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Geometry and Spatial Distribution

The term exhalite refers to “exhalative” chemical 
sedimentary rock, following the first usage by Ridler (1971). 
Exhalites are stratiform beds or lenses of rock that are spa-
tially associated with VMS deposits (Sangster, 1978; Franklin 
and others, 1981; Spry and others, 2000; Peter, 2003). Most 
workers consider exhalites to record the precipitation of 
mainly amorphous Fe ± Mn ± Si ± S ± Ba ± B phases from 
VMS-related hydrothermal vents and plumes (Peter and 
Goodfellow, 1996; Peter and others, 2003a; Grenne and Slack, 
2005). Exhalites characteristically occur in proximal settings 
within hanging-wall strata above the sulfide deposits, and (or) 
as marginal aprons at approximately the same stratigraphic 
level. Distal exhalites, hundreds of meters or more along strike 
from VMS deposits, also may be present, although discerning 
their genetic relationship to specific sulfide horizons can be 
difficult. Less common are exhalites occurring in footwall 
sequences below the sulfide zones. Some siliceous beds such 
as the Main Contact Tuff in the Noranda district of Quebec 
(Kalogeropoulos and Scott, 1989) and the Key Tuffite in the 
Matagami district of Quebec (Liaghat and MacLean, 1992) 
have been interpreted as exhalites; however, based on studies 
of modern VMS systems, it is likely that these beds did not 
form by plume fallout but instead by widespread diffuse vent-
ing and related silicification of tuffaceous units on the seafloor 
or in the shallow subsurface.

Modern exhalites have been found in the vicinity of 
several VMS systems. Examples of proximal exhalites include 
those on the Mid-Atlantic Ridge (see Metz and others, 1988). 
Modern distal exhalites are represented by the Fe ± Mn 
sediments that surround many seafloor VMS deposits (TAG; 
German and others, 1993) and by far-field metalliferous sedi-
ments such as those in the Bauer Deep and on the East Pacific 
Rise (Heath and Dymond, 1977; Barrett and others, 1987; 
Hein and others, 1997; Koski and others, 2003b). In ancient 
settings, Algoma-type iron formations (Gross, 1996) likely 
formed through fallout from neutrally buoyant plumes in distal 
environments, relative to VMS systems, and are recognized 
in both Precambrian and Phanerozoic volcanic sequences 
(see Goodwin, 1973; Peter, 2003). Manganese-rich umbers 
like those in the Cretaceous ophiolite on Cyprus probably 
have a similar origin (Robertson and Hudson, 1973; Ravizza 
and others, 1999). A caveat here is that detrital sulfide-rich 

turbidites or similar reworked sulfidic sediment, deposited far 
from a VMS deposit as on the modern Mid-Atlantic Ridge 
(Metz and others, 1988), does not reflect fallout from a hydro-
thermal plume. 

Most exhalites are tabular in form and conformable to 
bedding within enclosing volcanic or sedimentary strata (Spry 
and others, 2000; Galley and others, 2007). Common thick-
nesses range from a few centimeters to as much as several 
meters. In many cases, proximal exhalites are thickest directly 
above sulfide zones and become progressively thinner with 
increasing distance from a deposit. Distal exhalites tend to 
have uniform thicknesses over strike lengths of tens to hun-
dreds of meters, except in areas of inferred uneven seafloor 
topography and where affected by postdepositional faulting 
or folding. A very thick (20–30 m) proximal exhalite forms 
a tabular layer directly above pyritic massive sulfide at the 
Bald Mountain deposit in Maine, where a bowl-shaped graben 
structure promoted the accumulation of both thick sulfide 
zones and overlying Si-Fe deposits (Slack and others, 2003). 
At the United Verde deposit in the Jerome district, Arizona, 
an exhalative jasper approximately 30 m thick overlies the 
massive sulfide deposit (Lindberg, 2008, fig. 3). An even 
thicker exhalite occurs at the Baiyinchang deposit in western 
China, forming a mound-shaped lens 30–50 m thick above 
altered rocks in the hanging wall sequence (Hou and others, 
2008). Such thick exhalites may have played an important role 
during evolution of some VMS deposits by confining heat and 
hydrothermal fluids in the subsurface, which in turn promoted 
subseafloor sulfide mineralization and related zone refining 
(Barriga and Fyfe, 1988; Slack and others, 2003). Based on 
modeling studies, Schardt and Large (2009) suggested that cap 
rocks aid in the formation of Zn-rich deposits by preventing 
the dissolution of anhydrite and Zn sulfides by late hydro-
thermal fluids. In some cases, siliceous cap rocks above VMS 
deposits did not form by exhalation onto the seafloor but 
instead by epigenetic replacement in the subsurface (Jones and 
others, 2006).

Strike lengths vary greatly depending on several factors, 
but in areas of good outcrop and (or) coverage by drill core, 
some exhalites are known to extend for several kilometers or 
more. Such laterally extensive exhalites are well documented 
in the Løkken district of central Norway, where beds of sul-
fide- and silicate-facies iron formation (“vasskis”) and jasper 
have been traced at the same stratigraphic levels for 3–5 km 
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(Grenne and Slack, 2005), as well as in the Bathurst district 
of New Brunswick, Canada, where some beds of oxide-
carbonate-silicate iron formation extend >10 km along strike 
(Peter and Goodfellow, 1996). More commonly, however, field 
exposures limit the map continuity of exhalites to only a few 
hundred meters. 

Mineralogy and Zoning

Diverse mineral facies of exhalites have been recognized, 
the most common of which are oxide, carbonate, sulfide, sili-
cate, and sulfate, each being based on the predominant type of 
mineral component. Figure 10–1 shows simplified cross sec-
tions of VMS deposits and different types of related exhalites, 
their morphologies and facies, likely origins, and examples. 
Exhalites may be divided into the following types:

6.	 oxide facies, consisting of jasper, hematite iron for-
mation, and magnetite iron formation; 

7.	 carbonate facies, which includes one or 
more Fe-Mg-Ca-Mn carbonates such as 
siderite, ankerite, dolomite, calcite, rhodo-
chrosite, and kutnahorite; 

8.	 silicate facies, comprising iron-rich miner-
als (such as greenalite and stilpnomelane), 
magnesian minerals (such as talc and 
chlorite), manganese-rich minerals (such 
as spessartine garnet), and boron-rich  
minerals (such as tourmaline); 

9.	 sulfide facies, chiefly composed of pyrite 
and (or) pyrrhotite with only minor base-
metal sulfides (chalcopyrite, sphalerite, 
galena); and 

10.	 sulfate facies, which comprises barite and, 
in a limited number of deposits, anhydrite 
and gypsum. 

Another facies type is chert and metachert, a 
widespread exhalite composed mainly of microcrys-
talline quartz that, in some deposits, forms a cap 
rock above the massive sulfide body (Gemmell and 
Large, 1992; Slack and others, 2003; Jones and oth-
ers, 2006). Other exhalite facies that contain abun-
dant fluorite, apatite, gahnite, or Zn-staurolite are 
uncommon to rare in the geologic record. Although 
proximal exhalites containing appreciable chalco-
pyrite and(or) sphalerite may occur within several 
hundred meters of a VMS deposit, because  
of chemical and hydrodynamic processes during 
plume fallout, distal pyrite- and pyrrhotite-rich 
sediments may instead be a reflection of euxinic 
(sulfidic) bottom waters (Grenne and Slack, 2005).

Vertical and lateral mineralogical zoning 
occurs in many exhalite units. Typical are multiple 

layers or laminations composed of different proportions 
of hydrothermal components, in many cases intermixed or 
alternating with detrital material including pelagic clay and 
locally-derived volcaniclastic sediment. Layers may vary in 
thickness from <1 mm to as much as 1 m; many exhalites 
display fine-scale laminations of alternating mineral facies 
(see Spry and others, 2000; Peter and others, 2003b). Lateral 
zoning of minerals is not as well documented but is known in 
some districts, such as the Bathurst camp, New Brunswick, 
where siderite is most abundant near VMS deposits within a 
major iron formation unit of the Brunswick belt (Peter and 
Goodfellow, 1996), and a variety of constituents including car-
bonate, stilpnomelane, and apatite are most abundant in iron 
formations proximal to sulfide deposits of the Heath Steele 
belt (Peter and Goodfellow, 2003). 

Base-metal sulfide minerals may show a zoning pattern in 
oxide-facies exhalites. Studies of modern seafloor precipitates 
from hydrothermal plumes indicate that proportions and grain 
sizes of such sulfides tend to decrease with increasing distance 
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Figure 10–1.  Simplified cross sections of volcanogenic massive sulfide 
deposits showing different types and morphologies of exhalites, with 
examples. A, Proximal jasper and hematitic chert overlying mound-like 
deposit. B, Proximal and distal (regionally extensive) iron formation occurring 
immediately above and along strike from deposits. C, Zoned iron formation, 
grading outward from inner sulfide-facies to carbonate-facies to oxide-
facies to silicate-facies. D, Iron formation occurring immediately above a 
sheetlike deposit. Modified from Peter (2003).
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from a vent site and that at distances of >1 km from a vent any 
sulfides present are volumetrically very minor in small grains 
<10 μm in diameter (Feely and others, 1994; German and 
Von Damm, 2003). Noteworthy are very large “superplumes” 
or “event plumes” in modern seafloor-hydrothermal systems 
(Baker, 1998), which could have formed widespread exhalite 
deposits in the ancient geologic record.

Protoliths

Owing to postdepositional effects of diagenesis and meta-
morphism, original hydrothermal components of exhalites 
may be largely or totally removed by such processes. In the 
case of oxide-facies iron formation, primary phases are widely 
believed to have been amorphous ferric-oxyhydoxide based on 
their occurrence in modern hydrothermal settings, including in 
plumes and plume-derived sediment (for example, Peter and 
others, 2003a). A similar precursor is inferred for the iron-
rich component of jasper, with the quartz component being 
derived from amorphous silica of predominant seawater origin 
(Grenne and Slack, 2005). Crystalline hematite that occurs in 
ancient VMS-related jasper and iron formations is considered 
a product of diagenesis and (or) metamorphism, because in 
modern settings hematite only forms from moderate-temper-
ature (>115 °C) fluids (Hein and others, 2008), whereas in 
plume settings the ambient temperatures of iron precipitation 
are much lower (typically <10 °C) and thus below the stabil-
ity of hematite. Magnetite iron formation, where unrelated 
to diagenetic or metamorphic transformation of hematite, is 
likely to have originated by subseafloor alteration of primary 
ferric oxyhydroxide by nonredox processes (Ohmoto, 2003). 
Discerning the primary phase(s) in silicate-facies exhalites is 
more difficult because their stability is governed by a complex 
set of parameters including temperature, pH, fO2, fCO2, etc. 
(see Klein, 2005). Especially challenging is determining the 
protolith of spessartine-quartz rocks (coticules; Spry, 1990), 
which may have precursors of Mn-rich carbonate and clay, or 
Mn-oxyhydroxide and clay, depending on physicochemical 
conditions on and near the paleoseafloor (Slack and others, 
2009, and references therein). Protoliths of various types of 
carbonate-, sulfide-, and sulfate-facies exhalites are generally 
considered to be similar or identical to the presently observed 
mineral assemblages for samples at or below lower greenschist 
grade metamorphic conditions.

Geochemistry

Many geochemical studies have been carried out on 
exhalites both to evaluate their origin and to determine pos-
sible use in mineral exploration. The former goal has focused 
recently on attempts to constrain the redox state of coeval 
bottom waters during deposition of protoliths to the exhalites 
(see Goodfellow and others, 2003), especially for Precam-
brian seafloor-hydrothermal systems (Slack and others, 2007, 

2009). Exploration applications have been proposed by many 
workers, but few studies provide compelling guidelines, in 
part because of the need for extensive outcrops or drill cores 
in order to establish a thorough sampling distribution rela-
tive to a known hydrothermal source. Gale and others (1997) 
analyzed Archean exhalites in the Canadian shield for rare 
earth elements (REE) and suggested that the presence of 
positive Eu anomalies, in shale-normalized diagrams, indi-
cates proximity to a VMS deposit. Detailed studies by Peter 
and Goodfellow (2003) showed that the highest Fe/Mn ratios 
in chlorite, stilpnomelane, siderite, and sphalerite along the 
Heath Steele belt occur near the B Zone sulfide deposit and 
that use of a hydrothermal sediment index, based on bulk 
compositions of exhalites, can be an effective guide to known 
sulfide mineralization. Grenne and Slack (2005) also showed 
that in seafloor-hydrothermal jaspers of the Løkken district, 
Norway, As/Fe and Sb/Fe ratios both decrease systematically 
away from an inferred major VMS vent site. Modern analogs 
of such Fe-Mn-Si exhalites show a range of bulk compositions 
including variations in REE and trace elements related to vary-
ing proportions of hydrothermal, hydrogenous, and detrital 
components (see Mills and Elderfield, 1995; Koski and others, 
2003a).
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