995b, 1996a, 1998a), and VOCs in trace amounts are pres-
ent throughout the Tuscarawas River Basin (Richards and 

Wellrabenstein, 1995; Zbasnik, 1996). Pre-regulation indus-
trial liquid-waste disposal practices are described in Clifford 
(1975); however, these practices are currently regulated by 
the Ohio Environmental Protection Agency (http://www.epa.
state.oh.us/ddagw/uic.html). Other documented discharges 
are reported to, and recorded by, the Ohio Environmental 
Protection Agency and are available by contacting the Ohio 
Environmental Protection Agency Division of Emergency and 
Remedial Response.

The effects of transportation corridors and problems 
associated with gaseous emissions, leaking oil and gas, road 
salt, and road debris have not been specifically evaluated in 
the Tuscarawas River Basin, but similar settings throughout 
Ohio and the United states have experienced water-quality 
degradation related to these issues (see, for example, Mahler 
and others, 2005; Rogge and others, 1993). Because the Ohio 
Department of Transportation and county and local govern-
ments within the Tuscarawas River Basin apply road salt to 
minimize hazards associated with freezing roadways, local-
ized issues related to chloride contamination can occur (Ohio 
Environmental Protection Agency, 1999). For example, Kunze 
and Sroka (2004) document short-term road-salt contamina-
tion in groundwater along State Route 14 in Portage County 
(just north of the Tuscarawas River Basin).

Wastewater facilities in Ohio and the Tuscarawas River 
Basin are regulated with respect to the quantity and quality of 
their discharge of contaminants to the environment, but inad-
equate designs and combined use of stormwater systems for 
routing stormwater runoff may lead to substantial discharge 
of untreated wastewater to surface-water bodies. Further-
more, poorly designed domestic septic systems and poor soil 
drainage may cause local groundwater and surface-water 
contamination. Specific data regarding the number of house-
holds using septic systems were not available at the time of 
this publication; however, Akin (2006) estimated that over half 
of the Nimishillen Creek Watershed was unsewered in 2006. 
Richards and Wellrabenstein (1995) collected groundwater 
samples that had elevated concentrations of ammonia, sodium, 
barium, and strontium in alluvial deposits in Coshocton 
County, indicative of water softening and septic-tank effluent. 
Dumouchelle (2006) described contamination of groundwa-
ter by bacteria and elevated nitrate concentrations related to 
septic-system discharges in Wayne County, near Wooster.

Solid-waste disposal in sanitary and other types of 
landfills is regulated by the Ohio Environmental Protection 
Agency Division of Solid and Infectious Waste Management 
(http://www.epa.state.oh.us/dsiwm/). In 2009, the accepted 
method of landfill development is to construct a lined basin 
where waste is deposited and covered. In the past, however, 
liners were not required and unknown types and quantities of 
waste may have been placed and buried in landfills. Stud-
ies related to solid-waste disposal in the Tuscarawas River 
Basin have been done for the Industrial Excess Landfill near 
Uniontown (Bair and Norris, 1989; Jackson and others, 1989; 
Dumouchelle and Bair, 1994) and for the Hardy Road Landfill 
in Akron (Jackson and others, 1989).

http://nadp.sws.uiuc.edu/
http://www.epa.state.oh.us/ddagw/uic.html
http://www.epa.state.oh.us/ddagw/uic.html
http://www.epa.state.oh.us/dsiwm/
http://www.epa.state.oh.us/dsiwm/
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Through the movement of air or water, activities in one 
part of the basin may affect water quality in another part of 
the basin. For example, the aforementioned chloride contami-
nation from salt mining and other industrial activities in the 
upper part of the basin have been traced through the entire 
downstream extent of the Tuscarawas River from Barberton to 
Coshocton (Cummins and Sanderson, 1947; Ohio Department 
of Health, 1958; Rau 1972, 1974). To examine downstream 
movement of contaminants in the Tuscarawas River, Westfall 
and Webber (1977) added fluorescent dye to the Tuscarawas 
River downstream from Barberton and traced the dye 106 
miles to Coshocton. The leading edge of the dye reached 
Coshocton after about 119 hours and the peak concentration of 
the dye plume arrived in about 137 hours.

Total Maximum Daily Loads
The Ohio Environmental Protection Agency implemented 

the Total Maximum Daily Load (TMDL) program to address 
some of the water-quality issues in Ohio and the Tuscara-
was River Basin (http://www.epa.state.oh.us/dsw/tmdl/). The 
TMDL program “…is a written, quantitative assessment 
of water quality problems in a water body and contribut-
ing sources of pollution. It specifies the amount a pollutant 
needs to be reduced to meet water quality standards (WQS), 
allocates pollutant load reductions, and provides the basis for 
taking actions needed to restore a water body.” As of 2009, 
the Ohio Environmental Protection Agency has completed 
three TMDL projects within the Tuscarawas River Basin, 
two for the Sugar Creek Watershed and one for Nimishillen 
Creek. For Sugar Creek, the first focuses on aquatic life (Ohio 
Environmental Protection Agency, 2002d) and the second on 
recreational use of water related to bacteria (Ohio Environ-
mental Protection Agency, 2006d). For Nimishillen Creek, the 
TMDL focuses on sediment and bacteria (Ohio Environmental 
Protection Agency, 2009c). At the time of this publication, 
the TMDL report for the mainstem of the Tuscarawas River 
was published and available for comment in draft form (Ohio 
Environmental Protection Agency, 2009d. The preliminary 
findings from the data collected between 2003 and 2005 are 
that, overall, the condition of the watershed was fair to good 
with respect to goals associated with healthy warm-water habi-
tat. The lower section of the watershed displayed exceptional 
quality, whereas the upper portion of the watershed generally 
had lower water quality due to more intense land use. The 
Ohio Legislature established the Acid Mine Drainage Abate-
ment and Treatment (AMDAT) fund in 1995, which is similar 
to the TMDL program, to provide for the long-term restoration 
of watersheds biologically impaired by acid drainage derived 
from abandoned coal mines. Within the Tuscarawas River 
Basin, Huff Run is the first subbasin for which an AMDAT 
plan was established (Gannett Fleming, 2000).

Hydrologic Data Networks
As of 2009, there were many different types of hydro-

logic data collected within the Tuscarawas River Basin from 
many different sources. The hydrologic data assessment 
presented here focuses on long-term and regularly scheduled 
data-collection activities; however, there also are many other 
data-collection efforts that were done on an as-needed basis 
or were done independent of a recurring program. For the 
purposes of this report, hydrologic data include measurements 
associated with water levels, chemical quality, and biologic 
characteristics related to meteorology, surface water, and 
groundwater. This section of the report focuses on data-collec-
tion networks that were recently active or active during 2009 
that provide insight concerning the goals and priorities of the 
data-collecting organizations operating in the basin.

The primary entities responsible for hydrologic data col-
lection throughout the basin (listed in alphabetical order) are 
the Muskingum Watershed Conservancy District, the National 
Weather Service, the Ohio Department of Health, the Ohio 
Department of Natural Resources, the Ohio Environmental 
Protection Agency, the U.S. Army Corps of Engineers, and the 
U.S. Geological Survey. A substantial amount of hydrologic 
information also is collected by county agencies, watershed 
groups, and local groups, such as the Northeast Ohio Four 
County Regional Planning and Development Organization, 
which focuses on Portage, Stark, Summit, and Wayne Coun-
ties. Hydrologic data also are collected by private consulting 
firms and academia; however, these data are generally unavail-
able to the public or may be difficult to obtain or integrate 
because they are either the private property of clients or they 
are in printed form only and are not generally included in 
regional or state-wide databases. 

For this report, a library of datasets that contain spatial 
and attribute information (such as biology, data-collection sta-
tions, geology, hydrology, land use, population, and topogra-
phy) related to the Tuscarawas River Basin was created in a 
geographic information system (GIS) geodatabase format. A 
geodatabase contains spatial information and supports mul-
tiple data formats including vector, raster (grid- or cell-based), 
and tabular information, as well as images and metadata. The 
database is available upon request from the USGS Ohio Water 
Science Center. 

Meteorology

 Meteorological stations within the Tuscarawas River 
Basin are shown in figure 12. The only three National Weather 
Service stations (shown as black squares in figure 12) in or 
near the basin are at the Akron-Canton Airport, the Wayne 
County Airport near Wooster, and Harry Clever Field in New 
Philadelphia; however, several additional National Weather 
Service stations are located near the basin boundaries and 
are not shown in figure 12, including those at Wheeling 
(West Virginia), Youngstown, Mansfield, Zanesville, and 

http://www.epa.state.oh.us/dsw/tmdl/
http://www.epa.state.oh.us/dsw/wqs/index.html
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Figure 12.  Locations of meteorological stations in and around the Tuscarawas River Basin, Ohio. 
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Lancaster (Ohio). The National Atmospheric Deposition 
Program (http://nadp.sws.uiuc.edu/), which is operated by 
the Ohio Agricultural Experiment Station, U.S. Geological 
Survey, U.S. Department of Agriculture, and numerous other 
government and private entities, collect and analyze precipi-
tation samples for hydrogen (acidity as pH), sulfate, nitrate, 
ammonium, chloride, calcium, magnesium, potassium, and 
sodium. Although there are no National Atmospheric Deposi-
tion Program stations in the Tuscarawas River Basin, there 
are six stations within Ohio: the closest two are in Wooster 
(Wayne County) and Caldwell (Noble County, not shown on 
figure 12).

In response to a catastrophic flood in eastern Ohio in 
1990, the Ohio Emergency Management Agency developed 
a flood-warning system that provided for the establishment 
of a monitoring system to measure rain and snowfall in each 
of Ohio’s 88 counties as part of the State of Ohio Rain/Snow 
Monitoring System (STORMS). The original recommenda-
tions were for the State to install and operate at least five auto-
mated rain gages in each county. As of 2009, there were 288 
rain gages in Ohio listed on the Wilmington National Weather 
Service Web site (http://www.afws.net/states/oh/oh.htm), 49 
of which are within 10 of the 13 counties that encompass the 
Tuscarawas River Basin. There were no stations in Carroll, 
Portage, or Wayne Counties. The Web site notes that installa-
tion of additional stations is prioritized by river basin, topo-
graphic characteristics, and the population at risk.

The Weather Underground (on http://www.wunderground.
com/) is a commercial, Internet-based weather reporting sys-
tem that incorporates many different sources of weather data 
from throughout the world. This system allows individuals to 
establish their own weather station and provide weather data 
through the Internet interface. Typical data from this network 

include temperature, dew point, humidity, wind speed and 
direction, barometric pressure, and precipitation amount. In 
and around the Tuscarawas River Basin, approximately 50 
weather stations are included in this network and are shown 
as “miscellaneous weather stations” on figure 12 (some of 
these sites may be the same as sites in the STORMS network 
described above).

Surface Water

The surface-water data-collection efforts described in this 
section are limited to stage (stream and reservoir levels) and 
streamflow, flood-related data, and data collected to operate 
dams. The primary agencies and groups that collect surface-
water data are the Ohio Department of Natural Resources, the 
Ohio Environmental Protection Agency, the U.S. Army Corps 
of Engineers, and the U.S. Geological Survey. Additional data-
collection activities related to water quality and biological 
assessments at surface-water sites are described in the “Water 
Quality” section. Watershed groups within the Tuscarawas 
River Basin also collect a substantial amount of surface-water 
related data. As of 2009, there were 11 watershed groups in the 
basin (table 6). Links to each of these watershed groups along 
with contacts and profile information are available on the Ohio 
State University Extension Web page (http://ohiowatersheds.
osu.edu/groups/wgp_all.php). An example of some of the data 
collected and work done by watershed groups is provided 
by Moore (2006) for Sugar Creek. The report describes a 
community-based approach to management of water resources 
and focuses on work at the local level. Additional reports by 
watershed groups related to watershed planning are listed in 
appendix 1 under “Hydrology/Watershed Planning.”

Table 6.  Watershed groups in the Tuscarawas River Basin, Ohio.

[Modified from http://ohiowatersheds.osu.edu/groups/wgp_all.php]

Watershed group Watershed

East Branch Sugar Creek Watershed Sugar Creek.

Enviro Outreach Organization Tuscarawas River.

Huff Run Watershed Restoration Partnership, Incorporated Huff Run.

Little Beaver Creek Land Foundation Little Beaver Creek.

Nimishillen Creek Watershed Partners Nimishillen Creek.

North Fork Task Force Sugar Creek.

Portage Lakes Advisory Council Portage Lakes.

Tuscarawas River Buried Valley Watershed Council Tuscarawas River.

Upper Sugar Creek Farmer Partners Upper Sugar Creek.

Upper Tuscarawas River Technical Advisory Committee Upper Tuscarawas River.

Upper Wolf Creek Technical Advisory Committee Upper Wolf Creek.

http://nadp.sws.uiuc.edu/
http://www.afws.net/states/oh/oh.htm
http://www.wunderground.com
http://www.wunderground.com
http://ohiowatersheds.osu.edu/groups/wgp_all.php
http://ohiowatersheds.osu.edu/groups/wgp_all.php
http://ohiowatersheds.osu.edu/groups/wgp_all.php
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Stage and Streamflow
Within the Tuscarawas River Basin, stage and stream-

flow data have been obtained from a network of streamgages 
operated and maintained by the U.S. Geological Survey, in 
cooperation with the U.S. Army Corps of Engineers, the Ohio 
Department of Natural Resources, and the Ohio Environmen-
tal Protection Agency (fig. 13). As of 2009, the U.S. Geo-
logical Survey National Water Information System database 
(http://waterdata.usgs.gov/oh/nwis/) contained records for 699 
surface-water sites in the Tuscarawas River Basin; however, 
many of these sites have been discontinued or represent a 
location where only a single measurement or a few measure-
ments were made. Within the basin, there were 17 real-time 
streamgages in 2009; 9 of these gages report stage and 
discharge data, and the remaining 8 gages report stage only. 
The Ohio River Valley Water Sanitation Commission collects 
data within the Muskingum River Basin but focuses on the 
main tributaries to the Ohio River and not on upstream sources 
(such as the Tuscarawas River). 

The stages of lakes and reservoirs are recorded by the 
U.S. Army Corps of Engineers (2008) Huntington District and 
include current pool-height and elevation, outflow tempera-
ture, and precipitation in the last 24 hours. As of 2009, there 
were eight sites providing these data at Atwood, Beach City, 
Bolivar, Clendening, Dover, Leesville, Piedmont, and Tappan 
Lakes (fig. 13). Although the U.S. Geological Survey also col-
lects stage data for lakes and reservoirs, there are only seven 
such sites in Ohio, and none of these are within the Tuscara-
was River Basin.

Floods
The National Oceanic and Atmospheric Administration’s 

Advanced Hydrologic Prediction Services provides sum-
maries of streamflow data (obtained in cooperation with the 
U.S. Geological Survey), precipitation data, and predictions 
of flood stages in rivers (National Oceanic and Atmospheric 
Administration, 2008). The Web site displays the pre-
dicted magnitude and uncertainty of occurrence of floods or 
droughts. For stream reaches where no gage data are available, 
Koltun (2003) and Koltun and others (2006) provide multiple 
regression equations that can be used to estimate flood peak 
discharges of rural unregulated streams. Koltun and Sherwood 
(1998) developed a method to evaluate the joint probability 
of flooding between/on/ two streams (for example, a tributary 
and receiving stream) or stream segments and included Sandy 
Creek, Middle Branch Nimishillen Creek, Nimishillen Creek, 
and Home Creek in their analyses.

Dams
Large amounts of data are collected on and adjacent 

to dams throughout the basin. The eight dams operated by 
the U.S. Army Corps of Engineers are the largest dams in 

the basin (fig. 13). In Ohio, dams are classified by size and 
whether or not failure may result in loss of human life (Ohio 
Department of Natural Resources, 2008a). For example, Class 
I dams have a total storage volume greater than 5,000 acre-
feet or a height greater than 60 feet. Sudden failure of a Class 
I dam probably would result in loss of human life and (or) 
structural collapse of at least one residence or one commercial 
or industrial business. In the Tuscarawas River Basin, there 
are more than 2,700 dams, 187 of which are Class I dams. The 
Ohio Department of Natural Resources, Division of Water 
Dam Safety, and the U.S. Army Corps of Engineers are the 
two primary entities in Ohio responsible for dam inspections, 
maintenance, and repair.

The U.S. Army Corps of Engineers Muskingum River 
Basin Systems Operation Study (U.S. Army Corps of Engi-
neers, 2006a) identified several problems related to the dams 
and reservoirs in the Muskingum River Basin, including “…
aging infrastructure (hydrologic deficiency, seepage and foun-
dation problems, outlet tunnel deterioration, gate deterioration, 
spillway erosion, relief wells, and related facilities), reservoirs/
lakes (reservoir operations, sedimentation and flood storage 
loss, lake quality, and conflicts among project purposes), and 
watershed problems (ecosystem degradation, acid mine drain-
age, residual flood damages, flood plain development, water 
and sewer infrastructure needs).”

Groundwater

Groundwater data-collection sites include observa-
tion wells, domestic wells, and production wells. The first 
groundwater-level network in Ohio was started for the Ohio 
Water Supply Board in the early 1940s (Harker, 1943b); how-
ever, earlier water-level data from non-routine measurements 
also are available, including data from the Ohio Department 
of Natural Resources, which began recording water levels 
in 1938.

Water Levels
As of 2009, water levels were recorded on a regular 

basis throughout the State by the Ohio Department of Natu-
ral Resources Division of Water, in cooperation with the 
U.S. Geological Survey. Hourly water-level data are reported 
on http://www.dnr.state.oh.us/water/waterobs/obs_well_map.
asp, and the U.S. Geological Survey reports most of the 
same data on http://waterdata.usgs.gov/oh/nwis/gw. Within 
the Tuscarawas River Basin, 27 wells were instrumented to 
record daily maximum depths to water (fig. 14). These data 
were recorded with data loggers and were downloaded and 
transferred to the Ohio Department of Natural Resources and 
the U.S. Geological Survey databases on an annual basis. 
Two additional sites outside of the basin (PO-124 in Portage 
County and WN-8 in Wayne County) provided real-time data 
transmitted through satellite telemetry (http://waterdata.usgs.
gov/oh/nwis/current/?type=gw). In addition to water levels, 

http://waterdata.usgs.gov/oh/nwis/
http://www.dnr.state.oh.us/water/waterobs/obs_well_map
http://waterdata.usgs.gov/oh/nwis/gw
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Figure 13.  Locations of surface-water data-collection sites in and around the Tuscarawas River Basin, Ohio. 
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Figure 14.  Locations of groundwater data-collection sites in and around the Tuscarawas River Basin, Ohio.
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both the Ohio Department of Natural Resources and U.S. Geo-
logical Survey Web sites provide well characteristics (includ-
ing well depth, aquifer, casing diameter, screen interval) and 
long-term hydrographs of water levels. 

Driller’s Well Logs
The Ohio Department of Natural Resources Division of 

Water maintains a database of driller’s well logs that were 
completed at the time of well installation (http://www.dnr.
state.oh.us/water/maptechs/wellogs/appNew/Default.aspx). 
The Ohio Revised Code (ORC) Section 1521.05 (A) requires 
that these logs be submitted at the completion of every well 
drilled in the State. The logs contain well-construction data, 
aquifer characteristics including depth, thickness, and specific 
capacity (a measure of water-level drawdown in response to 
withdrawals), and static water levels obtained at the time of 
drilling. As of 2009, this database contained approximately 
781,600 well logs (W. Jones, Ohio Department of Natural 
Resources, written commun., 2009). The well-log database 
is extremely valuable to those interested in locating wells by 
address or latitude and longitude and for obtaining information 
regarding installation of a new well or aquifer characteristics 
in nearby areas. The density of these data points in the Tus-
carawas River Basin shown in figure 14 reveals the regional 
wide-spread use of this source of water.

Water-Level Map Generated as Part of this Study
To evaluate groundwater-flow directions and the exist-

ing wells in the basin using drillers’ well logs on file with the 
Ohio Department of Natural Resources, the Ohio Department 
of Natural Resources Division of Water generated contours 
of water levels in the basin. The contour lines were drawn by 
synthesizing water levels from several thousand drillers’ well 
logs for bedrock and sand and gravel aquifers throughout the 
basin; the logs were created over a 30-year period (the loca-
tions of many of these wells are shown in figure 14 as small 
gray dots). The process employed to create these contours fol-
lows: First, the elevations of the water levels in the well logs 
were plotted on 1:24,000 scale, 7.5-minute topographic maps. 
These data were contoured to create the water-level map. The 
water-level contours were then refined in the consideration of 
the topographic contours and locations and elevations of the 
surface-water bodies. The contours were then digitized into a 
GIS, coded with appropriate contour values, and aligned with 
contours on adjoining 7.5 minute maps.

As presented in plate 1, the water-level map incorporates 
water-level data from many different aquifers and from wells 
of varied construction. Therefore, no inferences can be made 
concerning water levels in specific aquifers or whether flow 
occurs between aquifers. Plate 1 is drawn at an approximate 
scale of 1:195,000 so that the entire basin can be shown on 
one plate. At this scale, the overall configuration of the water-
level surface likely has not changed substantially during the 

past 20 or 30 years; thus, the actual date of water-level mea-
surement was not considered to affect the resulting contours. 
A relatively large contour interval of 50 ft was used in the 
original contouring; however, the final map on plate 1 uses 
contour intervals ranging from 100 to 150 ft to permit plotting 
of the water-level surface within the entire basin.

Although it is generalized, the water-level map shows 
several important characteristics of groundwater levels within 
the basin.

1.	 Groundwater flow is generally from the upland 
bedrock areas down into the sand- and gravel-filled 
valleys. (General flow directions can be inferred by 
drawing flow lines perpendicular to contours any-
where on the map.)

2.	 The water-level surface mimics topography and gen-
erally follows surface-water flow directions. As noted 
above, topographic contours were used to refine (but 
not define) the contouring of the water-level eleva-
tions, so this characteristic may be an artifact of the 
manner in which the contours were drawn in some 
areas.

3.	 Several areas (shaded in gray) indicate where 
data were too sparse to develop a water-level sur-
face. These may be areas in which to focus future 
data collection.

Water Quality

Water-quality data are available for streams, reservoirs, 
lakes, springs, and wells within the Tuscarawas River Basin. 
The primary public agencies that collect these data are the 
Ohio Environmental Protection Agency, U.S. Army Corps of 
Engineers, and the U.S. Geological Survey. The Ohio Envi-
ronmental Protection Agency and the U.S. Army Corps of 
Engineers are the only agencies that collect samples within the 
basin at regular intervals. 

Surface Water
The Ohio Environmental Protection Agency operates 

a 5-year rotating schedule for collection of biological and 
water-quality data for streams (fig. 15) and is further described 
on http://www.epa.state.oh.us/dsw/bioassess/ohstrat.html. 
Each year, the Ohio Environmental Protection Agency obtains 
surface-water data from 300 to 400 sampling sites in 10 to 
15 watersheds. Aquatic biological, chemical, and physical 
monitoring and assessment techniques are used in surveys to 
produce an Invertebrate Community Index (ICI), an Index of 
Biotic Integrity (IBI), a Qualitative Habitat Evaluation Index 
(QHEI), and a modified Index of Well-Being (IWB), where 
applicable. The mainstem of the Tuscarawas River and almost 
all of its major tributaries have been sampled by the Ohio 
Environmental Protection Agency at one time or another. In 
2007, the Ohio Environmental Protection Agency released a 
graphical summary of these surveys of water quality (Ohio 

http://www.epa.state.oh.us/dsw/bioassess/ohstrat.html
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Figure 15.  Locations of water-quality data-collection sites in and around the Tuscarawas River Basin, Ohio. 
(Sites may overlap.)
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Environmental Protection Agency, 2007), which shows that 
many headwater streams across the basin have low scores and 
fail their aquatic-life use goal. In 2008, the Ohio Environmen-
tal Protection Agency stated that 86 percent of the mainstem 
of the Tuscarawas River from Chippewa Creek to the mouth 
in Coshocton was in full attainment, and the remaining 14 per-
cent was in partial attainment, of aquatic life use goals (Ohio 
Environmental Protection Agency, 2009a).

The U.S. Army Corps of Engineers Huntington (West 
Virginia) District collects data on basic water-quality indica-
tors for selected lakes and reservoirs (http://www.lrh-wc.usace.
army.mil/wq/lkcond.html). As of 2009, water-quality monitors 
were operating at Atwood, Leesville, Tappan, Clendening, 
and Piedmont Lakes and measuring temperature, dissolved 
oxygen, pH, and conductivity on an hourly basis. These data 
are presented on the Web site.

Two water-quality monitors have been operated by 
the U.S. Geological Survey (in cooperation with the Ohio 
Department of Natural Resources) within the Tuscarawas 
River Basin. From 1968 to 1991, a water-quality monitor was 
maintained at the Tuscarawas River at Navarre (U.S. Geologi-
cal Survey site number 03117100); dissolved oxygen, pH, 
temperature, and specific conductance were monitored on an 
hourly basis and reported at http://waterdata.usgs.gov/nwis/
nwisman/?site_no=03117100&agency_cd=USGS. From 1999 
to 2006, the U.S. Geological Survey maintained a water-
quality monitor at Huff Run at Mineral City (U.S. Geologi-
cal Survey site number 03121850); temperature and specific 
conductance were monitored on an hourly basis and reported 
at http://waterdata.usgs.gov/nwis/uv?03121850. In early 2009, 
this site was re-established and represents the only operational 
water-quality monitor on a stream in the basin (fig. 15).

The U.S. Geological Survey and several other organiza-
tions, including watershed groups listed in table 6, periodically 
collect grab samples at sites in the basin. Among academic 
institutions, only the National Center for Water Quality 
Research at Heidelberg College collects water-quality data on 
a regular basis that are widely distributed and readily avail-
able (see http://www.heidelberg.edu/wql). The nearest site is 
outside the basin on the Muskingum River at McConnelsville, 
about 60 mi downstream from the confluence of the Tuscara-
was and Walhonding Rivers.

Groundwater
Sites where groundwater-quality information was 

obtained by the Ohio Environmental Protection Agency as 
part of their Ambient Ground Water Monitoring Network 
included 41 production wells in the counties that encompass 
the Tuscarawas River Basin (Ohio Environmental Protection 
Agency, 2006a). Nineteen of these sites were active in 2009. 
Untreated (raw) water was analyzed for major elements, trace 
elements, nutrients, and about 60 VOCs every 6 or 18 months. 
Samples from some sites also were analyzed for semi-volatile 
organic compounds and pesticides. These data are available 

on the Ohio Environmental Protection Agency’s Web site 
(http://www.epa.state.oh.us/ddagw/pdu/ambient.html).

Sampling Done as Part of this Study
As part of the current study, water samples from seven 

wells and two surface-water sites (table 7; fig. 15) were ana-
lyzed for a wide variety of constituents and several age-dating 
compounds to document water quality within representative 
land-use areas of the basin. The overall goals of the sampling 
were first to examine the range of concentrations that could 
be observed in a variety of land use settings where water may 
or may not be used for water supply, and second to examine 
the effectiveness of age-dating compounds—compounds 
that define the elapsed time since water entered the ground-
water system—in understanding the age of water in shallow 
groundwater systems in the basin. With the attainment of these 
two goals, decisionmakers will have the information needed 
to evaluate the susceptibility and sustainability of the water 
resources of the basin in the future.

All water samples were collected during July and August 
of 2006 using standardized sampling techniques described in 
U.S. Geological Survey (1997–present) and Francy and others 
(1998). A detailed quality-assurance/quality-control plan was 
developed specifically for this sampling effort and includes 
details on sampling procedures, sample handling, and all 
water-quality analyses (the plan is available by request from 
the authors or contact listed in the front of this publication). 
Each site was sampled once, and one blank sample was col-
lected in the field for quality-assurance purposes. Except for 
N, N-diethyl-meta-toluamide (an insecticide used as a mos-
quito repellent commonly known as DEET), all other constitu-
ents analyzed in the blank water sample were below detection 
limits (this and other DEET detections are further described 
below). Water-quality data collected as part of this effort are 
presented in appendix 2 and are summarized in several tables 
in subsequent sections.

The seven wells were chosen by examining dominant 
land use(s) within a 1-mi radius of the well and with regard to 
the primary aquifer(s) tapped by the wells and the hydrologic 
setting within the basin (table 7). For this study, dominant land 
uses were defined as those that accounted for more than 30 
percent of the total land-use area, as adapted from protocols 
established by the U.S. Geological Survey National Water 
Quality Assessment Central Processing Group land-use land-
cover mapping efforts (http://water.wr.usgs.gov/cpg/). Drill-
ers’ well logs provided by the Ohio Department of Natural 
Resources show that these wells are screened in unconfined, 
semi-confined, or fully confined aquifers or are open to 
sandstone bedrock or unconsolidated sands and gravels in 
both upland (recharge) and lowland (discharge) hydrogeologic 
settings. The wells ranged in depth from 66 ft to 230 ft below 
land surface. In wells where water-level measurements could 
be made, all water levels were within 60 ft of the land surface 
(table 7; appendix 2). Of the two surface-water sites, one is 
located near the headwaters (Tuscarawas River at Massillon, 

http://www.lrh-wc.usace.army.mil/wq/lkcond.html
http://www.lrh-wc.usace.army.mil/wq/lkcond.html
http://waterdata.usgs.gov/nwis/nwisman/?site_no=03117100&agency_cd=USGS
http://waterdata.usgs.gov/nwis/nwisman/?site_no=03117100&agency_cd=USGS
http://waterdata.usgs.gov/nwis/uv?03121850
http://www.epa.state.oh.us/ddagw/pdu/ambient.html
http://water.wr.usgs.gov/cpg/
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denoted as TR@MA in subsequent tables and figures) and one 
is close to the mouth of the watershed (Tuscarawas River at 
Newcomerstown, denoted as TR@NCT).

Land use surrounding sampling sites was determined 
differently for groundwater sites and surface-water sites. Land 
use near groundwater sites was defined within a 1-mi circular 
buffer area surrounding each well and was examined for land 
uses in 1992 and during water sampling in 2006. Land use 
in 1992 was calculated for the 1-mile buffer areas using the 
National Land Cover Dataset (Multi-Resolution Land Charac-
teristics Consortium, 2008). Land use during water sampling 
in 2006 was characterized by U.S. Geological Survey staff 
in the field, transcribed to hard-copy aerial photographs, then 
digitized and coded with land-use definitions. The percentages 
of each land use within the buffered areas were then calcu-
lated on the basis of these digitized polygons. Compilation of 
data on land use surrounding surface-water sites followed the 
methods described by Adolphson and others (2002), which 
include land-use characterization of the entire upstream drain-
age area. The drainage basin for each surface-water site was 
delineated using the U.S. Geological Survey product known as 
Ohio StreamStats (Koltun and others, 2006) that is based on 
the National Hydrography Dataset and a 10-m digital eleva-
tion model. 

The results of the land-use calculations for buffer areas 
surrounding wells and the drainage areas for stream sites are 
given in tables 8 and 9. These results indicate that, over the 
14-year period between 1992 and 2006, land uses surround-
ing the wells and within the surface-water site drainage basins 

were dominated by agricultural and forested land uses. Similar 
to the overall land-use distributions in the basin, the dominant 
land uses remain agricultural and forested, but increases in 
residential and industrial land uses within these areas also 
were noted.

Field Parameters, Major and Trace Elements, 
and Nutrients

During sampling, oxidation-reduction potential, turbid-
ity, dissolved oxygen, pH, specific conductance, air and water 
temperature, alkalinity (along with bicarbonate and carbonate), 
acidity, sulfide, ferrous iron (Fe2+), and total iron and were 
measured in the field at all sites (appendix 2). Values of most 
of these characteristics were similar to those expected in water 
samples from eastern Ohio and those reported in other water-
quality reports cited above. For example, specific conductance, 
which is a general indicator of dissolved constituents, ranged 
from 381 to 2,680 mS/cm. Several samples had residue on 
evaporation concentrations (synonymous with total dissolved 
solids) greater than 500 mg/L, including samples from ground-
water sites TU-184, ST-27A, TU-113 and both samples from 
the Tuscarawas River. The highest specific conductance and 
residue on evaporation was measured in a groundwater sample 
from well TU-113, which is located adjacent to a reclaimed 
coal mine. The water from TU-113 also had the lowest pH 
of 5.5. These and many other water-quality characteristics 
described later in this section are characteristic of acid mine 
drainage in eastern Ohio. The two surface-water samples and 
groundwater collected from well ST-27A also had relatively 

Table 8.  Land use surrounding sampling sites in the Tuscarawas River Basin, Ohio.

[Shaded values highlight land uses that account for 30 percent or greater of the land within a 1-mile radius (for groundwater sites) or upstream drainage areas 
(surface-water sites); TR@MA, Tuscarawas River at Massillon; TR@NCT, Tuscarawas River at Newcomerstown]

Land use (percent)

Site
Agriculture Forest Industrial Mining Residential

1992 2006 1992 2006 1992 2006 1992 2006 1992 2006

Groundwater sites

B-3 61.9 38.1 33.0 33.3 1.7 0.0 0.0 0.0 3.3 28.6

HR-44 23.6 26.3 76.3 57.9 .0 .0 .0 .0 .1 15.8

MD-26 70.6 28.6 25.3 14.3 .1 14.3 .0 .0 3.9 42.9

ST-27A 22.6 .0 21.9 15.0 43.7 85.0 .0 .0 11.7 .0

TU-113 49.8 .0 46.9 45.0 .0 .0 2.3 55.0 .9 .0

TU-184 30.6 4.8 4.5 19.0 6.6 23.8 .0 .0 58.3 52.4

TU-185 45.0 45.0 28.2 30.0 .2 .0 .0 .0 26.6 25.0

Surface-water sites

TR@MA 55.8 40.3 34.6 37.7 2.5 .6 .3 .0 6.8 21.4

TR@NCT 52.0 38.6 42.9 46.7 1.4 .3 .4 .0 3.3 14.3
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elevated specific conductance. Well ST-27A is located in an 
industrial and residential area west of North Canton.

Major- and trace-element chemistry in groundwater 
was typical that in of other samples collected in the basin, 
as reported by Sedam and Francy (1993), and similar to the 
values in the Ohio Environmental Protection Agency’s Ambi-
ent Ground Water Network (Ohio Environmental Protection 
Agency, 2006a). In general, water chemistry was characterized 
by calcium-bicarbonate type waters as shown on the Piper 
diagram in figure 16. The sample from well HR-44 (sur-
rounded by forested land use) had the lowest concentrations of 
many dissolved constituents and the highest concentration of 
dissolved oxygen of any of the groundwater samples, although 
dissolved oxygen concentration was still only 1.4 mg/L. Well 
TU-113 (adjacent to a reclaimed coal mine) had the highest 
concentrations of hardness, calcium, magnesium, potassium, 
sulfate, iron, manganese, nickel, and strontium and is classi-
fied as calcium-sulfate-bicarbonate type water (note how this 
sample plots in a different part of the Piper diagram on figure 
16). Well B-3 had the highest concentrations of sodium and 
the lowest concentrations of hardness, indicating that this 
water sample had been affected by water softening.

As described previously, the northern reaches of the 
Tuscarawas River experienced contamination from chloride 
derived from salt mining near Barberton. Groundwater from 

well ST-27A (in the northern part of the basin, west of North 
Canton) had a chloride concentration 175 mg/L, and surface-
water samples analyzed as part of this study had chloride con-
centrations of 206 mg/L and 119 mg/L at the Tuscarawas River 
at Massillon and Newcomerstown, respectively (appendix 2). 
These three sites have chloride concentrations one to two 
orders of magnitude greater than the remaining six groundwa-
ter sites. A more detailed analysis of water-quality constituents 
would be necessary to confirm that salt mining was indeed the 
source of this elevated chloride concentration.

Concentrations of nutrients (including forms of nitrogen 
as nitrate, nitrite, and ammonia, and phosphorus as orthophos-
phate) were less than 2 mg/L at all sites and were generally 
greater in surface-water samples than in groundwater samples 
(except for ammonia). Concentrations of nitrite plus nitrate 
were greater than 1.0 mg/L in both surface-water samples. 
Nutrients are derived from fertilizers and human and animal 
wastes, and elevated concentrations are typically associ-
ated with wastewater or waters near agricultural facilities. 
Groundwater from well TU-185 (with a 1-mile buffer area 
dominated by agricultural land use) had the highest nitrate 
concentration of 1.8 mg/L, whereas well ST-27A (dominated 
by industrial land use) had the highest ammonia concentration 
of 0.73 mg/L. Ammonia also can be derived from wastewater 
discharges that include septic systems and industrial effluents.

Table 9.  Land-use changes between 1992 and 2006 for sampling sites in the 
Tuscarawas River Basin, Ohio.

[Ag, agricultural; For, forest; Ind, industrial; Min, mining; Res; residential; TR@MA, Tuscara-
was River at Massillon; TR@NCT, Tuscarawas River at Newcomerstown]

Dominant land use1
Land-use changes of more than 

10 percent between 1992 and 2006Site 1992 2006

Groundwater sites

B-3 Ag/For Ag/For Loss in Ag; gain in Res.

HR-44 For For Loss in For; gain in Res.

MD-26 Ag Res Loss in Ag/For; gain in Res/Ind.

ST-27A Ind Ind Loss in Ag/Res; gain in Ind.

TU-113 Ag/For Min/For Loss in Ag; gain in Min.

TU-184 Res/Ag Res Loss in Ag; gain in Ind/For.

TU-185 Ag Ag/For No change.

Surface-water sites

TR@MA Ag/For Ag/For Loss in Ag; gain in Res.

TR@NCT Ag/For For/Ag Loss in Ag; gain in Res.
1 Dominant land use(s) were defined as those that were 30 percent or more of the total 

land-use area within a buffer area surrounding groundwater sites or within the drainage area 
upstream from surface-water sites in 2006 (table 8). Land uses are listed in order of decreasing 
percentages.
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Figure 16.   Piper diagram of water quality in samples collected in the Tuscarawas 
River Basin, Ohio, 2006. (TR@MA, Tuscarawas River at Massillon; TR@NCT, 
Tuscarawas River at Newcomerstown) 
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Figure 16.  Piper diagram of water quality in samples collected in the Tuscarawas River 
Basin, Ohio, 2006. (TR@MA, Tuscarawas River at Massillon; TR@NCT, Tuscarawas River 
at Newcomerstown)
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Pesticides
Analysis of 63 pesticides in groundwater and sur-

face water revealed that 13 different pesticides or pesticide 
degradates were detected in surface-water samples (tables 
10 and 11). Groundwater samples did not contain any detect-
able concentrations of these compounds. As noted by Gilliom 
and others (2006), this is not an uncommon result because 
streams are more vulnerable to pesticide contamination than 
groundwater in most hydrologic settings. Of the 13 pesticides 
detected, 3, 4-dichloroaniline, acetochlor, atrazine, metola-
chlor, prometon, simazine, and terbuthylazine were detected 
at concentrations greater than the reporting levels (reporting 
levels are described in Childress and others (1999), Bonn 
(2008), and U.S. Geological Survey (2008b) and are defined in 
appendix 3). All of these compounds are herbicides designed 
to deter growth of grasses and other unwanted weeds in corn 
and soybean fields. Other pesticides, including 2-chloro-4-
isopropylamino-6-amino-s-triazine (CIAT; a degradate of the 
herbicide atrazine), carbaryl (an insecticide also known by the 
trade name Sevin), chlorpyrifos (an insecticide also known by 
the trade names Dursban and Lorsban), fipronil (an insecticide 
used in products such as Frontline, Regent, and Termidor), and 
two fipronil degradates (desulfinyl fipronil and fipronil sulfide) 
were detected at estimated concentrations at or near the report-
ing levels. 

Bacteria
Water samples were analyzed for the presence of bacte-

ria to determine whether groundwater and surface water had 
evidence of contributions from human and animal wastes. 
Total coliforms include several organisms that are found in 
the human intestine, soils, vegetation, and industrial wastes 
(Francy and others, 2000). When present, they indicate a pos-
sibility, but not a certainty, that disease-causing organisms also 
may be present in the water. These data can be used as a rough 
measure of source-water quality and as a screen for fecal 
contamination. E. coli is a member of the total coliform group 
and its presence is direct evidence of fecal contamination 
from warm-blooded animals. Total coliform (bacteria) were 
detected or estimated in water from four wells, B-3, HR-44, 
TU-113, and TU-185, and from both surface-water sites. Well 
B-3 had an estimated 5 colonies per 100 mL of E. coli, and 
both of the surface-water sites had concentrations greater than 
the detection limit (1 colony per 100 mL of water sample), 
indicating contamination by urban wastewater discharges 
(described in more detail below).

Volatile Organic Compounds
VOCs include solvents and other compounds typically 

associated with urban land uses, septic systems, hazardous-
waste disposal sites, and gasoline storage and release sites 
(Zogorski and others, 2006). Of the 61 compounds analyzed in 
the current study, three were present at concentrations greater 
than the minimum reporting level, and one additional VOC 

was estimated at slightly less than the minimum reporting 
level, (table 12) in the surface-water sample from the Tuscara-
was River at Massillon. The other surface-water sample and 
none of the groundwater samples contained detectable concen-
trations of VOCs. The three compounds were cis-1, 2-dichlo-
roethylene (a solvent), trichlorofluoromethane (also known as 
CFC-11, used as a refrigerant and in spray-can propellants), 
and trichloromethane (commonly called chloroform, which is 
produced during the chlorination of drinking and wastewater).  
Chloroform is one of the most frequently reported VOCs in 
groundwaters and surface waters in the United States (Ivah-
nenko and Barbash, 2004; Zogorski and others, 2006). The 
concentration of another CFC compound (dichlorodifluoro-
methane, CFC-12) was estimated to be less than the minimum 
reporting level. Although VOCs have been documented in 
water adjacent to many urban areas throughout the basin (see, 
for example Ohio Environmental Protection Agency 1994c, 
1998b, 2003, 2006a), no other VOCs were detected in ground-
waters or surface waters at or above the minimum reporting 
levels listed in table 12.

Wastewater Compounds
Wastewater compounds include organic compounds 

typically found in urban wastewater discharges, such as 
fragrances, solvents, insect repellents, detergents, disinfec-
tants, plasticizers, and flame retardants. Overall, 10 different 
compounds were detected in five groundwater samples (tables 
13 and 14). Surface-water samples did not contain concentra-
tions above the reporting levels of any wastewater compounds. 
A sample from well B-3 in Belmont County had estimated 
concentrations of 2-methylnaphthalene, fluoranthene, naphtha-
lene, anthracene, phenanthrene, phenol, pyrene, tris (2-chlo-
roethyl) phosphate, and N,N-diethyl-meta-toluamide (DEET) 
that were less than their respective reporting levels (tables 13 
and 14). Several of these compounds, including 2-methylnaph-
thalene, fluoranthene, anthracene, phenanthrene, and pyrene, 
are indicative of creosote, coal tar, or asphalt contamination; 
however, this same sample did not have concentrations of 
petroleum hydrocarbons greater than the minimum reporting 
level. N, N-diethyl-meta-toluamide (DEET) was present in 
four of the samples but also was present at an estimated con-
centration of 0.0063 mg/L in a quality-assurance field blank, 
indicating that contamination of the sample may have occurred 
during sampling (0.0063 mg/L is well below the N,N-diethyl-
meta-toluamide reporting limit of 0.5 mg/L). Wilde and others 
(2004) and Reich and others (2006) established that even the 
smallest use of this insect repellent by persons visiting or 
servicing a well (including sample-collection crews) can cause 
contamination of water samples. Even though the reported 
DEET concentrations were more than three times greater than 
those detected in the blank sample, the analytical results were 
still at estimated concentrations below the reporting levels. 
Samples with concentrations at least three times greater than 
the blank include water from well B-3 and both of the surface-
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water sites. As noted above, samples obtained at these sites 
likely contained wastewater discharge.

Radionuclides
Concentrations of uranium, radium, and radon in water 

samples were determined to evaluate the potential of con-
tamination of water by radionuclides primarily derived from 
coal. Data on analyses of 365 coal samples, stored in the 
U.S. Geological Survey COALQUAL database (Bragg and 
others, 1998) that were obtained from counties that include 
the Tuscarawas River Basin, include solid-phase uranium 
concentrations ranging from 0.1 to 35 ppm (parts per mil-
lion; whole coal basis) with an average of 2.2 ppm. Moreover, 
concentrations of radioactive elements in ash from coal-fired 
incinerators can be approximately 10 times the concentration 
in the original coal (Zielinski and Finkelman, 1997). Con-
centrations of dissolved uranium in water samples obtained 
during this study were less than 1 mg/L with the greatest 
concentrations of 0.86 and 0.80 mg/L (+ 0.04 mg/L) in surface-
water samples. Concentrations in groundwater samples ranged 
from 0 to 0.42 mg/L (concentrations of 0 mg/L are possible 
for uranium analyses because the detection method is based 
on counts of uranium decay (McCurdy and others, 2008)). 
Radium, a highly radioactive decay product of uranium, was 
analyzed as a combination of all radium isotopes and reported 
as alpha-emitting radium isotopes in appendix 2. Analytical 
results indicated that concentrations in all samples were less 
than 2 pCi/L, with the greatest concentration in groundwater 
samples from TU-113 (1.9 pCi/L), ST-27A (0.87 pCi/L), and 
MD-26 (0.56 pCi/L). Radon is a naturally occurring radioac-
tive gas produced by the decay of radium. Radon emitted by 
soil, sediment, and rocks beneath homes is the primary source 
of radon in indoor air (Harrell and others, 1993). Radon was 
present in all groundwater samples at concentrations greater 
than the sample-specific minimum detectable concentrations 
and ranged from 30 pCi/L in well TU-113 to 1,930 pCi/L in 
well HR-44. (Sample-specific minimum detectable concentra-
tions may be different for each sample because of unexpected 
chemical and instrumental interferences and small sample 
sizes (McCurdy and others, 2008).)

Water-Quality Results in Relation to Drinking-Water 
Standards

There were no exceedances of U.S. Environmental Pro-
tection Agency Primary Drinking Water Standards for ground-
water or surface-water samples collected as part of this study; 
however, Secondary Drinking Water Standards for pH, iron, 
manganese, sulfate, and total dissolved solids (ROE) were 
exceeded in several samples (table 15; U.S. Environmental 
Protection Agency, 2008a). For water purveyors in the Tus-
carawas River Basin, the primary water-quality problems from 
major and trace elements are related to elevated concentrations 
of iron and manganese (Walker, 1959; Winslow and White, 
1966; Ohio Environmental Protection Agency, 2006a; Beck 
and others, undated b; Golden and others, undated a; Hogan 

and others, undated b; and Zoller and others, undated a). 
Samples from five of seven groundwater sites had dissolved 
manganese concentrations greater than the Secondary Maxi-
mum Contaminant Levels (50 mg/L), and three of seven had 
dissolved iron concentrations in excess of the Secondary 
Maximum Contaminant Levels (300 mg/L). 

Currently (2009), no Maximum Contaminant Level has 
been established for radon in drinking water; however, a pro-
posed Maximum Contaminant Level of 300 pCi/L for radon is 
under review (U.S. Environmental Protection Agency, 2009). 
Water from three wells (HR-44, TU-185, and B-3) contained 
radon concentrations greater than the proposed Maximum 
Contaminant Level.

Hydrogen and Oxygen Isotopes
Water samples were analyzed for the isotopes of hydro-

gen (2H/1H, referred to as dD) and oxygen (18O/16O referred to 
as d18O) and are reported in per mil (ratios of the isotopes rela-
tive to established standards). These ratios are useful in exam-
ining the recharge history of groundwater because hydrogen 
and oxygen are part of the water molecule and generally are 
not affected by processes that may affect dissolved constitu-
ents (Kendall and McDonnell, 1998). Samples collected in the 
Tuscarawas River basin were plotted with respect to the mete-
oric water line in figure 17: this line describes the generalized 
relations among the isotopes in rainwater samples throughout 
the world, as described by Craig (1961). If samples lie along 
this line, they are assumed to have originated from rainfall 
or snow from within the atmosphere and were not affected 
by other isotope fractionation processes. Comparison of the 
composition of groundwater and surface-water samples with 
the meteoric water line provides a unique record of the source 
(such as groundwater inflow or surface water) and evaporative 
history of the sample. The seven groundwater samples plot 
above the meteoric water line, whereas the two surface-water 
samples lie on or below the line (fig. 17). Samples collected 
from the Tuscarawas River had dD and d18O values that were 
relatively enriched (greater) compared to groundwater sam-
ples. The greater values in surface water are indicative of sum-
mer precipitation and the effects of evaporation, whereas the 
groundwater samples reflect a mixture of recharge with most 
water derived during Ohio’s long recharge periods that occur 
during winter and spring. The most depleted sample (MD-26) 
also had the lowest recharge temperature (described in more 
detail below) of 8 deg C, consistent with winter precipitation.

Age-Dating Tracers
To further investigate the characteristics of groundwater 

recharge, the concentrations of age-dating tracers, includ-
ing chlorofluorocarbons, sulfur hexafluoride, trifluoromethyl 
sulfurpentafluoride, and tritium were determined in groundwa-
ter samples (appendix 2). Although some of these compounds 
occur naturally in the atmosphere at extremely small concen-
trations, human activities have caused their concentrations 
to increase. Detailed analysis of atmospheric samples has 
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Table 10.  Pesticides analyzed in groundwater and surface-water samples from the Tuscarawas River 
Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; <, less than; IRL, interim reporting level; LRL, laboratory reporting level]

Constituent (USGS parameter code)
Reporting 

level1

Reporting- 
level code1

Number of 
detections

Pesticides detected in surface-water samples

2-Chloro-4-isopropylamino-6-amino-s-triazine 
(CIAT; 04040)

< 0.014 LRL 2

3,4-Dichloroaniline (61625) < .0045 IRL 2

Acetochlor (49260) < .006 LRL 2

Atrazine (39632) < .007 LRL 2

Carbaryl (82680) < .041 LRL 1

Chlorpyrifos (38933) < .005 LRL 1

Desulfinyl fipronil (62170) < .012 LRL 1

Fipronil sulfide (62167) < .013 LRL 1

Fipronil (62166) < .016 LRL 1

Metolachlor (39415) < .006 LRL 2

Prometon (04037) < .01 LRL 2

Simazine (04035) < .005 LRL 2

Terbuthylazine (04022) < .0083 LRL 2

Pesticides not detected in any water samples

1-Naphthol (49295) < .0882 IRL 0

2,6-Diethylaniline (82660) < .006 LRL 0

2-Chloro-2,6-diethylacetanilide (61618) < .0065 LRL 0

2-Ethyl-6-methylaniline (61620) < .010 LRL 0

4-Chloro-2-methylphenol (61633) < .0050 LRL 0

Alachlor (46342) < .005 LRL 0

Azinphos-methyl-oxon (61635) < .042 LRL 0

Azinphos-methyl (82686) < .050 LRL 0

Benfluralin (82673) < .01 LRL 0

Chlorpyrifos, oxon (61636) < .0562 IRL 0

cis-Permethrin (82687) < .006 LRL 0

Cyfluthrin (61585) < .053 LRL 0

Cypermethrin (61586) < .046 LRL 0

Dacthal (DCPA; 82682) < .003 LRL 0

Diazinon (39572) < .005 LRL 0

Dicrotophos (38454) < .0843 IRL 0

Dieldrin (39381) < .009 LRL 0

Dimethoate (82662) < .0061 IRL 0

Ethion monoxon (61644) < .021 LRL 0
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Table 10.  Pesticides analyzed in groundwater and surface-water samples from the Tuscarawas River 
Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; <, less than; IRL, interim reporting level; LRL, laboratory reporting level]

Constituent (USGS parameter code)
Reporting 

level1

Reporting- 
level code1

Number of 
detections

Pesticides not detected in any water samples—Continued

Ethion (82346) < .016 LRL 0

Fenamiphos sulfone (61645) < .053 LRL 0

Fenamiphos sulfoxide (61646) < .040 LRL 0

Fenamiphos (61591) < .029 LRL 0

Desulfinylfipronil amide (62169) < .029 LRL 0

Fipronil sulfone (62168) < .024 LRL 0

Fonofos (04095) < .0053 LRL 0

Hexazinone (04025) < .026 LRL 0

Iprodione (61593) < .026 LRL 0

Isofenphos (61594) < .011 LRL 0

Malaoxon (61652) < .039 LRL 0

Malathion (39532) < .027 LRL 0

Metalaxyl (61596) < .0069 IRL 0

Methidathion (61598) < .0087 LRL 0

Methyl paraoxon (61664) < .019 LRL 0

Methyl parathion (82667) < .015 LRL 0

Metribuzin (82630) < .028 LRL 0

Myclobutanil (61599) < .033 LRL 0

Pendimethalin (82683) < .022 LRL 0

Phorate oxon (61666) < .027 LRL 0

Phorate (82664) < .055 LRL 0

Phosmet oxon (61668) < .0511 IRL 0

Phosmet (61601) < .0079 IRL 0

Prometryn (04036) < .0059 LRL 0

Propyzamide (82676) < .004 LRL 0

Tebuthiuron (82670) < .016 LRL 0

Terbufos oxon sulfone (61674) < .045 LRL 0

Terbufos (82675) < .017 LRL 0

Tribufos (61610) < .035 LRL 0

Trifluralin (82661) < .009 LRL 0

Dichlorvos (38775) < .013 LRL 0

1 Reporting levels and reporting-level codes are described in appendix 3.
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Table 11.  Pesticides present in surface-water samples from the Tuscarawas River Basin, Ohio, 2006.

[All concentrations are in micrograms per liter; <, less than; E, estimated concentration; IRL, interim reporting level; LRL, laboratory reporting 
level]

Constituent 
 (USGS parameter code)

Reporting 
level1

Reporting- 
level code1

Tuscarawas River 
at Massillon

Tuscarawas River 
at Newcomerstown

2-Chloro-4-isopropylamino-6-amino-s-triazine 
(CIAT; 04040)

< 0.014 LRL E 0.013 E 0.013

3,4-Dichloroaniline (61625) < .0045 IRL E  .0018 E   .015

Acetochlor (49260) < .006 LRL .010 .007

Atrazine (39632) < .007 LRL .043 .053

Carbaryl (82680) < .041 LRL E   .0067 < .0410

Chlorpyrifos (38933) < .005 LRL E   .0051 < .0050

Desulfinyl fipronil (62170) < .012 LRL E   .0120 < .0120

Fipronil sulfide (62167) < .013 LRL E   .0065 < .0130

Fipronil (62166) < .016 LRL E   .0084 < .0160

Metolachlor (39415) < .006 LRL .01 .122

Prometon (04037) < .01 LRL .03 .03

Simazine (04035) < .005 LRL .023 .019

Terbuthylazine (04022) < .0083    LRL .021 E   .0066
1 Reporting levels and reporting-level codes are described in appendix 3.

provided a well-established record of concentrations in the 
atmosphere. Age-dating groundwater is a process whereby the 
time since water entered the groundwater system is quantified. 
Ages are based on interpretations of concentrations of age-
dating compounds in groundwater; therefore, ages presented 
in this report are regarded as “apparent ages.” Apparent age 
refers to the duration (number of years) since isolation from 
the atmosphere, whereas recharge date is the date (year) of 
recharge estimated by subtracting the apparent age of the 
sample from the sample-collection date (for this study, the 
sample-collection date was 2006.5). For the interpreted ages, it 
is assumed that the concentration of the tracer was not altered 
by transport processes from the point of entry to the measure-
ment point in the aquifer. Supporting data accompany the 
analyses for the age-dating tracers (appendix 2); however, only 
a summary of the results is presented here. 

Recharge temperatures were determined for individual 
samples using concentrations of dissolved argon and nitro-
gen gas. Since the amount of gas that can dissolve in water is 
proportional to the water temperature at the time of recharge, 
recharge temperatures can be calculated to an accuracy of 
about 0.5 deg C (Heaton, 1981; Heaton and Vogel, 1981; Hea-
ton and others, 1983; Busenberg and others, 1993; Stute and 
Schlosser, 1999). All recharge temperatures were corrected 
for “excess air” (atmospheric gases trapped in the unsatu-
rated zone that interact with groundwater and may affect gas 

concentrations). Additionally, in oxygen-poor groundwaters, 
denitrification can produce excess nitrogen gas in water sam-
ples, providing unrealistically higher recharge temperatures 
than would be expected by equilibrium with the atmosphere 
and excess air alone. Recharge temperatures for samples col-
lected at ST-27A and TU-184 were corrected by subtracting 
2.0 and 0.5 mg/L nitrogen, respectively, to account for deni-
trification. After corrections were applied as described above, 
the seven groundwater samples from the Tuscarawas River 
Basin collected and analyzed as part of this study yielded 
recharge temperatures ranging from 8.0 to 13.5 deg C, which 
compare well with the average annual atmospheric tempera-
ture of 10.1 deg C measured at 18 stations within the basin for 
the period 1970 to 2000 (National Oceanic and Atmospheric 
Administration, 2002).

Chlorofluorocarbons (CFCs, including CFC-11, CFC-12, 
and CFC-113) were analyzed at the U.S. Geological Survey 
Chlorofluorocarbon Laboratory (Reston, Va.) using purge and 
trap chromatography with an electron capture detector with 
a minimum detection limit of approximately 1 picogram/L 
(http://water.usgs.gov.lab). This detection limit is several 
orders of magnitude less than the mass-spectrometry detection 
limit for CFCs analyzed as part of the VOC schedule of the 
U.S. Geological Survey National Water Quality Laboratory 
given in table 12. With the lower detection limit, the three dif-
ferent CFCs were detected in all groundwater samples except 

http://water.usgs.gov.lab
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for two samples collected at ST-27A and TU-113 that did not 
contain detectable concentrations of CFC-113 (appendix 2). 
Two other samples (HR-44 and TU-184) were determined to 
be contaminated with CFCs from land-surface sources because 
CFC concentrations in the water samples were greater than 
concentrations that have ever been measured in equilibrium 
with the atmosphere. CFC contamination may originate from 
leaking septic tanks, sewer lines, sewage-treatment plants, 
underground storage tanks, and industrial wastes. In contrast, 
in anoxic (oxygen-poor) environments, CFCs may degrade 
due to consumption by anaerobic bacteria. Cook and Solomon 
(1995) documented that apparent ages derived from CFCs 
may be greater than they appear where depths to the water 
table are greater than about 30 ft. The time lag is caused by 
the time it takes for precipitation that falls on the surface to 
reach the water table. For groundwater samples collected in 
this study, depths to water were less than 30 ft in wells HR-44, 
ST-27A, and TU-184 but were greater than 30 ft in wells 
B-3, TU-113, and TU-185 (depth to water was not available 
for well MD-26). CFC recharge dates for the groundwater 
samples range from about 1950 through 1978, with the most 
consistent dates (those with dates that had less than about 
5 years of variation between the three CFC compounds) 
provided by water from wells ST-27A, TU-113, and TU-185. 
No apparent relations were noted between depth to water and 
recharge dates.

Sulfur hexafluoride (SF6), a compound used in electrical 
switches, provides age dates for water that has been recharged 
since about 1970 (Busenberg and Plummer, 2008). SF6 can 
have a natural source from fluid inclusions in crystalline rocks 
(Busenberg and Plummer, 2000); however, crystalline rocks 
are at great depth in the Tuscarawas River Basin. An advan-
tage of using SF6 concentrations as an age-dating tracer is that 
SF6 does not degrade, which is especially important in anoxic 
waters that may undergo methanogenesis where CFCs would 
likely degrade. For the samples collected as part of this study, 
SF6 was detected in all but one sample (TU-113), and SF6 
concentrations provided recharge dates ranging from 1978 to 
1996. In addition to analysis of SF6, an experimental tracer, 
trifluoromethyl sulfurpentafluoride (SF5CF3), was evaluated to 
determine its usefulness as an age-dating tracer in this hydro-
logic setting. Details regarding this compound and comparison 
to other tracers used in this study can be found in Busenberg 
and Plummer (2008), who note that the origin of SF5CF3 is 
uncertain, but may be produced by reaction of SF6 in the atmo-
sphere. For the groundwater samples collected in this study, 
SF5CF3 recharge dates range from prior to 1966 through 1995.

Tritium (3H), an isotope of hydrogen, is naturally pro-
duced in the atmosphere; however, testing of thermonuclear 
bombs in the 1950s and 1960s increased concentrations of 
tritium above natural background concentrations. Tritium 
undergoes radioactive decay to produce helium-3 (3He), and 
the ratio between tritium and helium-3 produced from tri-
tium decay can be used to accurately date the apparent age of 
groundwater. Analysis is complicated by helium derived from 
natural sources, known as terrigenic helium. Possible sources 

of terrigenic helium in the Tuscarawas River Basin include 
radioactive decay of thorium or uranium found in glacial 
tills, coal, and underclay, and escape of natural gas from gas 
fields that are found in natural reservoirs and subsurface gas 
storage facilities deep beneath the aquifers in the basin. All 
of the groundwater samples contained terrigenic helium, with 
compositions ranging from 17 to 83 percent. The concentra-
tions of tritiogenic helium (3He) were determined from the 
measured total dissolved helium concentration and the mea-
sured 3He/4He ratio of dissolved helium with correction for 
terrigenic helium using the 3He/4He ratio of terrigenic helium 
of 2 x 10-8 (Schlosser and others, 1988, 1989). The 3He/4He 
apparent recharge dates corrected for terrigenic helium range 
from about 1978 to 1994.

Comparison of apparent ages among the tracers analyzed 
in this study is not necessarily a valid exercise because each 
tracer provides information that may be influenced by different 
natural or anthropogenic factors and mixing of different age 
waters often provides misleading results. Because each of the 
dating techniques has advantages and limitations, data from 
multiple age-dating tracers were collected to increase the con-
fidence in apparent age (Plummer and others, 2001; Lindsey 
and others, 2003). In addition, relations between multiple trac-
ers may reveal hydrologic and chemical processes occurring 
within aquifers. Comparison of CFC ages with those derived 
from SF6 and tritium/helium reveals that the CFC dates are 
consistently older, implying that some anaerobic degradation 
may have occurred. Except for the water sample obtained from 
well HR-44, all groundwater samples contained dissolved oxy-
gen concentrations less than 1.0 mg/L and small quantities of 
dissolved methane; therefore, CFCs may have been degraded 
leading to an old bias in apparent age as described by Plum-
mer and Busenberg (1999).

Another factor that complicates interpretation of recharge 
ages is mixing of water of different ages through long screens 
or open intervals. Well screens or open intervals that are 
longer than 10 feet have the potential to combine waters that 
originate from different flow paths. For example, age-dating 
tracer data combined with other water-quality data from 
well B-3, which has a 40-ft screened interval, results in old 
CFC age dates (ranging from 1962 to 1970.5), younger SF6 
(1996.5) and tritium/helium (1993.7) dates, and elevated 
concentrations of a variety of bacterial and wastewater com-
pounds, indicating that mixing of waters of different ages has 
likely occurred. Screened or open intervals listed in table 7 
range from 5 to 152 ft. Wells with short screened intervals 
(10 ft or less) include HR-44 (5 ft), ST-27A (10 ft) and TU-113 
(10 ft); wells with longer screened intervals (greater than 
10 ft) include B-3 (40 ft), MD-26 (152 ft), TU-184 (40 ft), and 
TU-185 (29 ft). More information on age and mixing can be 
gained by examining data from multiple environmental tracers 
through plotting sample concentrations relative to known input 
(atmospheric) concentrations as described by Plummer and 
others (2001, 2003) and Böhlke (2006); however, this topic 
was beyond the scope of this report.
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Table 12.  Volatile organic compounds analyzed in groundwater and surface-water samples 
from the Tuscarawas River Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; all reporting levels are at the minimum reporting level (MRL)1; 
TR@MA, Tuscarawas River at Massillon]

Constituent (USGS parameter code) Reporting level1

Concentration at 
Tuscarawas River 

at Massillon

Volatile organic compounds detected in water sample at TR@MA

cis-1,2-Dichloroethylene (77093) < 0.1 0.148

Dichlorodifluoromethane (CFC-12; 34668) < .2 E .16

Trichlorofluoromethane (CFC-11; 34488) < .2 1.1

Trichloromethane (chloroform; 32106) < .1 .223

Volatile organic compounds not detected in any water samples

Xylene (81551) < .2 < .2

1,1,1,2-Tetrachloroethane (77562) < .2 < .2

1,1,1-Trichloroethane (34506) < .1 < .1

1,1,2,2-Tetrachloroethane (34516) < .2 < .2

1,1,2-Trichlorotrifluoroethane (CFC-113; 77652) < .1 < .1

1,1,2-Trichloroethane (34511) < .2 < .2

1,1-Dichloroethane (34496) < .1 < .1

1,1-Dichloroethylene (34501) < .1 < .1

1,1-Dichloropropene (77168) < .2 < .2

1,2,3-Trichlorobenzene (77613) < .2 < .2

1,2,3-Trichloropropane (77443) < .2 < .2

1,2,4-Trichlorobenzene (34551) < .2 < .2

1,2,4-Trimethylbenzene (77222) < .2 < .2

1,2-Dibromo-3-chloropropane (82625) < .5 < .5

1,2-Dibromoethane (77651) < .2 < .2

1,2-Dichlorobenzene (34536) < .1 < .1

1,2-Dichloroethane (32103) < .2 < .2

1,2-Dichloropropane (34541) < .1 < .1

1,3,5-Trimethylbenzene (77226) < .2 < .2

1,3-Dichlorobenzene (34566) < .1 < .1

1,3-Dichloropropane (77173) < .2 < .2

1,4-Dichlorobenzene (34571) < .1 < .1

2,2-Dichloropropane (77170) < .2 < .2

2-Chlorotoluene (77275) < .2 < .2

4-Chlorotoluene (77277) < .2 < .2

4-Isopropylmethylbenzene (77356) < .2 < .2

Acrylonitrile (34215) < 2.5 < 2.5
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Table 12.  Volatile organic compounds analyzed in groundwater and surface-water samples 
from the Tuscarawas River Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; all reporting levels are at the minimum reporting level (MRL)1; 
TR@MA, Tuscarawas River at Massillon]

Constituent (USGS parameter code) Reporting level1

Concentration at 
Tuscarawas River 

at Massillon

Volatile organic compounds not detected in any water samples—Continued

Benzene (34030) < .1 < .1

Bromobenzene (81555) < .2 < .2

Bromochloromethane (77297) < .2 < .2

Bromodichloromethane (32101) < .1 < .1

Bromomethane (34413) < .3 < .3

Chlorobenzene (34301) < .1 < .1

Chloroethane (34311) < .2 < .2

Chloromethane (34418) < .2 < .2

cis-1,3-Dichloropropene (34704) < .2 < .2

Dibromochloromethane (32105) < .2 < .2

Dibromomethane (30217) < .2 < .2

Dichloromethane (34423) < .2 < .2

Ethylbenzene (34371) < .1 < .1

Hexachlorobutadiene (39702) < .2 < .2

Isopropylbenzene (77223) < .2 < .2

Naphthalene (34696) < .5 < .5

n-Butylbenzene (77342) < .2 < .2

n-Propylbenzene (77224) < .2 < .2

sec-Butylbenzene (77350) < .2 < .2

Styrene (77128) < .1 < .1

Methyl t-butyl ether (MTBE; 78032) < .2 < .2

tert-Butylbenzene (77353) < .2 < .2

Tetrachloroethylene (34475) < .1 < .1

Tetrachloromethane (32102) < .2 < .2

Toluene (34010) < .1 < .1

trans-1,2-Dichloroethene (34546) < .1 < .1

trans-1,3-Dichloropropene (34699) < .2 < .2

Tribromomethane (bromoform; 32104) < .2 < .2

Trichloroethene (39180) < .1 < .1

Vinyl chloride (39175) < .2 < .2
1 Reporting levels are described in appendix 3.
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Table 13.  Wastewater compounds analyzed in groundwater and surface-water samples from the 
Tuscarawas River Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; all reporting levels are interim reporting levels (IRLs)1; <, less than]

Constituent (USGS parameter code) Reporting level1 Number of detections

Wastewater compounds detected in water samples listed in table 14

2-Methylnaphthalene (62056) < 0.5 1

Anthracene (34221) < .5 1

N,N-diethyl-meta-toluamide (DEET; 62082) < .5 4

Fluoranthene (34377) < .5 1

Naphthalene (34443) < .5 1

Phenanthrene (34462) < .5 1

Phenol (34466) < .5 2

Pyrene (34470) < .5 1

Tris (2-butoxyethyl) phosphate (62093) < .5 1

Tris (2-chloroethyl) phosphate (62087) < .5 1

Wastewater compounds not detected in any water samples

1,4-Dichlorobenzene (34572) < .5 0

1-Methylnaphthalene (62054) < .5 0

2,6-Dimethylnaphthalene (62055) < .5 0

3-beta-Coprostanol (62057) < 2 0

3-Methyl-1(H)-indole (skatole; 62058) < 1 0

3-tert-Butyl-4-hydroxy anisole (BHA; 62059) < 5 0

4-Cumylphenol (62060) < 1 0

4-Octylphenol (62061) < 1 0

4-Nonylphenol (62085) < 5 0

4-tert-Octylphenol (62062) < 1 0

5-Methyl-1H-benzotriazole (62063) < 2 0

9, 10-Anthraquinone (62066) < .5 0

Acetophenone (62064) < .5 0

Acetyl hexamethyl tetrahydronaphthalene (AHTN; 62065) < .5 0

Benzo[a]-pyrene (34248) < .5 0

Benzophenone (62067) < .5 0

beta-Sitosterol (62068) < 2 0

beta-Stigmastanol (62086) < 2 0

Bromacil (04029) < .5 0

Caffeine (50305) < .5 0

Camphor (62070) < .5 0
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In general, the detection of tritium, chlorofluorocarbons, 
and sulfur hexafluoride (if not of terrigenic origin), indicates 
the presence of waters recharged after 1950 and (or) mixtures 
of old waters containing fractions of post-1950s water. The 
complex age-dating tracer chemistry combined with the char-
acteristics of the hydrologic system indicate that sulfur hexa-
fluoride and tritium/helium offer the best opportunities for use 
of age-dating tracers in this setting. The potential degradation 
of CFCs in anoxic groundwater may have caused misleading 
(older) recharge dates and may exclude the use of this tracer in 
future investigations.

The ultimate value of age-dating tracers is that they 
provide an indication of the age of the water obtained from a 
well. Wells that produce 10- to 20-yr-old water may show the 
effects of recent land uses or recent land-use changes. Alterna-
tively, wells that produce 40- to 50-yr-old water may not show 
the effects of recent land-use change yet, but likely will in the 
coming decades. Moreover, wells that produce water that is 
older than 50 yrs may not show appreciable changes through-
out a long period of land-use change.

Table 13.  Wastewater compounds analyzed in groundwater and surface-water samples from the 
Tuscarawas River Basin, Ohio, 2006.—Continued

[All values are in micrograms per liter; all reporting levels are interim reporting levels (IRLs)1; <, less than]

Constituent (USGS parameter code) Reporting level1 Number of detections

Wastewater compounds not detected in any water samples—Continued

Carbazole (62071) < .5 0

Cholesterol (62072) < 2 0

Cotinine (62005) < 1 0

Diethoxynonylphenol (62083) < 5 0

Ethoxyoctylphenol (61706) < 1 0

Hexahydrohexamethylcyclopentabenzopyran (HHCB; 62075) < .5 0

Indole (62076) < .5 0

Isoborneol (62077) < .5 0

Isophorone (34409) < .5 0

Isopropylbenzene (62078) < .5 0

Isoquinoline (62079) < .5 0

Menthol (62080) < .5 0

Metalaxyl (50359) < .5 0

Methyl salicylate (62081) < .5 0

p-Cresol (62084) < 1 0

Tetrachloroethene (34476) < .5 0

Tribromomethane (Bromoform; 34288) < .5 0

Tributyl phosphate (62089) < .5 0

Triclosan (62090) < 1 0

Triethyl citrate (62091) < .5 0

Triphenyl phosphate (62092) < .5 0

Tris (dichloroisopropyl) phosphate (62088) < .5 0
1 Reporting levels are described in appendix 3.



52    Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

Table 14.  Wastewater compounds detected in groundwater and surface-water samples from the Tuscarawas River Basin, Ohio, 2006.

[All values are in micrograms per liter; all reporting levels are interim reporting levels (IRLs)1; <, less than; E, estimated]

Groundwater samples Surface-water samples

Constituent (USGS parameter code)
Reporting 

level1 B-3 HR-44 TU-113
Tuscarawas River 

at Massillon
Tuscarawas River 

at Newcomerstown

2-Methylnaphthalene (62056) < 0 .5 E 0.008 < 0.5 < 0.5 < 0.5 < 0.5

Anthracene (34221) < .5 E   .011 < .5 < .5 < .5 < .5

N,N-diethylmetatoluamide (DEET; 62082) < .5 E   .020 < .5 E   .005 E   .099 E   .048

Fluoranthene (34377) < .5 E   .008 < .5 < .5 < .5 < .5

Naphthalene (34443) < .5 E   .070 < .5 < .5 < .5 < .5

Phenanthrene (34462) < .5 E   .036 < .5 < .5 < .5 < .5

Phenol (34466) < .5 E   .261 < .5 E   .387 < .5 < .5

Pyrene (34470) < .5 E   .012 < .5 < .5 < .5 < .5

Tris (2-butoxyethyl) phosphate (62093) < .5 < .5 E  3.55 < .5 < .5 < .5

Tris (2-chloroethyl) phosphate (62087) < .5 E   .031 < .5 < .5 < .5 < .5
1 Reporting levels are described in appendix 3.

Table 15.  Exceedances of Secondary Maximum Contaminant Levels (SMCLs) in groundwater and 
surface-water samples from the Tuscarawas River Basin, Ohio, 2006.

[Bold numbers indicate SMCL exceedance (U.S. Environmental Protection Agency, 2008a); <, less than; 
>, greater than; mg/L, milligrams per liter; mg/L, micrograms per liter; five-digit numbers in parentheses are 
USGS parameter codes]

pH  
(00400) 

Residue on 
evaporation, mg/L 

(70300)

Iron, dissolved, 
mg/L  

(01046)

Sulfate, dissolved, 
mg/L 

(00945)

Manganese, 
dissolved, mg/L 

(01056)

Site SMCL
< 6.5 or > 8.5

SMCL
> 500 mg/L

SMCL
> 300 mg/L

SMCL
> 250 mg/L

SMCL
> 50 mg/L

Groundwater samples

B-3 8.4 422 8 55.9 4.1

HR-44 7.1 240 < 6 29.6 < .6

MD-26 6.5 265 11,100 76.4 1,420

ST-27A 7.1 691 3,310 78.7 150

TU-113 5.5 2,740 173,000 1,690 9,060

TU-184 7.5 534 151 174 293

TU-185 7.3 394 97 46.5 221

Surface-water samples

TR@MA 7.5 675 37 74.3 194

TR@NCT 8.2 605 14 157 29.6
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Figure 17.  Relation between oxygen (δ18O) and deuterium (δD) isotope ratios in water samples from the 
Tuscarawas River Basin, Ohio. (Per mil is defined as parts per thousand relative to a standard.)

Status of Current Data Collection and Focus for 
Future Work

The water-quality data presented above combined with 
data from data-collection networks that were active in 2009 
provide information that is useful in understanding key issues 
that affect the water resources of the Tuscarawas River Basin. 
Of the more recently published documents that describe prob-
lems related to the water resources of the basin, the Musk-
ingum River Basin Initiative (2005) highlights sedimentation, 
acid-mine drainage, hydrogen-sulfide pollution from deeper 
parts of oxygen-poor reservoirs, stream contamination from 
untreated sewage, effects of development, aging reservoirs, 
and recreation pressures. Furthermore, the Upper Tuscara-
was River Action Plan by the Northeast Ohio Four County 
Regional Planning and Development Organization (1999a) 
cites a need to characterize critical resource areas that include 
high-quality waters, headwater areas, groundwater resources, 
biologically important wetlands, and the status of unique spe-
cies and features. The Ohio Environmental Protection Agency 
TMDL study on the Tuscarawas River (Ohio Environmen-
tal Protection Agency, 2009c) recommends the following: 

1) reducing pollutant loads and (or) increasing the capacity 
of streams to handle the pollutant loads, 2) addressing poorly 
functioning home-sewage-treatment systems, 3) practicing 
more environmentally sensitive turf management, 4) reduc-
ing phosphorus discharges from sewage-treatment plants, 
5) controlling sediment erosion, 6) abating nutrient loading 
from livestock and agriculture, and 7) providing improved 
manure and residual nutrient management by livestock pro-
ducers. The documents, maps, and Web pages described in 
this report indicate that water supplies from the perspective of 
both water quantity and water quality are adequate for current 
needs; however, the following water-resources issues will 
likely require additional focus on monitoring from decision-
makers in the future:
1.	 Water quality is degraded from agriculture, industry, 

residential land uses, and mining. Previous water-qual-
ity sampling done throughout the basin documented many 
different problems with both surface water and groundwa-
ter. The water sampling and extensive laboratory analysis 
done as part of this study showed that each of these land 
uses affected the water quality of at least one sample even 
with the relatively small sample size of two surface-water 
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samples and seven groundwater samples. Among agri-
culture, industry, residential, and mining land uses, early 
mining practices continue to have a dominant effect on 
water quality in many areas of the basin. Both surface- 
water and groundwater quality were affected by these land 
uses, but surface water is generally more vulnerable to 
contamination than groundwater because of the direct and 
relatively rapid overland transport of contaminants that 
occurs with surface runoff. Groundwater is generally less 
vulnerable because it moves much more slowly through 
soil and aquifers before reaching wells. Age-dating com-
pounds revealed that shallow groundwater was younger 
than about 50 years. Therefore, it is no surprise that 
relatively recent land-use practices have affected ground-
water quality in the basin, and future land- use practices 
or modifications of these practices will affect groundwater 
quality in the near and distant future. Improvements in, or 
further degradation of, shallow groundwater quality can 
occur relatively quickly in response to land-use modifica-
tions. Existing and future localized and basin-wide studies 
would likely benefit from expanding the information base 
with analyses similar to the ones provided in this report, 
thereby providing a more accurate depiction of the effects 
of land use on water-quality conditions throughout the 
basin.

2.	 Most of the water-quality data-collection networks in 
the basin provide only a snapshot of water conditions 
and do not provide enough data for a basin-wide assess-
ment of water quality. In addition, continuous data is lack-
ing through hydrologic extremes such as floods or drought 
As a result, the effects of extreme hydrologic events on 
the quality of water resources exploited for drinking or 
commercial uses are unknown. Additional water-quality 
monitors and a well-designed sampling network of 
surface-water and groundwater sites throughout the basin 
would help to address this issue. 

3.	 Water-level data were too sparse in several areas to 
develop a map of groundwater levels in the basin. 
The map provided in this report (plate 1) is presented at 
a large scale that does not differentiate between water 
levels obtained from unconsolidated and bedrock aquifers. 
Additionally, the scale of the map may not be suitable 
for smaller-scale investigations where more accurate and 
timely information is needed. A basin-wide water-level 
synoptic study that targets wells in specific hydrogeologic 
settings would provide data needed for a more accurate 
map. Also, groundwater-flow modeling may be of use to 
simulate water levels in parts of the basin where data are 
lacking. Models calibrated to regional groundwater levels 
and flows are well suited to fill in the blanks in absence 
of other data. Tools associated with models today will be 
beneficial in evaluating the existing monitoring networks 
to identify critical locations for additions to the network 
to reduce uncertainty.

4.	 Little is known about the interaction of groundwa-
ter and surface water, including streams, lakes, and 
ponds in the basin. The interactions between ground-
water and surface water are important for many different 
water-resource issues, including water quality (especially 
nutrients), aquatic habitat, instream flows, and groundwa-
ter recharge. Specific studies to evaluate these interactions 
could include streamflow gain/loss evaluations, coupled 
surface-water/groundwater flow models, and additional 
research into recharge mechanisms and rates throughout 
the basin.

5.	 Little is known about interactions between unconsoli-
dated sand and gravel aquifers and bedrock aquifers 
or deeper groundwater flow that may be coming into 
the basin from outside the basin. The ground-water 
flow model by Breen and others (1995) simulated flow 
between the upland bedrock aquifers and unconsolidated 
sands and gravels in the Wooster area; however, there is 
no specific information for the Tuscarawas River Basin 
itself. Other than an anecdotal description of deeper 
flowpaths moving from west to east by Stout and others 
(1943), deeper groundwater-flow directions are poorly 
understood. If it is found that some of the water for 
public supply or commercial uses is derived from deeper 
sources, defining these sources would be an important 
step toward understanding their long-term sustainability. 
Groundwater-flow modeling could be an important com-
ponent of future work to aid in the understanding of flow 
(and exchange of dissolved chemicals) between bedrock 
and unconsolidated aquifers.

Summary
The Tuscarawas River Basin in eastern Ohio provides 

water from groundwater and surface-water sources to more 
than 600,000 residents within a 13-county area of approxi-
mately 2,600 square miles. The vegetation, soils, surficial 
deposits, and bedrock geology combined with climatic condi-
tions and human activities help to define the sources and sinks 
of water throughout the basin. The primary surface-water 
bodies are the Tuscarawas River and the four major tributar-
ies—Sandy Creek (with inflows from the Nimishillen Creek), 
Conotton Creek, Stillwater Creek, and Sugar Creek—and a 
series of man-made reservoirs primarily designed and main-
tained for flood control. The primary aquifers are sand- and 
gravel-filled valleys and sandstone bedrock.

Population throughout the basin is unequally distributed, 
with the majority of residents living near the northern headwa-
ters. Fifty-six percent of urban land use in the basin is within 
two of the northern counties (Stark and Summit). In 2001, 
land use was dominated by 40-percent forested, 39-percent 
agricultural, and 17-percent urban/residential. From 1992 to 
2001, only 2 percent of land that was forested was converted 



Summary    55

to agricultural and urban land uses. Water use was approxi-
mately 825 Mgal/d in 2000, 68 percent of which was used for 
thermoelectric power in coal-fired power plants in Belmont 
and Coshocton Counties. The second greatest water use was 
for public supply. Although the distributions of population, 
land use, and water-use in the entire Tuscarawas River Basin 
are complex, it is clear that these distributions in headwa-
ter areas help to define the characteristics of surface-water 
resources throughout the lower parts of the basin.

The effects of geological processes helped to define the 
basin as it is today. The topography, soils, surficial geology, 
and hydrology of the basin were defined by glaciation that 
created smooth, rolling hills in the northern, glaciated regions 
contrasted with relatively steep and dissected unglaciated 
bedrock features in the southern regions. The glacial and 
alluvial sand and gravel deposits that are as much as 400 ft 
thick within incised valleys provide some of the best water-
producing aquifers in the State. Economic opportunities were 
(and continue to be) provided by the extensive oil and gas 
resources and coal deposits; however, extraction of these 
resources has altered the environment, as evidenced by oil, 
gas, and brine contamination of aquifers and streams, excess 
sedimentation in rivers, and acid-mine drainage in groundwa-
ter and surface water.

The hydrology of the basin is similar to that of other 
glaciated river basins in the Midwestern United States. Water 
budgets provided by several different sources indicate that 
recharge to groundwater is approximately 6 to 10 in. per year. 
Most of the water that enters as precipitation leaves the basin 
through evapotranspiration, groundwater flow, or surface-
water flow at the mouth of the Tuscarawas River in Coshoc-
ton. The new water-level map generated by the Ohio Depart-
ment of Natural Resources shows that groundwater flows from 
the upland areas towards sand- and gravel-filled valleys, that 
the water- level surface mimics topography, and that several 
areas still remain that have inadequate water-level data to 
adequately map the water-level surface. Because this map 
focused on near-surface conditions, understanding is lacking 
of deeper flow conditions that might involve inflow or outflow 
of groundwater to or from the Tuscarawas River Basin. Data-
collection networks in the Tuscarawas River Basin include 
meteorological stations operated by many different entities, 
streamgages operated by the U.S. Geological Survey and 
U.S. Army Corps of Engineers; groundwater observation wells 
operated by the Ohio Department of Natural Resources; and 
water-quality data collected for streams and reservoirs by the 
Ohio Environmental Protection Agency, the U.S. Army Corps 
of Engineers, and the U.S. Geological Survey. Much of the 
streamflow and observation-well data are collected on a con-
tinuous basis; however, water-quality data are typically col-
lected only during scheduled sampling events that may cycle 
through the entire network only once every 3 to 5 years.

Water-quality data collected as part of this study include 
concentrations of a wide variety of constituents that were mea-
sured in samples from two surface-water sites on the Tuscara-
was River and seven groundwater sites located throughout the 

basin. Each of the groundwater sites is representative of one or 
more land-use settings in the basin. For example, well HR-44, 
located within a forested setting had the lowest concentra-
tion of dissolved constituents and the highest concentration of 
dissolved oxygen compared to those for other wells sampled 
in the basin. Well TU-185, located in a predominantly agri-
cultural setting had the highest nitrate concentrations. Well 
TU-113, located adjacent to a reclaimed coal mine, had the 
greatest concentrations of iron, manganese, and sulfate along 
with the lowest pH of any of the samples. These and other 
water-quality results indicate that the chemistry of shallow 
groundwater is closely related to land-use practices and that 
changes in land use may affect water quality over relatively 
short time periods.

Surface-water samples contained low levels of pesticides 
(including herbicides and insecticides), whereas groundwater 
samples did not contain any detectable pesticides. Volatile 
organic compounds were detected in only one sample from the 
Tuscarawas River at Massillon and may reflect the relatively 
high percentage of land identified as urban land use in the 
northern part of the basin. Wastewater compounds were pres-
ent in only one groundwater sample (well B-3), which was 
likely contaminated by a variety of surface sources, including 
water softeners, poorly functioning septic systems, creosote, 
coal tar, and asphalt. Total coliform bacteria were detected 
in samples from two wells and both surface-water sites, and 
E. coli were detected in one of the two groundwater samples 
and both surface-water samples. None of the U.S. Environ-
mental Protection Agency’s Primary Maximum Contaminant 
Levels were exceeded in these samples; however, Secondary 
Maximum Contaminant Levels were exceeded for pH, residue 
on evaporation, manganese, iron, and sulfate. Radon was 
detected in all groundwater samples: three of these samples 
exceeded the U.S. Environmental Protection Agency’s pro-
posed Maximum Contaminant Level of 300 pCi/L (currently 
under review).

 The water-quality information collected as part of this 
study, combined with age-dating tracers that include chlo-
rofluorocarbons, sulfur hexafluoride, and tritium/helium, 
indicate that shallow groundwater was recharged from local 
sources with relatively short residence times of less than 
50 years. In the Tuscarawas River Basin, CFCs were degraded 
under anoxic conditions. Helium in groundwater derived from 
deeper natural-gas deposits and (or) storage reservoirs inter-
fered with tritium/helium age determinations, but corrections 
for this excess helium were applied so that these data were still 
useful. Thus, although a multitude of tracers helps define the 
overall hydrogeochemical conditions in groundwater, sulfur 
hexafluoride and tritium/helium may be the most useful age-
dating tracers to include in future characterizations of aquifers 
in the basin.

The compilation of published and unpublished literature 
related to the hydrology of the basin shows that although 
substantial amounts of data and accompanying reports have 
been produced, there are few reports that consider the water 
resources of the basin as a whole. The Muskingum River 
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Basin Initiative (2005), the Upper Tuscarawas River Basin 
Action Plan (Northeast Ohio Four County Regional Planning 
and Development Organization, 1999a), and a series of Ohio 
Environmental Protection Agency reports provide valuable 
data for understanding the status of water resources in the 
basin. These and other studies support the conclusion that, in 
general, water resources are abundant in the basin, but water-
quality issues resulting from agriculture, industry, residen-
tial land uses, and mining have caused problems in the past 
and will likely continue to affect decisions regarding water 
resources in the future.

The major conclusions of the current study are that 
(1) water quality is degraded from agriculture, industry, resi-
dential land uses, and mining; (2) most of the water-quality 
data-collection networks in the basin provide only a snapshot 
of water conditions and do not provide a basin-wide assess-
ment of conditions or continuous data through hydrologic 
extremes such as floods or drought; (3) water-level data were 
too sparse in some areas of the basin to develop a map of 
groundwater levels; (4) little is known about the interaction of 
groundwater and surface water, including streams, lakes, and 
ponds in the basin; and (5) little is known about interactions 
between unconsolidated sand and gravel aquifers and bedrock 
aquifers, or about deep groundwater flow that may be entering 
the basin from outside of the basin.
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Resources, Division of Water, scale approx. 1:63,000. 
This groundwater resource map shows approximate ground-
water yield based on well logs and aquifer tests. The map 
is dominated by areas colored orange, where wells produce 
less than 3 gal/min. Sandstones and sandy shales present in 
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the Tuscarawas River sometimes exceed 12,000 ppm of 
chloride, resulting in contamination of the Coshocton 
Wellfield. Water samples collected during low flow in the 

upper tributaries and reaches of the Tuscarawas are high 
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body. Also, the model indicates that the excessive draw-
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combustion by-products: U.S. Geological Survey Water-
Resources Investigations Report 02–4216, 28 p. 
A 7-acre abandoned coal mine was reclaimed with pres-
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for always with the intention of showing definitely what the 
water table is doing year after year.
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October 1, 1999, to September 30, 2000.”
Regarding Huff Run, “…The Huff Run Watershed Restora-
tion Partnership (HRWRP) is working with the Crossroads 
Resource Conservation and Development Council (RC&D) 
of the NRCS. They received an Ohio EPA 319 grant to fund 
several projects in partnership with the group and Ohio.”

Office of Surface Mining, 2009, Surface Mining Law, 
accessed September 24, 2009, at http://www.osmre.gov/
topic/SMCRA/SMCRA.shtm
This web page contains Public Law 95-87, the Surface 
Mining Control and Reclamation Act of 1977 (SMCRA), 
passed August 3, 1977, and all revisions through December 
31, 1993.

Ohio Department of Health, 1958, Report of water pollu-
tion study of Muskingum River Basin, 1951 –1953–1954: 
Columbus, Ohio, Ohio Department of Health, Sewage and 
Industrial Waste Unit, 116 p. 
This report describes a surface-water reconnaissance of 
the entire Muskingum River Basin. 1950 population of the 
basin was 916,600. Survey data and analyses of their sig-
nificance provides evidence that damaging effects on water 
quality existed at the time of the survey which impaired rea-
sonable and necessary water uses, endangered public health, 
and caused nuisance conditions. Recommendations focus 
on reduction in municipal wastes, industrial wastes, organic 
pollution and several (listed) focal points; adequate and 
continuous disinfection of sewage and industrial wastes; 
effective removal of solids from mill scale, blast furnace, 
and other waste effluents; effective removal of grease and 
oil from waste effluents; neutralization of waste pickle 
liquors; elimination of discharge of concentrated brines; 
removal or reduction of phenolic constituents; modification 
or controlled discharge of industrial wastes containing toxic 
materials; and modification or control of miscellaneous 
wastes not specified in this report. 
The report documents chloride contamination from the 
Morton Salt Company and the Columbia-Southern Chemi-
cal Corporation affiliated with Pittsburgh Plate Glass Com-
pany in the Tuscarawas River. These companies operated 
brine wells in the vicinity of Barberton-Rittman. Morton 
Salt discharged directly to Tuscarawas River at Clinton by 
way of Chippewa Creek. Columbia Southern Chemical put 
brines in settling lagoons. Data from 1950 show the surface 
water at the Tuscarawas River at Massillon had an average 
chloride concentration of 5,754 ppm, and the Tuscarawas 
River at Newcomerstown had an average chloride concen-
tration of 976 ppm.

Ohio Department of Health and Ohio Water Pollution Control 
Board, 1968, Report and recommendations on water quality 
for Muskingum River Basin: Columbus, Ohio, Ohio Depart-
ment of Health, Division of Engineering, 85 p. 

Ohio Department of Natural Resources, 1963, The story of 
Ohio’s mineral resources: Ohio Department of Natural 
Resources Information Circular 9, 14 p.

Ohio Department of Natural Resources, 1968, Water inven-
tory of the Muskingum River Basin and adjacent Ohio 
River tributary areas: Ohio Water Plan Inventory Report 21, 
201 p. 
This inventory of the basin identifies water problems and 
recommends projects to address these problems. “…By the 
year 2000 municipal water demands will have tripled 1960 
use rates, but will not have exceeded potential supplies. 
Major problems to be faced are those of improving water 
quality and providing some additional flood protection. A 
water plan should provide: reduced chloride concentrations 
accomplished at least in part by reduction in total chloride 
level, streamflow regulation from reservoir storage or from 
wells to concentrations of undesirable waste materials, 
urban flood protection, agricultural flood protection, water 
supply reservoirs for at least 39 communities, additional 
wells for at least 93 communities, new well water sup-
plies for 19 other communities, improved waste treatment 
facilities for 18 municipalities plus additional facilities at 28 
more communities, and fullest recreational use.” Recom-
mended projects include restudy of the entire Muskingum 
reservoir system, completion of a multipurpose reservoir on 
the north branch of the Kokosing, a multipurpose reservoir 
on the North Fork of the Licking River near Utica, develop-
ment of work plans for six small watersheds, and construc-
tion of the Chippewa Creek and Buffalo Creek work plans. 
The inventory also provides summary land use and popula-
tion data by county.

Ohio Department of Natural Resources, 1971, Interim plan 
for pollution abatement of the Tuscarawas River basin 
(STORET Basin 0504): a phase of the Southeast Ohio water 
development plan: Columbus, Ohio, Ohio Department of 
Natural Resources, unpaginated. 

Ohio Department of Natural Resources, 1972, Wolf Creek 
Wildlife Area: Ohio Department of Natural Resources, 
Division of Wildlife, scale 1:33,000. 

Ohio Department of Natural Resources, 1974a, Conotton 
Creek subwatershed analysis: Ohio Department of Natural 
Resources, Mined Lands Restoration Unit Report 1, 116 p. 

Ohio Department of Natural Resources, 1974b, Land capabil-
ity analysis: the Wolf Creek project: Columbus, Ohio, Ohio 
Department of Natural Resources, Division of Planning, 
55 p. 

Ohio Department of Natural Resources, 1976, Bedrock 
topography of Medina County: Ohio Department of Natural 
Resources, Division of Geological Survey, Open File Map 
219, scale 1:62,500. 
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Bedrock topography is shown on topographic base county 
maps at a scale of 1:62,500. The county base maps were 
composited in the 1970s. Bedrock-topography compila-
tion dates range from 1971 to 1989. These maps have been 
superseded by the 1:24,000-scale bedrock-topography maps.

Ohio Department of Natural Resources, 1978a, Drift thick-
ness of Medina County: Ohio Department of Natural 
Resources, Division of Geological Survey, Open File 
Map 225, scale 1:62,500. 
Thickness contours of the unconsolidated glacial deposits in 
Medina County are shown on topographic base county maps 
at a scale of 1:62,500. The county base maps were com-
posited in the 1970s. Compilation dates range from 1971 to 
1989. These maps have been superseded by the 1:24,000-
scale glacial maps.

Ohio Department of Natural Resources, 1978b, Southeast 
Ohio water plan: Ohio Department of Natural Resources, 
Division of Water, 517 p.
This plan provides a comprehensive document for the 
development and management of the region’s water 
resources with particular emphasis on water supply and 
flood control with projections to the year 2020. The study 
area includes all of the Muskingum River Basin and pro-
vides summary data and projections for every community 
within the basin.

Ohio Department of Natural Resources, 1983, Drift thickness 
of Portage County: Ohio Department of Natural Resources, 
Division of Geological Survey, Open File Map 205, 
scale 1:62,500. 
Thickness contours of the unconsolidated glacial deposits in 
Portage County are shown on topographic base county maps 
at a scale of 1:62,500. The county base maps were com-
posited in the 1970s. Compilation dates range from 1971 to 
1989. These maps have been superseded by the 1:24,000-
scale glacial maps.

Ohio Department of Natural Resources, 1993a, Quaternary 
geology of Canton quadrangle: Ohio Department of Natural 
Resources, Division of Geological Survey, Open File Map 
296, scale 1:250,000. 
These hand-drafted maps, compiled from published and 
unpublished sources, depict the surficial glacial and alluvial 
deposits of the Canton quadrangle at a scale of 1:250,000.

Ohio Department of Natural Resources, 1993b, Quaternary 
geology of Cleveland quadrangle: Ohio Department of 
Natural Resources, Division of Geological Survey, Open 
File Map 293, scale 1:250,000. 
These hand-drafted maps, compiled from published 
and unpublished sources, depict the surficial glacial and 

alluvial deposits of the Cleveland quadrangle at a scale of 
1:250,000.

Ohio Department of Natural Resources, 1997a, History of 
coal mining in Ohio: Geofacts No. 14, accessed Decem-
ber 4, 2006, at http://www.dnr.state.oh.us/Portals/10/pdf/
GeoFacts/geof14.pdf

Ohio Department of Natural Resources, 1997b, Ohio and Erie 
Canal/Hydraulic Operations: Ohio Department of Natu-
ral Resources, Division of Water, Fact Sheet 97–41, 3 p., 
accessed December 12, 2006, at http://www.dnr.state.oh.us/
water/pubs/fs_div/fctsht41.htm
Details are provided regarding the drainage and flow 
characteristics of the Portage Lakes, which include the East 
Reservoir, West Reservoir, Turkeyfoot Lake, North Reser-
voir, and Long Lake.
“The Portage Lakes, located south of the City of Akron, 
were originally constructed in the 1830’s to supply water to 
the Ohio & Erie Canal. The reservoirs were retained by the 
state for recreational development and water supply. Due 
to the expansion of industry and the demand for raw water, 
Nimisila Reservoir and Tuscarawas Diversion Dam were 
built in 1936 and 1956, respectively, to augment water sup-
ply from the Portage Lakes and the canal.”

Ohio Department of Natural Resources, 1999a, Abandoned 
Underground Mines (Shafts)—Statewide, theme ID 1900, 
accessed October 10, 2008, at http://www.ohiodnr.com/
gims/category/tabid/10528/Default.aspx

Ohio Department of Natural Resources, 1999b, Probable 
Abandoned Underground Mines—Statewide, theme ID: 
1901, accessed October 10, 2008, at http://www.ohiodnr.
com/gims/category/tabid/10528/Default.aspx

Ohio Department of Natural Resources, 2000a, Drift thickness 
of Ohio: Ohio Department of Natural Resources, Division 
of Water, scale 1:500,000, accessed October 24, 2006, at 
http://www.dnr.state.oh.us/water/samp/
The maps and data are available as pdf files or GIS data 
layers. GIS data layers also can be ordered on a CD that 
contains additional base map files and supporting documen-
tation. The maps were compiled from 1:24,000 data.

Ohio Department of Natural Resources, 2000b, Pri-
mary lithology of the unconsolidated deposits of Ohio: 
Ohio Department of Natural Resources, Division of 
Water, scale 1:500,000, accessed October 24, 2006, at 
http://www.dnr.state.oh.us/water/samp/
The maps and data are available as pdf files or GIS data 
layers. GIS data layers also can be ordered on a CD that 
contains additional base map files and supporting documen-
tation. The maps were compiled from 1:24,000 data.
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Ohio Department of Natural Resources, 2000c, Yields of the 
unconsolidated aquifers of Ohio: Ohio Department of Natu-
ral Resources, Division of Water, scale 1:500,000, accessed 
October 24, 2006, at http://www.dnr.state.oh.us/water/samp/
The maps and data are available as pdf files or GIS data 
layers. GIS data layers also can be ordered on a CD that 
contains additional base map files and supporting documen-
tation. The maps were compiled from 1:24,000 data.

Ohio Department of Natural Resources, 2000d, Yields of the 
uppermost bedrock aquifers of Ohio: Ohio Department 
of Natural Resources, Division of Water, scale 1:500,000, 
accessed October 24, 2006, at http://www.dnr.state.oh.us/
water/samp/
The maps and data are available as pdf files or GIS data 
layers. GIS data layers also can be ordered on a CD that 
contains additional base map files and supporting documen-
tation. The maps were compiled from 1:24,000 data.

Ohio Department of Natural Resources, 2006, Industrial min-
erals and coal mining permitted locations, theme ID: 2959, 
accessed October 10, 2008, at http://www.ohiodnr.com/
gims/category/tabid/10528/Default.aspx

Ohio Department of Natural Resources, 2007a, 2006 report 
on Ohio mineral industries: An annual summary of the 
state’s economic geology, 205 p. accessed December 17, 
2007, at http://www.dnr.state.oh.us/Portals/10/pdf/min_ind_
report/06minind.pdf
This is a summary report of Ohio’s mineral industry includ-
ing detailed summaries of coal production numbers for the 
year and long-term trends in minerals production.

Ohio Department of Natural Resources, 2007b, Oil and 
gas fields map of Ohio: Ohio Department of Natural 
Resources single-page map, accessed December 15, 2007, 
at http://ohiodnr.com/Portals/10/pdf/pg01.pdf

Ohio Department of Natural Resources, 2008a, Dam defini-
tion, classification and statistics, Division of Water Dam 
Safety, accessed April 5, 2008, at http://www.dnr.state.oh.us/
water/dsafety/default/tabid/3329/Default.aspx

Ohio Department of Natural Resources, 2008b, Division of 
Soil and Water Conservation, Soils Regions of Ohio Gen-
eral Soils Map and Information, accessed August 15, 2008, 
at http://www.dnr.state.oh.us/tabid/9068/default.aspx

Ohio Department of Natural Resources, 2008c, The hydro-
logic cycle or water cycle: Fact Sheet 93–18, accessed June 
18, 2008, at http://ohiodnr.com/water/pubs/fs_div/fctsht18/
tabid/4101/Default.aspx

Ohio Department of Public Works and Dayton Morgan 
Engineering Co., 1931, Report on water resources of 
Muskingum drainage area: Dayton, Ohio, Dayton Morgan 
Engineering Co., 44 p. 

Ohio Drilling Company, 1971, Ground water potential of 
northeast Ohio: Massillon, Ohio, The Ohio Drilling Com-
pany, 360 p.
This report focuses on the potential groundwater supply in 
several preglacial buried river valleys in northeast Ohio, 
including those in the Chippewa Area. Seismic profil-
ing was used to establish a cross section or rock profile of 
the buried valley. Electric resistivity logs show the depth 
of valley up to 300 ft deep. Seven test holes were drilled 
to determine the type of fill material in the valley. It was 
estimated that 75 to 150 gal/min can be obtained from a 
clean sand and gravel layer present along the western flank 
of the valley.

Ohio Environmental Protection Agency, 1978, Water quality 
management plan, part III: Muskingum River basin: Colum-
bus, Ohio, Ohio Environmental Protection Agency.

Ohio Environmental Protection Agency, 1979, Initial water 
quality management plan, Muskingum River basin: Colum-
bus, Ohio, Ohio Environmental Protection Agency. 

Ohio Environmental Protection Agency, 1994a, Biological and 
water quality study of the East Branch Nimishillen Creek-
Stark County, Ohio: Ohio Environmental Protection Agency 
Technical Report EAS/1994–6–6, 69 p. 
During 1993, 12 fish and macroinvertebrate sites on the 
East Branch Nimishillen Creek were sampled. Results 
indicate that 1.7 miles of stream were in partial attainment 
and 7.5 miles of stream were in non-attainment of warm-
water biological criteria. Exceedances of chemical water-
quality criteria were not recorded at any sampling locations 
upstream of J&L Specialty Products outfalls. Exceptionally 
high nitrate-nitrite concentrations (up to 170 mg/L) were 
recorded below J&L Specialty Products. Concentrations of 
dissolved oxygen were low and concentrations of total dis-
solved solids were high up to 2.65 miles downstream from 
the site.

Ohio Environmental Protection Agency, 1994b, Biological and 
water quality study of the River Styx: Ohio Environmental 
Protection Agency Technical Report SWS/1994–6–8, 25 p. 
A total of 3.5 river miles along River Styx were evaluated 
for warm-water criteria. The upper 0.6 miles were in full 
attainment; the lower 2.9 miles were in non-attainment. 
Wastewater discharges account for approximately 97 per-
cent of streamflow.

Ohio Environmental Protection Agency, 1994c, Biological, 
sediment and water quality study of the Tuscarawas River, 
Wolf Creek and Hudson Run, Summit and Stark Coun-
ties: Ohio Environmental Protection Agency Technical 
Report EAS/1994–8–7, 102 p., accessed June 21, 2006, at 
http://www.epa.state.oh.us/dsw/documents/tuscppg.pdf
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Fish consumption advisories were based on fish tissue 
results from 1989 and 1993, which found elevated levels of 
polychlorinated biphenyls (PCBs) and hexachlorobenzene 
(HCB) in fish tissue. High concentrations of HCB also were 
found in sediment in the Tuscarawas River from Wolf Creek 
to the downstream end of study area, and in Hudson Run 
Reservoir adjacent to PPG Industries. Numerous samples 
exceeded the Severe Effect Level (a level above which sedi-
ment is considered heavily contaminated and likely to affect 
the health of sediment-dwelling organisms), with the high-
est concentration at 852 mg/kg (micrograms per kilogram). 
Other chlorinated benzenes and elevated metals concentra-
tions also were present in sediment samples. Several spills 
associated with the PPG site occurred between 1980 and 
1991, consisting predominantly of silica solids/sodium sili-
cate, wastewater, and hydrochloric acid. HCB was present 
in six surface-water samples.

Ohio Environmental Protection Agency, 1995a, Biological and 
water quality study of Upper Sandy Creek and Still Fork 
Sandy Creek—Stark, Carroll and Columbiana Counties, 
Ohio: Ohio Environmental Protection Agency Technical 
Report EAS/1994–5–4, 65 p. 
Poorly treated organic wastes from the Minerva Wastewater 
Treatment Plant had a substantial effect on biological and 
chemical water conditions in Sandy Creek. All biological 
indices declined to poor at a station 0.7 miles downstream. 
Sharp increases in ammonia nitrogen and phosphorous also 
were noted.

Ohio Environmental Protection Agency, 1995b, Fish tissue 
study of the Tuscarawas River and Sugar Creek, Tuscarawas 
County; Dover Chemical (Dover, Ohio) and Alsco Ana-
conda (Gnadenhutten, Ohio): Ohio Environmental Protec-
tion Agency Technical Report MAS/1995–3–5, 18 p. 
2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 
2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF), and other 
dioxin and furan congeners were analyzed in fish collected 
from the Tuscarawas River at Dover and from Sugar Creek. 
Elevated levels of PCBs were present in Tuscarawas River 
fish collected at locations both upstream and downstream 
from the Sugar Creek confluence (Dover Chemical) and 
Alsco Anaconda. The highest PCB levels in the study area 
were reported for common carp. Hexachlorobenzene was 
detected in all Tuscarawas River and Sugar Creek fish tissue 
samples. Monitoring of various chlorinated pesticides in fish 
tissue at all sampling sites revealed concentrations less than 
FDA Action Levels. One common carp fish tissue sample 
collected at RM 39.6 (upstream from Alsco Anaconda, at 
US 36) contained elevated concentrations of alpha-BHC 
(63 mg/kg), gamma-BHC (lindane) (25 mg/kg), delta-BHC 
(38 mg/kg), heptachlor epoxide (270 mg/kg), endosulfan 
I (20 mg/kg), 4,4’-DDD (140 mg/kg), and methoxychlor 
(320 mg/kg). 

Ohio Environmental Protection Agency, 1996a, Biological 
and sediment study of the Tuscarawas River, Tuscarawas 
and Stark Counties, Ohio—Ashland Oil spill, June 1995: 
Ohio Environmental Protection Agency Technical Report 
MAS/1996–2–1, 24, [66], accessed December 19, 2006, at 
http://www.epa.state.oh.us/dsw/documents/tuscspll.pdf
A pipeline construction company laying a new high pres-
sure petroleum pipeline in close proximity to an active 
high pressure crude oil transmission pipeline operated by 
Ashland Pipeline sheared off a valve within 50 feet of the 
Tuscarawas River on June 7, 1995. More than 300 barrels of 
crude oil discharged to the Tuscarawas River approximately 
7 miles upstream from Bolivar. Containment booms were 
deployed at several locations downstream with limited suc-
cess; eventually, the crude oil was contained behind Dover 
Dam, approximately 16 miles downstream from the spill 
site. The dam and containment boom stopped most of the 
crude oil with only a sheen passing through the dam.

Ohio Environmental Protection Agency, 1996b, Biological and 
water quality study of the Upper Killbuck Creek Water-
shed—Medina, Wayne, Holmes, and Coshocton Counties, 
Ohio: Ohio Environmental Protection Agency Technical 
Report MAS/1994–12–13, 173 p. 
Within the upper reaches of Killbuck Creek and in Camel 
Creek (a headwater tributary), low dissolved oxygen con-
centrations were common. Macroinvertebrate community 
performance varied considerably between the headwaters of 
Killbuck Creek and Wooster, but remained above warm-
water habitat biocriterion (marginally good to exceptional 
ranges). Upgrades at the Wooster wastewater-treatment 
plant (WWTP) in the late 1980s resulted in a substantial 
reduction in ammonia loadings and improved water quality 
immediately downstream. Elevated and extremely elevated 
levels of arsenic were present in sediments at 8 of 11 sites in 
Killbuck Creek and 5 tributaries. Within Apple Creek, mac-
roinvertebrate communities were exceptional. In Doughty 
Creek, continuous daily monitoring revealed dissolved 
oxygen levels below the minimum WWH criterion (4 mg/L) 
downstream from Guggisberg Cheese and the Charm Tribu-
tary (RM 14.6–14.29). The increasingly large diel dissolved 
oxygen swings at the remaining downstream stations (RMs 
12.9–10.24) indicated substantial background enrichment 
in the upper reaches of Doughty Creek. Fish and macroin-
vertebrates were generally in the very good or exceptional 
ranges at three stations in the headwaters of Doughty Creek 
and at one station near the mouth. The only other tributary 
included in this study is in the wetland portion of Shreve 
Creek (within Killbuck Marsh) where very low dissolved 
oxygen concentrations were observed. Daytime dissolved 
oxygen concentrations were consistently at or near zero dur-
ing summer sampling, reflecting natural conditions within a 
true wetland stream.
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Ohio Environmental Protection Agency, 1996c, Biological and 
water quality study of the Upper Muskingum River main-
stem and selected tributaries: Tuscarawas, Coshocton, Lick-
ing, Muskingum, and Knox Counties: Ohio Environmental 
Protection Agency Technical Report MAS/1995–8–9, 193 p. 
In the lower 7.3 miles of the Tuscarawas River, the river 
was in partial attainment of excellent water habitat (EWH) 
aquatic life use upstream from Coshocton and in full attain-
ment of warm water habitat (WWH) from Coshocton to the 
mouth. Tuscarawas River biological communities generally 
ranged from marginally good to exceptional throughout 
the lower stretches. Biological communities immedi-
ately upstream and downstream from Stone Container 
(RM 1.17–0.4) fully attained the existing WWH use desig-
nation and reflected minimal effects in the form of organic 
enrichment. Declines in biological community performance 
were observed upstream from Coshocton (RM 7.2–3.4). 
Following the 1988 survey, approximately 45 miles of the 
Tuscarawas River from Stillwater Creek to Coshocton were 
upgraded to EWH based on the improved performance of 
the biological communities. Chlorophyll a sampling of the 
Upper Muskingum River revealed substantial algal pro-
ductivity upstream from Stone Container, an indication of 
high background nutrient levels upstream from Coshocton. 
A series of small municipalities (Newcomerstown, West 
Lafayette, and Canal Lewisville) in the lower 20 miles 
of the Tuscarawas also was considered to be a potential 
source of enrichment, but these municipalities alone seemed 
unlikely sources of impairment that persisted 15 to 20 miles 
downstream.

Ohio Environmental Protection Agency, 1998a, Biological and 
water quality study of Sandy Creek, Minerva, 1996–1997, 
Carroll, Stark, and Columbiana Counties, Ohio: Ohio Envi-
ronmental Protection Agency Technical Report MAS/1997–
3–1, 98 p.
A substantial improvement in aquatic and biological condi-
tions occurred between 1996 and 1997 downstream from 
the Minerva Waste Water Treatment Plant. The fish com-
munity sampling results indicated that, prior to July 1996, 
chemical contaminants were released into Sandy Creek in 
the vicinity of the Minerva Waste Water Treatment Plant, 
causing severe toxic conditions for at least 6.6 miles primar-
ily due to highly toxic ammonia concentrations. Macroin-
vertebrates were dominated by black flies, organisms often 
found in high numbers in Ohio streams under degraded 
conditions. The highest polychlorinated biphenols concen-
trations occurred in common carp in an area that is lake-like 
due to quarrying operations in the stream channel.

Ohio Environmental Protection Agency, 1998b, Biological and 
water quality study of Sugar Creek, 1998: Wayne, Stark, 
Holmes and Tuscarawas Counties, Ohio: Ohio Environmen-
tal Protections Agency Technical Report MAS/1999–12–4, 
203 p. 

Most locations surveyed throughout the basin failed to 
meet assigned aquatic life uses. Exceptions were associated 
with physiographic features which affected groundwater 
flow in some areas. Nonpoint source pollution impinged 
on water quality and aquatic communities throughout the 
basin. The extent of non-attainment throughout most of 
the watershed distinguished Sugar Creek as one of the 
most degraded basins in all of Ohio. Agricultural land use 
has promoted siltation and habitat destruction across most 
of the watershed. Polluted runoff from agricultural and 
mining sources further acted to suppress aquatic life use 
attainment. Several organic contaminants were detected 
in the effluent and in the water column in the vicinity of 
Dover Chemical. Bioassays of the effluent have a record 
of toxicity over the past 10 years. Pollutant spills and fish 
kills have also been reported downstream from the company 
during this period. Dover Chemical produces phosphites 
and chlorinated hydrocarbon products which are used to 
manufacture lubricants, plasticizers, flame retardants, and 
stabilizers. Hydrochloric acid and sodium hypochlorite 
are process by-products. The effluent contained some 
organic compounds including, Bis(2-ethylhexyl)phthalate 
(1.9 mg/L), aBHC (0.38 mg/L), bBHC (0.088 mg/L), d-BHC 
(0.025 mg/L), g-BHC (0.056 mg/L), 4-4’DDE (0.022 mg/L), 
heptachlor epoxide (0.0071 mg/L), and hexachlorobenzene 
(0.060 mg/L).

Ohio Environmental Protection Agency, 1999, Ohio Water 
Quality Standards, Chapter 3745–1 of the Administrative 
Code: Columbus, Ohio, Accessed September 24, 2009 at 
http://web.epa.ohio.gov/dsw/rules/3745-1.html

Ohio Environmental Protection Agency, 2001, Biological and 
aquatic life use attainment study-Lower Middle Branch 
Nimishillen Creek, Stark County, Ohio: Ohio Environmen-
tal Protections Agency Site Evaluation Report EAS/2001–
10–4, 18 p. 
One mile of the middle branch Nimishillen Creek was 
assessed in 2001: 0.3 miles were in partial attainment 
and 0.7 were in non-attainment of the warm-water habi-
tat aquatic life use. Results reflect urbanized nature of 
the lower 1 mile of the stream. It was not apparent from 
the results that the Union Metal was affecting biological 
communities. 

Ohio Environmental Protection Agency, 2002a, Ohio EPA 
primary headwater habitat initiative, data compendium, 
1999–2000: Habitat, chemistry, and stream morphology 
data: Ohio Environmental Protection Agency, Division of 
Surface Water, variously paginated, accessed December 12, 
2006, at http://www.epa.state.oh.us/dsw/wqs/headwaters/
PHWH_Compendium.pdf
This report presents and summarizes the physical, chemical, 
and morphological data that were collected by Ohio Envi-
ronmental Protection Agency during surveys of primary 
headwater habitat streams including an unnamed tributary 
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Tuscarawas River mainstem from Barberton to New Phila-
delphia had fish consumption advisories because of PCBs. 
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Soda operations of Pittsburgh Plate Glass in Barberton 
were a major contributor of dissolved solids, especially 
chloride. Discharges at Clinton affected water quality far 
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northern boundary of Tuscarawas, Carroll, and Jefferson 
Counties. Only a few sites yielded water with a dissolved 
solids concentration of more than 1,000 mg/L, which could 
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township; sieve analyses; pebble counts; and stratigraphic 
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in the Tuscarawas River Basin in Portage County is less 
than 20 ft up to 200 ft thick.

Risser, M.L., 1986, Sand and gravel resources of Columbiana 
County, Ohio: Ohio Department of Natural Resources, Divi-
sion of Geological Survey, Report of Investigations 131, 
1 sheet, scale 1:63,360. 
The western 1/10th of this map falls within the Tuscarawas 
watershed. The map shows sand and gravel deposits, pit 
mine locations, stratigraphy from about 25 well logs in the 
Tuscarawas River Watershed, plus some grain-size analyses 
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els of the valley fill. Water is initially discharged at the 

contact between the Sharon Sandston /Conglomerate and 
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analyses of 202 surface-water and 24 groundwater samples 
are presented. For field measurements made at surface-
water sites, the specific conductance ranged from 295 to 
3,150 mS/cm, pH ranged from 2.8 to 8.6, and alkalinity 
ranged from 5 to 305 mg/L as CaCO3.

Sedam, A.C., and Francy, D.S., 1993, Geologic setting and 
water quality of selected basins in the active coal-mining 
areas of Ohio, 1989-91, with a summary of water quality for 
1985–91: U.S. Geological Survey Water-Resources Investi-
gations Report 93–4094, 133 p. 
This report includes data from Sedam (1991) summariz-
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areas in Stark County”). This map also shows a hachured 
area of sand and gravel deposits susceptible to infiltration 
of chloride from the Tuscarawas River. The report indicates 
that, within this area, spacing of wells and rates of pumping 
should be carefully controlled to avoid induction of chloride 
in the aquifer.

Walker, A.C., and Stewart, R.L., 1991, Ground-water 
resources of Belmont County: Ohio Department of Natural 
Resources, Division of Water, scale 1:62,500. 

Wayne County Planning Department, 2006, Tomorrow 
together: Wayne County comprehensive plan (draft): The 
Board of the Wayne County Commissioners, variously 
paginated, accessed September 27, 2006, at http://www.
wayneohio.org/planning/plan.html
This planning document lists natural constraints for devel-
opment in Wayne County, including severe septic limita-
tions (which affect about 78 percent of total land area), 
groundwater availability (which affects about 37 percent), 
severe slope (which affects about 8 percent), and areas 
prone to flooding (which affects about 9 percent). In gen-
eral, Wayne County offers adequate groundwater quality 
and yields throughout the county, although portions have 
experienced low flows (such as the West Salem area). An 
outstanding aquifer is found along Killbuck Creek. As 
stated in the report, a primary objective within the county 
should be to protect groundwater resources by discouraging 
inappropriate development over or adjacent to groundwater 
recharge areas and aquifers, adopting wellhead protection 
regulations to protect aquifers, and conducting a county-
wide groundwater supply survey to delineate resources and 
identify aquifer contamination potentials.

Weatherington-Rice, J.B.P., 2004, Fracture occurrence and 
ground water pollution in Ohio’s glacial and lacustrine 
deposits: Columbus, Ohio, Ohio State University, Ph. D. 
dissertation, 400 p.
This dissertation consists of five journal articles and 
includes information on fracture occurrence within glacial 
deposits in the Tuscarawas River Basin. One of the articles 
provides an independent evaluation of 21 sites in Ohio 
where fractures have been identified in glacial tills from 
boring samples, backhoe pits, and stream cuts. 

Weitzel, R.L., and Bates, J.M., 1981, Assessment of effluent 
impacts through evaluation of periphyton diatom commu-
nity structure, in Bates, J.M., Weber, C.I., eds., Ecologi-
cal assessments of effluent impacts on communities of 
indigenous aquatic organisms: Philadelphia, Pa., American 
Society for Testing and Materials, p. 142–165. 
The effects of discharges of copper-containing electroplat-
ing wastewater on the biota of the Muskingum River were 

evaluated by studies of the diatom community following 
the occurrence of high mortality among freshwater mussels 
downstream from the discharge point. The results indicated 
decreased species richness and diversity in the diatom com-
munities collected from artificial substrates.

Wellman, J.M., 1998, A stream sediment geochemical survey 
as an indicator of potential contamination by heavy metals 
of the Muskingum River, southeast Ohio: Dayton, Ohio, 
Wright State University, M.S. thesis, 88 p.

Westfall, A.O., and Webber, E.E., 1977, Time of travel of 
solutes in the Tuscarawas River Basin, Ohio, August and 
September, 1974: U.S. Geological Survey Water-Resources 
Investigations Report 77–0023, 7 p. 
A series of time-of-travel dye studies were done in August 
and September 1974 on a 106-mile reach of the Tuscara-
was River. The river was divided into five sub-reaches, and 
separate dye tests were done within each of the sub-reaches. 
The study started 3 miles downstream from Barberton to 
a point 0.3 miles upstream from the confluence with the 
Walhonding in Coshocton. At about 50-percent duration, 
the time-of-travel of the peak concentration was 137 hours 
for the entire 106-mile reach. The leading edge of the dye 
reached the lower-most station after about 119 hours. 

Weston, R.F., 1968, Surface water quality report for Musk-
ingum River Basin, State of Ohio: West Chester, Pa., 
R.F. Weston, variously paginated.
This report summarizes land use, water use, and surface-
water quality. Land use was 67 percent agricultural in 1959 
for the entire Muskingum River Basin. The 1960 popula-
tion for the basin was 1,157,215 and increased to 1,215,808 
in 1965. From 1940 to 1950, population increased by 
11.3 percent; from 1950 to 1960, 17.9 percent; and from 
1960 to 1965, 5.1 percent. Population was projected to 
be 1,806,000 by 1990. Average per capita water use was 
115 gal/d and ground water provided more than 80 percent 
of public water supply in basin. 

The Upper Tuscarawas River Basin had elevated concentra-
tions of nitrate and phosphorus. Wolf Creek at Barberton 
had elevated organic and inorganic industrial discharge. 
The concentration of dissolved iron was typically greater 
than 1 mg/L; thermal contamination was considerable; 
and chloride levels were commonly between 1,000 and 
2,000 mg/L. There also were substantial bacterial issues and 
sewage problems.

White, G.W., 1947, Waynesburg coal in Harrison and north-
ern Belmont Counties, Ohio, and revision of Dunkard 
(Permian) boundary: Ohio Journal of Science, v. 47, no. 2, 
p. 55–58.

White, G.W., 1949, Geology of Holmes County: Ohio Depart-
ment of Natural Resources Bulletin 47, 373 p.

http://www.wayneohio.org/planning/plan.htm
http://www.wayneohio.org/planning/plan.htm


Annotated Bibliography    97

White, G.W., 1951, Illinoian and Wisconsinan drift of the 
southern part of the Grand River lobe in eastern Ohio: Geo-
logical Society of America Bulletin, v. 62, p. 967–978.
This report includes a plate showing details of the Illinoian 
and Wisconsinan glacial boundaries and associated depos-
its. Glacial drifts of Wisconsin and Illinoian age occur in 
the southern part of the Grand River lobe in eastern Ohio. 
The Illinoian, which occupies a belt only 2 to 5 miles wide, 
extends eastward from Canton across Stark and Columbiana 
Counties. This is mainly till, now discontinuous and thin. 
Oxidation reaches a depth of 12 feet or more, and leaching 
reaches 11 feet or more. Small areas of the Illinoian kames 
and kame terraces remain. In the Wisconsinan till, which 
covers the area north of the Illinoian, oxidation reaches 
depths of 8 to 11 feet and leaching, 5 to 7 feet. A partially 
discontinuous end moraine lies 1 to 2 miles inside the south-
ern limit of this drift, and a very strong moraine lies along 
the west side of the lobe. Within the Wisconsinan area, rela-
tively minor kame terraces occupy some of the valleys. The 
Wisconsinan ice disappeared mainly by northward retreat of 
an ice edge, but stagnated to a limited extent in small areas.

White, G.W., 1967, Glacial geology of Wayne County, Ohio: 
Ohio Department of Natural Resources, Division of Geo-
logical Survey, Report of Investigations 62, 39 p. 
A map included with this report shows that Wayne County 
is entirely covered by glacial drift consisting largely of 
Hayesville Till ground and end moraines. Wisconsinan 
kames and outwash deposits also are present. Kettle holes, 
now incorporated in flood plains, contain muck and peat. 
The eastern part of the county valley fill along Chippewa 
Creek, Little Chippewa Creek, and Sugar Creek is charac-
terized by flood plain and kettle holes. Silt and other allu-
vium are present on valley floors, are often thin, and overlie 
material of different character. Yellow-colored areas on the 
map near Creston and Sterling indicate valley-train depos-
its that are low outwash terraces with well-washed gravel 
and sand. The bottom of the Killbuck Creek valley from a 
point northwest of Wooster southward into Holmes County 
and far south across that county is a long, narrow lacustrine 
plain. The down valley slope is less than 1 ft to a little more 
than 1 ft per mi. Before the ditching and straightening of 
the channel of Killbuck Creek, floods spread over the valley 
and persisted for weeks or even months, turning the valley 
into a lake.

White, G.W., 1973, Glacial geology of Holmes County, Ohio: 
Ohio Department of Natural Resources, Division of Geo-
logical Survey, Report of Investigations 91, scale 1:90,000. 
This is a map of the glacial deposits in Holmes County. 
Only the northern half of county is glaciated and is cov-
ered primarily with till. Silt and other alluvium fill valleys 
are present in the central portion of the county, especially 
near Killbuck. Numerous kames and kame terraces along 
valley walls are present along Martin’s Creek and near 
Martinsville.

White, G.W., 1979, Extent of till sheets and ice margins in 
northeastern Ohio: Ohio Department of Natural Resources 
Geological Note 6, one sheet.

White, G.W., 1982, Glacial geology of northeastern Ohio: 
Ohio Department of Natural Resources Bulletin 68, 75 p.

White, G.W., 1984, Glacial geology of Summit County, Ohio: 
Ohio Department of Natural Resources, Division of Geo-
logical Survey, Report of Investigations 123, 25 p. 
This is a revision and expansion of Smith and White (1953) 
and provides an excellent map of glacial sediments in the 
county. The Kent Till (Late Wisconsinan/Woodfordian age 
at about 24,000 years before present is within the Cuyahoga 
lobe in northern Summit County and the margin of the 
Grand River Lobe in extreme eastern Summit County. The 
Lavery Till (19,000 years before present) covers northern 
Summit County as far south as Akron but is at the surface 
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This is an overview of Tuscarawas County’s groundwater 
resources, including definitions of aquifer and well yield. 
Ohio Department of Natural Resources observation wells 
and chemical analysis sites are shown on a generalized 
map of well yields. All wells sampled as part of this study 
contained excess hardness and iron.

Zoller, C.T., Ricker, K.T., and Brown, L.C., undated b, Water 
resources of Tuscarawas County: Ohio State University 
Extension Fact Sheet AEX–480.79, accessed September 20, 
2006, at http://ohioline.osu.edu/aex-fact/0480_79.html
This is an overview of water resources for Tuscarawas 
County, including precipitation, groundwater, surface 
water, water use, and water quality. Average rainfall for the 
Tuscarawas County area was 40 inches per year, providing 
10.4 inches of runoff to streams and lakes. About 6.4 inches 
had the potential to recharge aquifers. Land use was 46-per-
cent farmland. Nitrate was noted as a water-quality issue. 

Prepared by the USGS Columbus Publishing Service Center.

http://ohioline.osu.edu/aex-fact/0480_79.html
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Appendix 1.  Summary of Literature Review for the Tuscarawas River Basin

[undated, no date on publication; consolidated refers to bedrock aquifers; unconsolidated refers to sand and gravel aquifers]

Basin characteristics

Ecoregions Omernick (1987), Woods and others (1998)

Geography Peattie (1923), Wright (1950)

Geomorphology Preston (1987)

Physiography Fenneman (1938)

Soils Morse (1939), Boyce and others (1960), U.S. Soil Conservation Service (1967, 1971, 1977, 1978, 1981, 1983, 1984, 
1986, 1990), Bartlett and others (1984), Natural Resources Conservation Service (1998a, 1998b, 2002, 2005), 
Ohio Department of Natural Resources, 2008b

Geology

General Stout (1916, 1918, 1943), Conrey (1921), Stout and Lamborn (1924), Lamborn (1930, 1954, 1956), Lamborn and 
others (1938), White (1949), White and Lamborn (1949), DeLong and White (1963), DeLong (1965a, 1965b), 
Winslow and White (1966), Majchszak (1984), Harrell and others (1993)

Bedrock Orton and Peppel (1906), Stauffer (1909), Morse (1910), Condit (1912), Prosser (1912), Stauffer and Schroyer 
(1920), Stout (1929, 1940a, 1940b), Lamborn and others (1938), Lamborn (1945, 1951), Pepper (1947), White 
(1947), Sturgeon and Merrrill (1949), Hyde (1953), Fuller (1955), Shearrow (1957), Hoover (1960), McCormick 
(1961), Dow (1962), Summerson (1962), Calvert (1963), Multer (1963, 1967), Ulteig (1964), DeLong (1967, 
1968, 1969, 1972, 1990), Rau (1969), Smith (1969), Owens (1970), Clifford (1973), Janssens (1973, 1977), 
Sedam (1973), Ohio Department of Natural Resources (1976, 2000d), Risser (1976, 1983a), Vormelker (1981a, 
1981b), Gray and others (1982), Struble and Hodges (1982), Majchszak (1984), Martin (1998), Slucher and 
others (2006)

Coal Bownocker and others (1908), Condit (1912), Bownocker and Dean (1929), Stout (1929), Lamborn (1942), White 
(1947), Dean (1948), Brant (1954, 1956), Cady and Smith (1955), DeLong (1955, 1957, 1978), DeBrosse (1957), 
Granchi (1958), Brant and DeLong (1960), Denton (1960), Sedam (1973), Knapp (1977), Botoman and Stieglitz 
(1978), Botoman and Stith (1978, 1981, 1986, 1988), Couchot (1978), Couchot and others (1980), Crouch and 
others (1980), Razem and Sedam (1985), Crowell (1995), Axon (1996)

Geophysics Heiskanen and Uotila (1956), Morrison (1996)

Glacial and 
unconsolidated

Coffey (1930), Schaefer and others (1946), Van Tuyl (1947), Smith (1949), White (1951, 1967, 1973, 1979, 1982, 
1984), Cummins (1959), Forsyth (1961), Goldthwait and others (1967), Ohio Department of Natural Resources 
(1978a, 1983, 1993a, 1993b, 2000a, 2000b, 2000c), Van Horn (1979), White and Guckenheimer (1979), White 
and Totten (1979, 1982, 1985), Hull (1980, 1987), Risser (1981, 1983b, 1986, 1987), Himes (1982), Tot-
ten (1988), Rizzo (1993), Leberfinger (1995), Richards and Wallrabenstein (1995), Pavey and others (1999), 
Weatherington-Rice (2004), Masters and Razem (undated)

Minerals Orton and Peppel (1906), Dachnowski (1912), Bownocker and Stout (1928), Stout (1940a, 1940b, 1944, 1946), 
Stout and Schoenlaub (1945), Pepper (1947), Smith (1949), Ohio Department of Natural Resources (1963), Clif-
ford (1973), Hull (1980, 1987), Risser (1981, 1986), Carlson (1991), Kelly and Matos (2009)

Oil and gas Bownocker (1903), Lamborn (1952), Multer (1963), Ohio River Valley Water Sanitation Commission (1951), Jans-
sens and de Witt (1976), Struble and Hodges (1982), Riley and others (2004)

Hydrology

General Harker (1943a), Harker and Bernhagen (1943a), Stout and others (1943), Cummins and Sanderson (1947), Cum-
mins (1959), Schmidt (1962a, 1962b, 1978, 1994), Sedam (1973), Groenewold (1974), Crowell and Crum-
ley (1978), Crowell and Schottenstein (1979a, 1979b, 1980), Heaton (1982), Kerschner (1980), Engelke and 
Roth (1981), Preston (1987), Eshler (1988), Garvey (1988), Wilson (1991), Rizzo (1993), Chowdhury (1995), 
Chowdhury and others (2003), Akin (2006), Beck and others (undated a), Golden and others (undated a, undated 
b], Hogan and others (undated a), Little and others (undated), Oelker and others (undated a), Oelker and others 
(undated b), Schumacher and others (undated a)
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Hydrology—Continued

Computer simulations Rashid and others (1992), Breen and others (1995), Haefner (2002)

Contaminated sites/
wastewater treat-
ment/waste disposal/
landfills

Ohio River Valley Water Sanitation Commission (1951), Jones (1961), Rau (1972, 1974), Williams (1973), 
Groenewold (1974), Clifford (1975), Van Horn (1976), Babington and Fisher (1977), Bachman and Morgan 
(1983), Hull (1984), Majchszak (1984), Opatrny and Larlham (1985), Bair and Norris (1989), Jackson and 
others (1989), Dumouchelle and Bair (1994), Zbasnik (1996), Barber and others (1997), Francisco and Shakoor 
(1997), Ohio Environmental Protection Agency (2003, 2005), Weatherington-Rice (2004), Stark County Health 
Department (2005)

Floods and 
flood control

Youngquist and others (1941), Cross and Brooks (1959), Potter (1961), Edelen and others (1962a), Edelen and oth-
ers (1962b), Somers and others (1962), U.S. Army Corps of Engineers (1970, 1973, 1977), U.S. Soil Conserva-
tion Service (1974, 1975a, 1975b), Dames & Moore and U.S. Army Corps of Engineers Huntington District 
(1975), Koltun and Roberts (1990), Koltun and Sherwood (1998), Koltun (1999, 2003), Natural Resources 
Conservation Service (2001), U.S. Federal Emergency Management Agency (2006)

Groundwater,
general

Harker (1943b, 1943c), Harker and Ohio Water Supply Board (1943, 1944a, 1944b), Harker and others (1943), 
Schaefer and others (1946), Cummins and Sanderson (1947), Van Tuyl (1947), Smith and White (1953), Schmidt 
and Walker (1954), Jones and others (1958), Cummins (1959), Walker (1959, 1962a, 1962b, 1962c, 1991), Ohio 
Water Commission (1960), Prée (1962b), Schmidt (1962a, 1962b, 1978, 1994), Winslow and White (1966), 
Sedam and Stein (1970), Ohio Drilling Company (1971), Sedam (1973, 1991), Crowell and Crumley (1978), 
Crowell and Schottenstein (1979a, 1979b, 1980), Walker and Crumley (1979), Walker and Schottenstein (1979), 
Khourey (1981), Mayhew (1985), Razem and Sedam (1985), Booth (1988), Sugar (1988), Bair and Norris (1989), 
Barber (1989), Iqbal (1990), Walker and Jiang (1991), Walker and Stewart (1991), Dai and others (1992), Dai 
(1993), Rizzo (1993), Sedam and Francy (1993), Dumouchelle and Bair (1994), Jost (1994), Breen and others 
(1995), Chowdhury (1995), Richards and Wallrabenstein (1995), Angle and others (2000), Ohio Department of 
Natural Resources (2000c, 2000d), Eckstein and others (2001), Haefner (2002), Chowdhury and others (2003), 
Weatherington-Rice (2004), U.S. Environmental Protection Agency (2005), Beck and others (undated b), Golden 
and others [undated a], Hogan and others (undated b), Oelker and others (undated c, undated d), Schumacher and 
others (undated b), Zoller and others (undated a)

Groundwater, by county 
and specific topic

Water resources
Hydrogeology and (or) 

groundwater resources
Pollution-potential maps

Water-level
and (or) potentiometric 

surface maps

Belmont Schumacher and others 
(undated a)

Walker (1969), 
Walker and Stewart (1991), 
Schumacher and others 

(undated b)

Angle and Jonak (2002)

Carroll Pree (1962a), 
Hogan and others 

(undated a) 

Pree (1962b), 
Schmidt (1962a, 1962 b),
Sedam and Stein (1970),
Walker and Jiang (1991),
Hogan and others  

(undated b)

Angle and others (2003b) Consolidated
Angle (2006a)

Unconsolidated
Angle (2006b)

Columbiana Stamm and others  
(undated)

Pree (1962b), 
Crowell and Crumley 

(1978),
Risser (1986)

Angle (1994a) Consolidated
Sprowls (2007a)

Coshocton Golden and others 
(undated b)

Walker (1962a),
Himes (1982), 
Sugar (1988), 
Golden and others 

(undated b)

Spahr (1995)

Guernsey Little and others  
(undated)

Walker (1969), 
Sedam and Stein (1970), 
Walker (1991) 
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Hydrology—Continued

Groundwater, by county 
and specific topic

Water resources
Hydrogeology and (or) 

groundwater resources
Pollution-potential maps

Water-level
and (or) potentiometric 

surface maps

Harrison Hogan and others  
(undated a)

Schmidt (1962a), 
Walker (1969),
Sedam and Stein (1970),
Crowell and Schottenstein 

(1980), 
Hogan and others 

(undated b)

Angle and Walker (2002) Consolidated
Raab and Sprowls (2006)

Holmes Schmidt (1962a), 
Crowell and Schottenstein 

(1979a)

Angle and Bonifas (2002)

Medina Rizzo (1993) Walker (1959), 
Schmidt (1978), 
Eshler (1988), 
Iqbal (1990)

Angle (1994b) Consolidated
Sprowls (2005)

Unconsolidated
Sprowls and Raab (2006)

Stark Pree (1962a), 
Oelker and others 

(undated a)

Schaefer and others (1946), 
Van Tuyl (1947), 
Walker (1959), 
Pree (1962b), 
Schmidt (1962a),
Sedam and Stein (1970),
Walker and Schottenstein 

(1979),
Oelker and others  

(undated c),
Wilson (1991)

Williams (1989, 1991) Consolidated
Crist and Raab (2006)

Unconsolidated
Angle (2006c), 
Bair and Norris (1989),
Dumouchelle and Bair 

(1994)

Portage Winslow and White (1966),
Rau (1969), 
Sedam and Stein (1970),
Walker and Crumley 

(1979), 
Hull (1980)

Angle (1990) Consolidated
Raab and Barrett (2005)

Unconsolidated
Raab (2005) 

Summit Stafford (1954), 
Oelker and others  

(undated b) 

Smith and White (1953), 
Walker (1959), 
Rau (1969), 
Heaton (1982), 
Kerschner (1980), 
Garvey (1988), 
Wilson (1991), 
Schmidt (1994), 
Oelker and others 

(undated d)

Angle and others (2003a) Consolidated
Sprowls (2007b)

Unconsolidated
Sprowls and others (2007)

Tuscarawas Cummins and Sanderson 
(1947), 

Zoller and others 
(undated b)

Kaser (1960), 
Schmidt (1962a, 1962b),
Walker (1962a, 1969),
Barber (1989), 
Tuscarawas County 

Metropolitan Sewer 
District (2006), 

Zoller and others 
(undated a)

Angle and Baker (2001) Consolidated
Sprowls (2007c)

Unconsolidated
Raab (2006)
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Hydrology—Continued

Groundwater, by county 
and specific topic

Water resources
Hydrogeology and (or) 

groundwater resources
Pollution-potential maps

Water-level
and (or) potentiometric 

surface maps

Wayne Preston (1987), 
Rizzo (1993), 
Beck and others  

(undated a)

Walker (1959), 
Schmidt (1962a, 1962b), 
Crowell and Schottenstein 

(1979b),
Springer (1987),
Iqbal (1990),
Chowdhury and others 

(2003),
Jost (1994),
Chowdhury (1995),
Breen and others (1995),
Beck and others (undated b)

Jost (1994),
Chowdhury (1995), 
Angle and Akins (2002),
Chowdhury and others 

(2003)

Consolidated
Sprowls (2006a)

Unconsolidated
Sprowls (2006b)

Recharge Bonta and Muller (1999), Dumouchelle and Schiefer (2002), Breen and others (1995), Kazman (1949)

Surface water (streams, 
reservoirs, lakes)

Coffey (1930), U.S. Army Corps of Engineers (1935, 1943, 1967, 2006a, 2008), Cummins and Sanderson (1947), 
Kazman (1949), Wright (1950), Williams, N.E. (1958), Williams, E.B. (1973), Schmidt and Ohio Dept. of Natural 
Resources (1959, 1962a, 1962b), Potter (1961), Walker and Ohio Dept. of Natural Resources (1962), Weston 
(1968), U.S. Department of Transportation (1974), U.S. Environmental Protection Agency (1975a, 1975b, 1975c, 
1978), Westfall and Webber (1977), Tobin and Youger (1978, 1979), Bowell (1980), Bartlett and others (1984), 
Angelo and Youger (1985), Opatrny and Larlham (1985), Koltun and Roberts (1990), Black (1991), Sedam 
(1991), Sedam and Francy (1993), Breen and others (1995), Davic and others (1997), Koltun and Sherwood 
(1998), U.S. Department of Agriculture, Natural Resources Conservation Service (2001), Dumouchelle and 
Schiefer (2002), Koltun (2003), Espinoza (2005)

Water supply, water use Foulk (1925), Ohio Department of Public Works and Dayton Morgan Engineering Co. (1931), Harker (1943a, 
1943b, 1943c, 1944a, 1944b), Harker and Bernhagen (1943a, 1943b, 1943c), Van Tuyl (1947), Kazman (1949), 
Smith and White (1953), Stafford (1954), Walker (1959, 1962a, 1962b, 1969, 1991), Kaser (1960), Ohio Water 
Commission (1960), Thomas (1960), Schmidt (1962a, 1962b, 1978, 1994), Ohio Department of Natural Re-
sources (1968), Ohio Drilling Company (1971), Walker and Crumley (1979), Walker and Schottenstein (1979), 
Crouch and others (1980), Sugar (1988), Walker and Jiang (1991), Walker and Stewart (1991), Eckstein and 
others (2001), U.S. Geological Survey (2005), Schumacher and others (undated a), Stamm and others (undated), 
Zoller and others (undated b)

Watershed planning, 
Total Maximum 
Daily Loads, 

Acid Mine Drainage 
Abatement and 
Treatment Plans

Medina Soil Conservation District (1960), Prée (1962a, 1962c), Williams (1958) Ohio Department of Natural 
Resources (1971, 1974a, 1974b,1978b), Quilliam (1973), Northeast Ohio Four County Regional Planning and 
Development Organization (1975, 1985, 1999a, 1999b, 1999c, 2001a, 2001b, 2003, 2004, 2005), Ohio Envi-
ronmental Protection Agency (1978, 1979, 2002d, 2006c), Johnson (1986), Gannett Fleming (2000), Office 
of Surface Mining (2000), Schultz (2000), Kleski Environmental Consulting (2001), Carroll County Regional 
Planning Commission (2004), Espinoza (2005), Muskingum River Basin Initiative (2005), Akin (2006), Moore 
(2006), Ohio State University Extension (2006), Parker and Webb (2006), Tuscarawas County Metropolitan 
Sewer District (2006), U.S. Environmental Protection Agency (2006a, 2006b, 2006c), Wayne County Planning 
Department (2006)

Wetlands, bogs, 
swamps, fens

Denny (1988), Bauder (1994), Earth Action Partnership Inc. (2006), The Nature Conservancy (2006)

Aquatic biology

General Ohio Department of Natural Resources (1972), Quilliam (1973), U.S. Department of Transportation (1974), Tobin 
and Youger (1979), Ohio Environmental Protection Agency (1994a, 1994b, 1994c, 1995a, 1996a, 1996b, 1996c, 
1998a, 1998b, 2001, 2002a, 2003, 2005, 2006b), Hambrook and others (1999), Ohio River Valley Ecosystem 
Team (2002a, 2002b), U.S. Fish and Wildlife Service (2009b)

Microbiology Kraatz (1941), Ohio Environmental Protection Agency (2006c), Weitzel and Bates (1981)
Macro-invertebrates Hyland (1982), McShaffrey and Olive (1985), Barber and others (1997), Hambrook and others (1999), March 

(2002), Ohio Environmental Protection Agency (2002c), Northeast Ohio Four County Regional Planning and 
Development Organization (2003a, 2005), Huff Run Watershed Restoration Partnership (2006b)
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Aquatic biology—Continued

Fish Cassidy and others (1930), Ohio Environmental Protection Agency (1995b, 2002b, 2006b), Huff Run Watershed 
Restoration Partnership (2006a)

Amphibians Ohio Environmental Protection Agency (2002b), Mayasich and others (2003)

Algae Olive and Higgins (1981), Hambrook and others (1999)

Water quality

General Ohio River Valley Water Sanitation Commission (1951), Lamborn (1952), Ohio Department of Health (1958), Prée 
(1962b), Ohio Department of Health and Ohio Water Pollution Control Board (1968), Weston (1968), Sedam 
and Stein (1970), Williams (1973), Westfall and Webber (1977), Ohio Environmental Protection Agency (1978, 
1979, 1994a, 1994b, 1994c, 1995a, 1996a, 1996b, 1996c, 1998a, 1998b, 1999, 2002a, 2003, 2004, 2006a, 2006b), 
Brasaemle and others (1979), Tobin and Youger (1979), Engelke and Roth (1981), Majchszak (1984), Northeast 
Ohio Four County Regional Planning and Development Organization (1985), Razem and Sedam (1985), Sedam 
(1991), Sedam and Francy (1993), Breen and others (1995), Barber and others (1997), Davic and others (1997), 
Wellman (1998), Schultz (2000), Haefner (2002), Akin (2006), Huff Run Watershed Restoration Partnership 
(2006c), Parker and Webb (2006)

Isotopes Breen and others (1995), Haefner (2002)

Radon Harrell and others (1993)

Trace elements Khourey (1981), Matisoff and others (1981, 1982), Dai and others (1992), Dai (1993), Haefner (2002)

Data and monitoring networks

Basin monitoring/
operation plans

Northeast Ohio Four County Regional Planning and Development Organization (1999a, 1999b, 1999c, 2001a), 
U.S. Army Corps of Engineers (2006a), U.S. Environmental Protection Agency (2006a, 2006b)

Land capability analysis 
(OCAP)

Ohio Department of Natural Resources (1974b), Maxson (1975), Ondecko and Schultz (1981)



Appendix 2.  Results of Analyses of Water Samples Collected within the Tuscarawas River Basin, Ohio, 2006     107

Appendix 2.  Results of Analyses of Water Samples Collected within the 
Tuscarawas River Basin, Ohio, 2006

mg/L milligrams per liter

μg/L micrograms per liter

MI MF MI membrane filtration (MI is an abbreviation for  
two different enzyme substrates)

mL milliliter

mm millimeters

mm Hg millimeters of mercury

modif. mTEC modified membrane thermotolerant E. coli

μS/cm microsiemens per centimeter at 25 degrees Celsius

mV millivolts

NTU nephelometric turbidity units

pCi/L picocuries per liter

PFM piston flow model

pg/kg picograms per kilogram

pptv parts per trillion by volume

pt point

QA quality assurance

RCnd radiochememical non-detect, below sample-specific  
critical level

Rj rejected sample 

ROE residue on evaporation

std units standard units

STP/g standard temperature and pressure per gram of water

TR@MA Tuscarawas River at Massillon

TR@NCT Tuscarawas River at Newcomerstown

TU tritium unit (equal to approximately 3.19 pCi/L)

unf unfiltered

Abbreviations are as follows:

— not determined

> greater than

< less than

(00000) USGS parameter code

ANC acid neutralizing capacity

C contaminated sample

CaCO3 calcium carbonate

cc cubic centimeters

cc/L cubic centimeters per liter

CFC chlorofluorocarbon

ft3/s cubic feet per second

col colonies

CSU combined standard uncertainty

deg C degrees Celsius

E estimated

E. coli Escherichia coliform

ext extraction

fg/kg femtograms per kilogram

ft feet

gal/min gallons per minute

incrm titr incremental titration

lab laboratory

LSD land surface datum

MF membrane filtration

M-FC membrane fecal coliform agar
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Site Date Time

Depth to 
water,  

ft below LSD  
(72019)

Stream 
stage,  

ft above 
datum  
(00065)

Instan-
taneous 

discharge,  
ft3/s 

(00061)

Flow rate,  
instanta-

neous,  
gal/min  
(00059)

Oxidation 
reduction  
potential,  

field,  
mV  

(00090)

Turbidity,  
field,  
NTU  

(61028)

Barometric  
pressure,  

field,  
mm Hg  
(00025)

Oxygen, 
 dissolved,  

field,  
mg/L  

(00300)

Groundwater sites

B-3 7/20/2006 1100 59.94 — — 0.5 44.9 120 732 0.8

HR-44 7/17/2006 930 22.00 — — 25 118 .2 742 1.4

MD-26 7/19/2006 930 — — — 183 -90.4 .3 741 .2

ST-27A 7/24/2006 1230 18.80 — — 3 -89.1 .7 735 .1

TU-113 7/25/2006 1000 40.33 — — 3 -15.5 3.6 734 .5

TU-184 7/18/2006 900 12.30 — — 1,550 -21.7 .2 740 .9

TU-185 7/18/2006 1400 55.00 — — 350 21.5 1.0 744 .7

Surface-water sites

TR@MA 8/24/2006 1430 — 0.62 105 — -1 8.3 738 5.7

TR@NCT 8/24/2006 1000 — 1.22 674 — 157 2.4 741 8.4

QA Blank 7/19/2006 935 — — — — — — 741 —

Suspended sediment 

Site Date Time

pH,  
field,  

std units  
(00400)

Concentra-
tion,  
mg/L

Percent  
< 0.0625 mm

Specific  
conduc-
tance, 
 field,  
μS/cm 
(00095)

Tempera-
ture,  

air, field,  
deg C  

(00020)

Tempera-
ture,  

water, 
field,  
deg C  

(00010)

Hardness as 
CaCO3, 
mg/L  

(00900)

Calcium,  
mg/L  

(00915)

Groundwater sites

B-3 7/20/2006 1100 8.4 — — 701 — 18.7 30 8.97

HR-44 7/17/2006 930 7.1 — — 381 27.0 12.3 195 57.1

MD-26 7/19/2006 930 6.5 — — 443 28.0 13.0 197 52.1

ST-27A 7/24/2006 1230 7.1 — — 1,200 — 12.9 466 136

TU-113 7/25/2006 1000 5.5 — — 2,680 30.0 14.1 1,540 352

TU-184 7/18/2006 900 7.5 — — 779 31.0 13.8 395 114

TU-185 7/18/2006 1400 7.3 — — 654 29.0 12.5 332 98.1

Surface-water sites

TR@MA 8/24/2006 1430 7.5 0.005 12 1,130 30.0 20.1 304 87.1

TR@NCT 8/24/2006 1000 8.2 .001 3 992 30.0 22.7 325 88.3

QA Blank 7/19/2006 935 — — — — 28.0 — — E .0
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Site Date Time
Magnesium, 

mg/L  
(00925)

Potassium,  
mg/L  

(00935)

Sodium,  
mg/L  

(00930)

ANC, unf, 
fixed end pt, 

lab,  
mg/L as 
CaCO3

(90410)

Alkalinity, 
incrm titr, 

field,  
mg/L as 
CaCO3

 (39086)

Acidity,  
total as 
CaCO3, 
mg/L  

(00435)

Bicarbonate, 
field,  
mg/L  

(00453)

Carbonate, 
incrm titr, 

field,  
mg/L  

(00452)

Groundwater sites

B-3 7/20/2006 1100 1.8 1.39 147 297 302 — 359 5

HR-44 7/17/2006 930 12.7 2.19 9.33 184 180 — 219 .0

MD-26 7/19/2006 930 16.1 1.74 5.47 119 181 — 220 .0

ST-27A 7/24/2006 1230 30.7 2.17 62.5 296 302 — 368 .0

TU-113 7/25/2006 1000 160 7.75 9.81 63 99 335 120 .0

TU-184 7/18/2006 900 27 2.37 13.3 190 187 — 228 .0

TU-185 7/18/2006 1400 21.1 1.68 14.2 281 276 — 336 .0

Surface-water sites

TR@MA 8/24/2006 1430 21 5.04 101 186 185 — 223 1

TR@NCT 8/24/2006 1000 25.4 5.12 66.2 164 165 — 196 2

QA Blank 7/19/2006 935 E .0 <  .2 <  .2 < 5 — — — —

Site Date Time
Bromide,  

mg/L  
(71870)

Chloride,  
mg/L  

(00940)

Fluoride,  
mg/L  

(00950)

Silica,  
mg/L  

(00955)

Sulfate, 
field,  
mg/L  

(99113)

Sulfate,  
mg/L  

(00945)

Sulfide, 
field,  
mg/L  

(99118)

Residue,  
ROE at  

180 deg C,  
mg/L  

(70300)

Groundwater sites

B-3 7/20/2006 1100 < 0.02 16.1 0.38 11.6 66 55.9 0.002 422

HR-44 7/17/2006 930 .03 6.72 .22 10.9 19 29.6 .002 240

MD-26 7/19/2006 930 E .02 9.21 .17 11.2 30 76.4 .009 265

ST-27A 7/24/2006 1230 < .02 175 .12 13.3 70 78.7 .012 691

TU-113 7/25/2006 1000 .18 3.09 E .07 13.3 1,600 1,690 .019 2,740

TU-184 7/18/2006 900 .07 34.2 E .09 11.3 180 174 .003 534

TU-185 7/18/2006 1400 .10 19.1 .13 11.6 46 46.5 .005 394

Surface-water sites

TR@MA 8/24/2006 1430 .12 206 .26 7.26 62 74.3 .005 675

TR@NCT 8/24/2006 1000 .13 119 .32 3.58 80 157 .009 605

QA Blank 7/19/2006 935 < .02 < .2 < .1 < .04 — < .2 — < 10
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Site Date Time

Ammonia +  
organic 

nitrogen,  
mg/L  

(00623)

Ammonia,  
mg/L  

(00608)

Nitrite +  
nitrate,  

mg/L  
(00631)

Nitrite,  
mg/L  

(00613)

Nitrate,  
calculated,1 

mg/L

Orthophos-
phate,  
mg/L  

(00671)

Phosphorus, 
mg/L  

(00666)

Organic 
carbon,  

dissolved,  
mg/L  

(00681)

Groundwater sites

B-3 7/20/2006 1100 0.24 0.141 0.81 0.003 0.81 0.067 0.05 1.0

HR-44 7/17/2006 930 E .10 < .010 .14 < .002 .14 E .006 < .04 .6

MD-26 7/19/2006 930 E .10 .056 < .06 < .002 < .06 < .018 < .04 .4

ST-27A 7/24/2006 1230 .88 .727 < .06 < .002 < .06 .008 E .02 1.5

TU-113 7/25/2006 1000 .53 .399 < .06 < .002 < .06 < .006 E .03 2.1

TU-184 7/18/2006 900 .10 .025 .57 E .002 .57 E .006 < .04 .5

TU-185 7/18/2006 1400 .21 .159 1.81 E .002 1.81 .011 < .04 .7

Surface-water sites

TR@MA 8/24/2006 1430 .48 .049 1.37 .017 1.35 .371 .4 4.4

TR@NCT 8/24/2006 1000 .41 < .010 1.44 .005 1.44 .135 .15 3.0

QA Blank 7/19/2006 935 E .06 < .01 < .06 < .002 < .06 < .006 < .04 < .33
1 Nitrate calculated as the difference between the 

two previous columns [(nitrite + nitrate) - nitrite].

Site Date Time

E. coli, 
MI MF, 

col/100 mL 
(90901)

E. coli, 
modif. 
m-TEC, 

col/100 mL 
(90902)

Fecal coli-
form, M-FC 
0.45m MF,  
col/100 mL 

(31616)

Total coli-
form, MI MF,  
col/100 mL 

(90900)

Aluminum, 
dissolved,  

μg/L 
(01106)

Aluminum, 
total,  
μg/L

 (01105)

Argon gas,  
mg/L  

(82043)

Arsenic,  
μg/L 

(01000)

Groundwater sites

B-3 7/20/2006 1100 E 5 — E 5 > 80 11.8 1,620 0.727 3.8

HR-44 7/17/2006 930 < 1 — < 1 E 3 < 1.6 E 1 .744 < .12

MD-26 7/19/2006 930 < 1 — < 1 < 1 10 19 .786 .67

ST-27A 7/24/2006 1230 < 1 — < 1 < 1 < 1.6 E 2 .696 4.0

TU-113 7/25/2006 1000 < 1 — < 1 E 110 17.4 31 .914 .34

TU-184 7/18/2006 900 < 1 — < 1 < 1 < 1.6 < 2 .685 3.0

TU-185 7/18/2006 1400 < 1 — < 1 E 1 < 1.6 < 2 .727 .16

Surface-water sites

TR@MA 8/24/2006 1430 — 100 157 — 5.1 140 — 3.9

TR@NCT 8/24/2006 1000 — 61 E 47 — 8.9 60 — 1.6

QA Blank 7/19/2006 935 < 1 < 1 < 1 < 1 < 1.6 < 2 — < .1
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Site Date Time
Boron,  
μg/L 

(01020)

Cadmium,  
μg/L 

(01025)

Chromium,  
μg/L 

(01030)

Cobalt,  
μg/L 

(01035)

Copper,  
μg/L 

(01040)

Iron (II), 
field,  
mg/L 

(99114)

Iron, total, 
field, 
 mg/L 

(99115)

Iron,  
dissolved,  

μg/L 
(01046)

Groundwater sites

B-3 7/20/2006 1100 330 < 2 < 2 < 2 2 0.000 0.010 8

HR-44 7/17/2006 930 48 < 2 E 1 < 2 < 2 .000 .010 < 6

MD-26 7/19/2006 930 21 < 2 E 1 13 < 2 10.1 8.20 11,100

ST-27A 7/24/2006 1230 25 < 2 2 < 2 < 2 2.74 2.10 3,310

TU-113 7/25/2006 1000 188 < 6 6 112 < 6 168 165 173,000

TU-184 7/18/2006 900 34 < 2 E 1 < 2 < 2 .140 .150 151

TU-185 7/18/2006 1400 37 < 2 E 1 < 2 E 2 .020 .090 97

Surface-water sites

TR@MA 8/24/2006 1430 101 < 2 E 2 < 2 < 2 .000 .040 37

TR@NCT 8/24/2006 1000 98 < 2 E 2 < 2 < 2 .000 .000 14

QA Blank 7/19/2006 935 < 7 < 2 < 2 < 2 < 2 — — < 6

Site Date Time

Iron,  
total,  
μg/L 

(01045)

Lead,  
μg/L

(01049)

Lithium,  
μg/L 

(01130)

Manganese, 
dissolved,  

μg/L 
(01056)

Manganese, 
total,  
μg/L 

(01055)

Mercury,  
μg/L 

(71890)

Molyb-
denum,  
μg/L 

(01060)

Nickel,  
μg/L 

(01065)

Groundwater sites

B-3 7/20/2006 1100 2,780 0.48 23 4.1 61.2 < 0.010 E 3 2

HR-44 7/17/2006 930 < 6 .76 20 < .6 < .6 < .010 E 4 < 2

MD-26 7/19/2006 930 12,200 < .08 15 1,420 1,390 < .010 4 34

ST-27A 7/24/2006 1230 3,860 < .08 11 150 148 < .010 6 < 2

TU-113 7/25/2006 1000 161,000 < .16 220 9,060 8,080 < .010 15 250

TU-184 7/18/2006 900 151 .15 5 293 291 < .010 5 < 2

TU-185 7/18/2006 1400 98 E .06 4 221 221 < .010 5 < 2

Surface-water sites

TR@MA 8/24/2006 1430 394 .10 12 194 216 < .010 9 < 2

TR@NCT 8/24/2006 1000 164 .08 12 29.6 53.4 < .010 9 < 2

QA Blank 7/19/2006 935 < 6 < .08 < 2.0 < .6 < .6 < .010 < 4.0 < 2
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Site Date Time
Selenium,  

μg/L 
(01145)

Silver,  
μg/L 

(01075)

Strontium,  
μg/L 

(01080)

Vanadium,  
μg/L 

(01085)

Zinc, 
 μg/L 

(01090)

Petroleum 
hydrocar-

bons,  
freon ext,  

mg/L  
(45501)

Alpha  
emitting 
radium,  

pCi/L  
(09510)

Alpha 
emitting 
radium,  
1-sigma  

CSU,  
pCi/L

Groundwater sites

B-3 7/20/2006 1100 E .07 < 3 152 < 2 < 6 < 2 Rnd 0.000 0.010

HR-44 7/17/2006 930 .87 < 3 467 < 2 32 < 2 .050 .019

MD-26 7/19/2006 930 < .08 < 3 98.9 < 2 96 < 2 .56 .042

ST-27A 7/24/2006 1230 < .08 < 3 226 < 2 < 6 < 2 .87 .050

TU-113 7/25/2006 1000 .16 < 8 1,210 < 6 69 < 2 1.9 .170

TU-184 7/18/2006 900 .67 < 3 145 < 2 < 6 — .16 .026

TU-185 7/18/2006 1400 .17 < 3 174 < 2 E 6 < 2 .107 .019

Surface-water sites

TR@MA 8/24/2006 1430 .14 < 3 288 E 1 < 6 < 2 .082 .017

TR@NCT 8/24/2006 1000 .21 < 3 292 < 2 < 6 < 2 Rnd .01 .025

QA Blank 7/19/2006 935 < .08 < 3 < 1.0 < 2 < 6 < 2 - .027 .010

Site Date Time

Deuterium/
protium 

(2H/1H) ratio, 
per mil  
(82082)

Radon-222,  
pCi/L  

(82303)

Radon-222, 
2-sigma 

precision 
estimate,  

pCi/L  
(76002)

Uranium,  
μg/L 

(22703)

Uranium,  
1 σ CSU

18O/16O ratio, 
per mil  
(82085)

Excess air,  
cc/L

Recharge 
temperature, 

deg C

Groundwater sites

B-3 7/20/2006 1100 -53.10 390 21 0.31 0.023 -8.40 4.5 10.8

HR-44 7/17/2006 930 -51.70 1,930 43 .34 .025 -8.00 4.8 10.4

MD-26 7/19/2006 930 -60.50 180 20 .114 .016 -9.27 5.5 8.0

ST-27A 7/24/2006 1230 -56.30 190 18 .246 .019 -8.73 4.7 12.8

TU-113 7/25/2006 1000 -54.20 30 14 Rnd .000 .004 -8.39 2.0 11.0

TU-184 7/18/2006 900 -51.50 240 19 .42 .03 -7.86 4.4 13.5

TU-185 7/18/2006 1400 -54.00 330 20 .32 .023 -8.28 5.8 12.5

Surface-water sites

TR@MA 8/24/2006 1430 -45.10 — — .86 .061 -6.69 — —

TR@NCT 8/24/2006 1000 -46.90 — — .80 .057 -7.17 — —

QA Blank 7/19/2006 935 — — — 0 .004 — — —
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Site Date Time

Sulfur hexa-
fluoride,  

fg/kg  
(63149)

Sulfur hexa-
fluoride par-
tial pressure, 
corrected for 

excess air,  
pptv

PFM 
sulfurhexa-

fluoride 
recharge 

year

Trifluoro-
methylsul-
furpenta-
fluoride,  

pptv

PFM trifluo-
romethyl-
sulfurpen-
tafluoride 
recharge 

year

Tritium,  
TU

Tritium error,  
1 sigma TU

Groundwater sites

B-3 7/20/2006 1100 315 3.84 1996.5 — — 2.39 0.05

HR-44 7/17/2006 930 231 2.66 1991.3 0.081 1991.5 7.28 .15

MD-26 7/19/2006 930 79.0 1.29 1978.8 .012 1974.5 2.11 .04

ST-27A 7/24/2006 1230 70.6 0.97 1981.0 .007 1971.5 8.75 .18

TU-113 7/25/2006 1000 .00 0 < 1952.0 0 < 1965.0 8.76 .18

TU-184 7/18/2006 900 97.6 1.29 1983.5 .083 1991.8 7.06 .17

TU-185 7/18/2006 1400 116 1.18 1982.8 .025 1979.3 2.86 .135

Surface-water sites

TR@MA 8/24/2006 1430 — — — — — — —

TR@NCT 8/24/2006 1000 — — — — — — —

QA Blank 7/19/2006 935 — — — — — — —

Site Date Time
Delta 

helium-3, 
percent

Helium-4,  
cc STP/g 

× 10-8

Neon,  
measured,  
cc STP/g 

x 10-7

Helium-4,  
terrigenic, 

percent

Tritium-helium-3 
recharge year,  
with terrigenic  

helium  
correction,  

years

Tritium-helium-3 
recharge year, 

error with  
terrigenic helium  

correction,  
years

Groundwater sites

B-3 7/20/2006 1100 -10.94 6.424 21.460 17.0 1993.7 ± 0.2

HR-44 7/17/2006 930 1.75 7.014 23.769 17.3 1993.5 ±  .2

MD-26 7/19/2006 930 -28.96 10.368 24.146 43.1 1977.9 ±  .3

ST-27A 7/24/2006 1230 -100.15 34.319 23.128 83.6 Rj —

TU-113 7/25/2006 1000 4.00 7.465 23.863 21.2 1992.1 ±  .2

TU-184 7/18/2006 900 -59.87 16.632 21.654 68.5 1993.5 ±  .2

TU-185 7/18/2006 1400 -86.96 14.016 22.180 61.7 Rj —

Surface-water sites

TR@MA 8/24/2006 1430 — — — — — —

TR@NCT 8/24/2006 1000 — — — — — —

QA Blank 7/19/2006 935 — — — — — —
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CFC concentration in solution, pg/kg
CFC partial pressure,  

corrected for excess air, pptv

Site Date Time CFC-11 CFC-12 CFC-113 CFC-11 CFC-12 CFC-113

Groundwater sites

B-3 7/20/2006 1100 42.0 58.5 7.4 15.9 93.6 6.5

HR-44 7/17/2006 930 9,905.7 1,187.1 22.2 3,610.0 1,830.0 18.8

MD-26 7/19/2006 930 12.0 61.2 3.0 3.8 84.5 2.2

ST-27A 7/24/2006 1230 8.2 4.8 .0 3.4 8.3 .0

TU-113 7/25/2006 1000 4.9 4.4 .0 1.9 7.1 .0

TU-184 7/18/2006 900 267.3 588.8 1,266.4 115.0 1,050.0 1,280.0

TU-185 7/18/2006 1400 86.8 86.1 2.7 35.4 146.0 2.6

Surface-water sites

TR@MA 8/24/2006 1430 — — — — — —

TR@NCT 8/24/2006 1000 — — — — — —

QA Blank 7/19/2006 935 — — — — — —

PFM CFC recharge year
Concentration dissolved in water,  

in mg/L as measured at USGS Reston Dissolved Gas Laboratory

Site Date Time CFC-11 CFC-12 CFC-113 Argon Oxygen
Carbon 
dioxide

Nitrogen Methane

Groundwater sites

B-3 7/20/2006 1100 1962.0 1967.2 1970.5 0.720 0.25 2.11 21.6 0.000

HR-44 7/17/2006 930 C C 1978.3 .740 .72 25.4 22.2 0

MD-26 7/19/2006 930 1955.0 1966.5 1963.0 .783 .30 79.7 23.7 .018

ST-27A 7/24/2006 1230 1954.8 1950.3 1953.0 .699 .25 37.3 23.1 .167

TU-113 7/25/2006 1000 1952.5 1949.5 1953.0 .919 .31 331 28.1 .200

TU-184 7/18/2006 900 1974.8 C C .686 .78 11.6 21.1 .009

TU-185 7/18/2006 1400 1966.3 1970.7 1964.0 .722 .26 29.8 22.3 .004

Surface-water sites

TR@MA 8/24/2006 1430 — — — — — — — —

TR@NCT 8/24/2006 1000 — — — — — — — —

QA Blank 7/19/2006 935 — — — — — — — —
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Appendix 3.  Glossary of Water-Quality Reporting Levels and Qualifiers

In U.S. Geological Survey reports that include data from 
the National Water- Quality Laboratory, the following report-
ing levels and qualifiers are used to characterize water-quality 
data. These terms and concepts are further defined in Childress 
and others (1999), Bonn (2008), and U.S. Geological Survey 
(2008b). The following terms are listed in alphabetical order.

Estimated concentrations (denoted by an “E” in data 
tables) are typically less than the LRL and greater than the 
LT-MDL and are derived from “information-rich” methods. 
Concentrations are still listed as detections in this report, but 
there is greater uncertainty associated with the calculated 
concentration.

Information-rich methods done with mass spectro-
metric or photodiode array ultraviolet/visible spectroscopic 
detectors and used for organic methods are classified by 
the National Water Quality Laboratory as information rich 
because they have enhanced analyte identification capabilities.

Interim reporting level (IRL) is used when a method 
does not have at least 1 year’s worth of supporting data to 
determine an LT-MDL and an LRL. The IRL is based on an 
estimated detection limit and is set to at least two times that 
estimation.

Laboratory reporting level (LRL) is calculated by mul-
tiplying the LT-MDL by two so as to reduce the probability of 
a false negative to less than or equal to 1 percent.

Long-term method detection level (LT-MDL) is the 
smallest concentrations that can be measured and reported 
with 99 percent confidence that the analyte concentration is 
greater than zero.

Minimum reporting level (MRL) is the smallest mea-
sured concentration of an analyte that may be reliably reported 
by using a given analytical method (Timme, 1995).
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