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Geological

A variety of geological guides may be used in mineral 
exploration and resource assessments for VMS deposits. 
Detailed geological maps clearly provide the critical frame-
work. For regions lacking known deposits, a first-order guide 
is the age of the volcanosedimentary sequence relative to the 
ages of sequences elsewhere in the world that contain signifi-
cant VMS mineralization. The database of Franklin and others 
(2005) shows time periods in the geologic record during which 
appreciable tonnages of VMS deposits formed (fig. 4–4). 
Using these age-based data, globally in the Precambrian major 
VMS mineralization took place 2.75–2.65 Ga, 2.05–1.85 Ga, 
and 1.00–0.65 Ga (see also Huston and others, 2010). Volca-
nosedimentary terranes with ages outside of these time peri-
ods, including >3.25 Ga, 2.65–2.00 Ga, and 1.85–1.00 Ga, are 
less likely to contain large (>30 Mt) deposits. Such gaps in the 
secular distribution of Precambrian VMS deposits, if not arti-
facts of erosion or inadequate age control, reflect the evolution 
of fundamental crustal processes on Earth, especially plate tec-
tonics and related assembly of major continental land masses 
(see Groves and others, 2005; Condie and others, 2009; 
Huston and others, 2010). During the Phanerozoic, the greatest 
tonnages of VMS deposits formed mainly 500–300 Ma (Late 
Cambrian–Late Carboniferous); no lengthy periods (>50 m.y.) 
are known that lack significant VMS deposits. Few deposits 
less than 15 Ma (Middle Miocene) occur on land (Franklin 
and others, 2005; Mosier and others, 2009), a result of limited 
obduction of younger marine volcanosedimentary sequences 
onto the continents.

Within sequences that contain known deposits, key 
guides are (1) favorable marine volcanosedimentary units 
including felsic or mafic lavas or tuffs, coarse breccias, and 
rhyolite domes that host mineralization within the same belt 
(Lydon, 1996); (2) VMS-type prospects or occurrences includ-
ing stratabound sulfides and discordant veins; (3) exhalites, 
especially those containing barite and (or) high concentrations 
of Cu, Zn, or Pb (Spry and others, 2000); (4) synvolcanic 
structures such as growth faults, calderas, and fault intersec-
tions, which may have focused fluid flow and localized sulfide 
mineralization; (5) local fine-grained, highly carbonaceous or 
graphitic sedimentary rocks that record breaks in volcanism 
and in most cases indicate coeval anoxic or sulfidic bottom 

waters that prevented seafloor weathering and oxidation of 
sulfides (Goodfellow and others, 2003); (6) large synvolcanic 
sills and (or) dikes, which typically occur in the stratigraphic 
footwall of the deposits, having served as sources of heat to 
drive the hydrothermal systems (Galley, 1993); (7) abundant 
chlorite or white mica and their metamorphosed equivalents 
(including Al-rich minerals), as evidence of VMS-type altera-
tion (for example, Galley and others, 2007); and (8) abundant 
tourmaline and (or) gahnite (Slack, 1982; Spry and Scott, 
1986; Huston and Patterson, 1995). Bonnet and Corriveau 
(2007) described the diagnostic mineralogy of metamorphosed 
alteration zones of VMS deposits, highlighting differences 
in greenschist-facies versus granulite-facies terranes. In the 
latter settings, which are dominated by gneisses, diagnostic 
minerals—where not affected by retrograde metamorphism—
may include cordierite, diopside, orthopyroxene, garnet, 
K-feldspar, biotite, and Al-silicates especially kyanite and 
sillimanite.

Geochemical

Geochemically-based guides for VMS exploration and 
assessment can be divided into categories that focus on the fol-
lowing sample media: (1) rocks, (2) minerals, (3) stream sedi-
ments and heavy mineral concentrates, (4) glacial till, (5) lake 
sediments, (6) waters, and (7) soils and soil gases. The greatest 
effort probably has been directed towards rock geochemistry, 
involving searches for elevated contents of base and precious 
metals and for favorable indicators of VMS-type hydrothermal 
alteration. Igneous rocks within prospective belts typically 
have geochemical signatures that reflect formation in diverse 
geodynamic settings, including oceanic spreading ridges, 
rifted arcs and back-arcs, and rifted continental margins. Dom-
inant is tholeiitic to transitional bimodal magmatism; alkaline 
and peralkaline volcanic rocks are rare by comparison (for 
example, Piercey, 2007). Within Precambrian terranes, favor-
able settings for VMS deposits include, but are not limited to, 
high-temperature rhyolites that have diagnostic compositions 
including high Zr (>300 ppm), Y/Zr ratios <7, negative Eu 
anomalies (chondrite-normalized basis [CN]), (La/Yb)CN ratios 
<7, and (Gd/Yb)CN ratios <2 (Galley and others, 2007, and 
references therein). In Phanerozoic terranes, compositions of 
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felsic (and mafic) igneous rocks associated with VMS deposits 
vary greatly, depending on whether the setting is petrologically 
primitive or evolved, and relative to Precambrian terranes are 
not as definitive (see Piercey, 2009). 

Many studies have focused on compositional variations 
of the sulfide deposits, altered wall rocks, and associated 
exhalites as possible exploration guides to ore. The metal ratio 
100 Zn/(Zn + Pb) was used by Huston and Large (1987) in the 
Mount Read volcanics of Tasmania to distinguish VMS depos-
its and occurrences from sulfide concentrations produced by 
other types of mineralization. Geochemical vectors proposed 
for wall rocks surrounding deposits include the “alteration 
box plot” of Large and others (2001a), which combines the 
Ishikawa alteration index, 100 (K2O + MgO)/(K2O + MgO + 
Na2O + CaO), with the chlorite-carbonate-pyrite index, 100 
(MgO + FeO)/(MgO + FeO + K2O); increasing values of both 
parameters reflect the intensity of alteration in which sericite, 
chlorite, carbonate, and pyrite replace sodic feldspar and glass 
in volcanic rocks. This scheme may have advantages over pre-
vious approaches, such as those based on chemical gains and 
losses during alteration (for example, Barrett and MacLean, 
1994; Leitch and Lentz, 1994), and is best applied to felsic 
volcanic rocks in concert with mineralogical and textural data 
on the analyzed samples. More recently, Piché and Jébrak 
(2004) devised a normative mineral alteration index that is 
less-sensitive to lithological variations among samples and 
better identifies ore-related hydrothermal mineral assemblages.

On a regional scale, hydrothermal fluid flow related to 
VMS mineralization may form distinctive mineral assem-
blages and mineral compositions that differ from those 
produced by greenschist-facies metamorphism, in which 
hydrothermally altered volcanic rocks preferentially contain 
abundant Fe-rich chlorite, ferroactinolite, and coarse-grained 
clinozoisite (Hannington and others, 2003). The loss of Na2O 
during VMS alteration is a hallmark of this deposit type, 
occurring mainly in footwall zones, and by itself may be an 
effective guide to ore (for example, Hashiguchi and others, 
1983; Lydon, 1996; Piercey, 2009). Other proposed vec-
tors for altered wall rocks include increases of Tl, Sb, Ba/
Sr, δ34S values of sulfides, and Mn contents of carbonate 
towards ore (Large and others, 2001b, and references therein). 
Lentz (2005) summarized the use of Hg as an exploration 
guide. Another possible vector is variations in mineralogy 
and mineral chemistry in wall rocks caused by sulfide-oxide-
silicate equilibria produced during metamorphism of the 
deposits. This process and its exploration applications were 
first described in detail by Nesbitt and Kelley (1980) and later 
amplified by Spry (2000), who highlighted the haloes and pro-
portions of Mg- and (or) Zn-rich silicates and Zn-rich oxides 
that typically increase in intensity with proximity to ore. 
Compositions of minerals that formed during VMS and later 
superimposed metamorphic processes have been the focus of 
many topical studies, including tourmaline (Taylor and Slack, 
1984; Griffin and others, 1996), Zn-rich staurolite (Heimann 
and others, 2005, and references therein), rutile (Clark and 
Williams-Jones, 2004), and magnetite (Beaudoin and others, 

2007;). The presence of high gold concentrations in some 
deposits was studied by Hannington and Scott (1989) and 
Hannington and others (1999), resulting in the recognition of 
low-Fe sphalerite and certain sulfidation equilibria as guides to 
Au-rich systems. Some terranes, particularly those dominated 
by mafic volcanic rocks, may provide an enriched source rock 
control on the formation of Au-rich VMS deposits (Stolz and 
Large, 1992).

In some terranes the bulk geochemistry of VMS-related 
exhalites can be used as vectors to massive sulfide deposits. 
This approach is best used for exhalites that are exposed in 
outcrops and (or) drill cores, such that a stratigraphic conti-
nuity can be inferred and applied to sampling programs and 
interpretations of data. In most cases, however, exhalites can-
not be traced along strike with confidence, thus limiting their 
usefulness as direct vectors to VMS deposits. In the Bathurst 
district of New Brunswick, Canada, exhalites are well exposed 
at two main stratigraphic levels, both of which have been 
intersected in numerous drill cores. These exhalites, consist-
ing of different facies of iron formation (sulfide, carbonate, 
silicate, oxide), served as the focus of detailed mineralogical 
and geochemical studies of both the Brunswick and Heath 
Steele belts (Peter and Goodfellow, 1996, 2003; Peter and 
others, 2003a, b). These studies have produced the most com-
plete databases known for laterally extensive exhalites related 
to ancient VMS mineralization, and they provide the best 
framework for evaluating the use of exhalite geochemistry in 
targeting high-temperature hydrothermal centers and, by infer-
ence, massive sulfide orebodies. Based on data for the Heath 
Steele exhalites, Peter and Goodfellow (2003) constructed a 
composite diagram showing idealized mineralogical and com-
positional zonations for proximal to distal settings relative to 
a single VMS source deposit. Among many identified parame-
ters, some proposed as diagnostic of proximal exhalites (<500 
m from massive sulfide) are the presence of chalcopyrite, 
sphalerite, and (or) galena; high concentrations of Cu, Pb, Zn, 
Ag, As, Au, Bi, Cd, Hg, In, Sb, Sn, and Tl; and high Fe/Ti, Ba/
Ti, and Eu/Eu* ratios where Eu/Eu* is the magnitude of the 
Eu anomaly. Peter and Goodfellow (2003) used these compo-
sitional parameters, together with others (for example, P/Ti), 
to define a hydrothermal sediment index, which shows the 
consistently highest values at and near the three largest VMS 
deposits in the Heath Steele belt. Exhalative jasper related to 
VMS mineralization in the Løkken district of Norway, which 
can be traced along strike for 4–6 km, show a pattern in which 
As/Fe and Sb/Fe ratios increase towards the massive sulfide 
deposit (Grenne and Slack, 2005). In other terranes where 
exhalites may not be laterally extensive, favorable indica-
tors of proximity to VMS deposits include the presence of 
base-metal sulfides (chalcopyrite, sphalerite, galena), elevated 
contents of trace metals such as Cu, Zn, Pb, and Tl, and posi-
tive Eu anomalies (Gale and others, 1997; Peter, 2003). Miller 
and others (2001) reported on the discovery of the West 45 
deposit in Queensland, Australia, which was found in part by 
identifying a large positive Eu anomaly in a sample of exhala-
tive jasper. 
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Other sample media have been used with varying suc-
cess in VMS exploration. Stream sediments constitute parts 
of many regional-scale exploration and assessment programs, 
based on the delineation of geochemical anomalies that reflect 
erosion of sulfide-bearing rock from known deposits (for 
example, Slack and others, 1990; Telmer and others, 2002; 
Leybourne and others, 2003). Heavy mineral concentrates 
have been used less frequently, in part because of the much 
longer time required to obtain a sample (by panning), and 
because some sulfides like sphalerite are not mechanically 
strong and thus rarely survive as large grains for recovery 
in panned concentrate surveys. Heavy indicator minerals 
nevertheless may be useful in programs that focus on glacial 
dispersion trains (Averill, 2001) or on gahnite, spessartine 
garnet, or other resistant minerals that are common recorders 
of VMS-type mineralization (Spry and others, 2000). Bulk till 
geochemistry has been used in exploration programs for over 
50 years, being most effective when integrated with surficial 
geology, especially till stratigraphy and ice flow patterns (for 
example, McMartin and McClenaghan, 2001); interpretations 
are constrained by the typically great dilution of deposit-
related geochemical signatures by glacial materials and by 
occurrences of multiple till sheets. Lake sediments have been 
used in some regional geochemical surveys (McClenaghan 
and others, 1997); aqueous geochemical methods and applica-
tions are summarized by Leybourne (2007). Soil geochemi-
cal surveys (for example, Cameron and others, 2004) are 
generally limited in scope to localized targets that already are 
delineated by favorable geological features or geophysical 
anomalies. Comparative studies of conventional bulk versus 
selective leach methods suggest that the former technique is 
superior (Hall and others, 2003). Reconnaissance soil surveys 
have not been as widely used, although some large, unexposed 
VMS deposits have been found by this approach, such as Bald 
Mountain in northern Maine (Cummings, 1988). Soil gases 
have also proven useful because of their mobility in the vadose 
zone and glacial overburden (McCarthy and others, 1986; Kel-
ley and others, 2006).

Isotopic

Among numerous stable and radiogenic isotopic systems, 
oxygen isotopes hold the greatest promise for direct appli-
cation to mineral exploration and resource assessments for 
VMS deposits (for example, Miller and others, 2001). Oxygen 
isotope haloes have been delineated around many deposits. 
In one of the earliest studies, Green and others (1983) docu-
mented systematic oxygen isotope variations in part of the 
Hokuroku district of Japan, finding an overall pattern in which 
whole-rock δ18O values correlate with alteration assemblage, 
irrespective of precursor lithology; in the footwall of the 
Fukazawa deposit, the values show a progressive increase 
of approximately 8 per mil from the outer zeolite zone to 
the inner chlorite-sericite zone. A similar regionally-based 
zonation was identified in the West Shasta VMS district of 

California by Taylor and South (1985), including the vicin-
ity of a synvolcanic pluton that likely was the heat source 
that drove the seafloor-hydrothermal system. Comparable 
results were obtained in regional oxygen isotope studies of 
the Noranda district in Quebec (Paradis and others, 1993), the 
Panorama district in Western Australia (Brauhart and others, 
2000), the Iberian Pyrite Belt of Spain (Lerouge and others, 
2001), and the Sturgeon Lake region of Ontario (Holk and oth-
ers, 2008). An exception is the Palmeiropolis deposit in Brazil, 
which lacks an oxygen isotope contrast between hydrother-
mally altered wall rocks and unaltered host rocks, possibly 
due to isotopic homogenization during pervasive metamorphic 
fluid flow (Araujo and others, 1996). Detailed studies of indi-
vidual feeder zones have confimed the characteristic patterns 
described above, such as at the Bruce deposit in Arizona (Lar-
son, 1984) and the Kidd Creek and Geco deposits in Ontario 
(Huston and others, 1995; Araujo and others, 1996). From 
exploration and assessment perspectives, detailed whole-rock 
oxygen isotope studies can define zones of hydrothermal 
downflow and upflow within a volcanic pile and use the latter 
upflow zones as a guide to undiscovered deposits in the region 
(Holk and others, 2008).

Geophysical

A diverse suite of geophysical methods has been used in 
VMS exploration both on regional and local scales. Ford and 
others (2007) highlighted the most effective methods, which 
are electromagnetic, magnetic, electrical, and gravimetric. 
In regional programs and in areas lacking detailed geologic 
maps, airborne surveys that combine electromagnetic and 
magnetic measurements can yield valuable information on 
geological features that are permissive for the occurrence of 
VMS deposits, including structures, intrusive bodies, and 
alteration zones (for example, Keating and others, 2003). 
Major contrasts in density, magnetism, and electrical conduc-
tivity of VMS deposits, relative to their volcanosedimentary 
host rocks, provide the foundation for these surveys. Many 
deposits have been discovered during airborne or ground elec-
tromagnetic surveys, some of the most notable being the giant 
Kidd Creek orebody in Ontario (Bleeker and Hester, 1999), 
the large Heath Steele and Brunswick No. 6 orebodies in New 
Brunswick (Keating and others, 2003), and the large Crandon 
deposit in Wisconsin (May and Schmidt, 1982). However, the 
electromagnetic (EM) method has two major drawbacks: First, 
that distinct anomalies may also be produced by unmineral-
ized features including sulfide-free carbonaceous or graphitic 
sedimentary rocks and water-saturated overburden. A second 
limitation is the difficulty of delineating electromagnetically a 
Zn-rich deposit because of the poor conductivity of sphalerite 
relative to other sulfide minerals (Bishop and Emerson, 1999). 
If not deeply buried, deposits that contain appreciable magne-
tite or pyrrhotite generate distinctive magnetic anomalies, both 
from airborne and ground surveys. Magnetic data also can 
be useful for delineating large subvolcanic intrusions and, by 
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inference, the locations of undiscovered VMS deposits, based 
on the premise that such intrusions provide the heat sources 
that drive stratigraphically higher hydrothermal systems (Gal-
ley, 2003; Galley and others, 2007).

Disseminated sulfides such as those in footwall feeder 
zones can be delineated by induced polarization, which targets 
sulfide grains that are not electrically connected (Ford and oth-
ers, 2007). Gravity surveys are especially useful for identify-
ing high-density units such as barite-rich exhalites or Zn-rich 
massive sulfide that otherwise are poor geophysical targets. 
Radiometric surveys, typically employed in airborne sur-
veys together with magnetic and EM measurements, involve 
gamma-ray spectroscopy for K, U, and Th that can improve 
knowledge of basic geology and delineate K-rich altera-
tion zones that surround many deposits (Chung and Keating, 
2002). Geophysical techniques that are less widely used in 
VMS exploration include electrochemical (Cameron and oth-
ers, 2004), seismic and high-resolution seismic (Milkereit and 
others, 1996; Adam and others, 2000), oxidation-reduction 
and spontaneous potential (Hamilton and others, 2004), and 
various remote sensing methods (for example, Herrmann and 
others, 2001).

Attributes Required for Inclusion in 
Permissive Tracts at Various Scales

A permissive tract in mineral resource assessments is 
defined as an area where geologic features permit the occur-
rence of one or more deposit types (for example, Singer, 
1993). Favorable geology is the most important attribute for 
identifying a permissive tract. In assessments for VMS depos-
its, key geologic criteria include:

•	 presence of a submarine volcanosedimentary sequence 
having an age that falls within a time period containing 
numerous VMS deposits with large aggregate tonnages 
and base metal contents (fig. 4–4); 

•	 evidence of an extensional geodynamic setting and 
synvolcanic faulting as reflected in distinctive compo-
sitions of volcanic and synvolcanic intrusive rocks; 

•	 presence of coarse volcanic breccias or felsic domes 
indicating proximity to a volcanic center; 

•	 occurrence of exhalites, especially those containing 
base-metal sulfides or large positive Eu anomalies; 

•	 evidence of VMS-type alteration zones represented 
by abundant chlorite or white mica, or their metamor-
phosed equivalents; and 

•	 occurrence of large subvocanic sills as heat sources for 
the hydrothermal systems.

Also critical in tract delineation are locations of known depos-
its and prospects, if clearly of VMS affinity. Other positive 

criteria are anomalously high contents of base metals in stream 
sediments, presence of abundant indicator minerals such as 
gahnite or spessartine garnet in panned concentrates, and 
geophysical data that suggest the occurrence of hydrothermal 
alteration zones or continuity of favorable units under cover. 
Previous mineral-resource assessments that use the concept of 
permissive tracts include those by the U.S. Geological Survey 
(for example, Cox, 1993; Raines and Mihalasky, 2002) and 
the British Columbia Geological Survey (Grunsky and others, 
1994). Integration of geologic, mineral-occurrence, geo-
chemical, and geophysical data using geographic information 
systems (GIS) and similar spatial analysis methods provides 
a robust foundation for assessments (Bonham-Carter and oth-
ers, 1993; Chung, 2003; Fallara and others, 2006; Nykänen 
and Ojala, 2007). The importance of mineral prospectivity 
mapping is discussed by Carranza and Sadeghi (2010), by 
which the spatial distribution of known VMS deposits in the 
Skellefte district of Sweden was compared to spatially related 
geological features, in order to outline recognition criteria for 
regional-scale VMS prospectivity. 

Different map scales can have major influences on the 
shape and size of permissive tracts. Singer (1993) highlighted 
the problem of using large-scale geologic maps, which can 
result in generalization of a given tract, or of arbitrarily 
enlarging a tract in order to include deposit types that occur 
in restricted settings. A more detailed analysis of the problem 
was done by Singer and Menzie (2008), who found that use 
of more generalized maps tends to favor inclusion of geologic 
settings that are not permissive for a given deposit type, or of 
unreported cover sequences with permissive tracts thus pro-
ducing a misleading appearance of clustered deposits. Singer 
and Menzie (2008) quantified this problem of map scale by 
Poisson distribution analysis, showing that, by comparison, 
a geologic map having twice the detail of a more generalized 
map will decrease the area of a permissive VMS tract by  
50 percent.

Factors Influencing Undiscovered 
Deposit Estimates (Deposit Size and 
Density)

Estimates of the size and density of undiscovered mineral 
deposits are affected by several factors. In one of the earliest 
studies, Sangster (1980) noted that VMS deposits are charac-
teristically found in clusters, and that for Canadian districts 47 
percent of deposits occur in only six clusters (districts). Pos-
sible explanations for these clusters of VMS deposits, cover-
ing areas averaging 32 km in diameter, include the presence 
of abundant felsic volcanic rocks and related volcanic cen-
ters, and preferential occurrences within inferred submarine 
calderas (Sangster, 1980). This clustering of deposits was also 
highlighted by Galley and others (2007), who proposed that 
the diameter of each group of clustered deposits reflects the 
extent of regional-scale hydrothermal alteration systems; the 
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distribution of deposits within each cluster relates to synvolca-
nic fault distribution above subvolcanic intrusions. In the case 
of the Noranda district, the areal distribution of VMS deposits 
corresponds closely to the outlines of hydrothermally altered 
rocks and the Noranda cauldron (Gibson and Galley, 2007). 
Caution must be used in applying this caldera-based approach 
to highly deformed terranes, however, because of deforma-
tional effects on original geometry (Hollister, 1980) and, 
hence, on the related density of undiscovered deposits.

In modern settings, average densities of hydrothermal 
vent fields range from 1.9 to 6.6 sites per 100-km length (Mas-
soth and others, 2007). This range of densities includes data 
for the back-arc Valu Fa Ridge, the Tonga and Kermadec arcs, 
and mid-ocean ridges in the eastern Pacific Ocean. The largest 
deposits on mid-ocean ridges tend to occur where the spread-
ing rate is slow to intermediate and on the shallowest parts of 
the ridges; calculations based on heat flux suggest the pres-
ence, theoretically, of at least one black smoker vent for every 
1 km of ridge length, but their distribution is not uniform and 
large clusters of black smoker vents occur at much greater 
spacings of about 50–100 km (Hannington and others, 2005). 
In ancient settings, deposit spacings are related to a variety of 
processes, yielding an estimated 5-km diameter for the scale of 
proximal hydrothermal alteration around each deposit (Galley 
and others, 2007).

A detailed statistical analysis by Mosier and others (2007) 
provides the most robust foundation for evaluating the density 
of undiscovered VMS deposits for a mineral-resource assess-
ment. Their study used frequency distributions of deposit 
densities for 38 well-explored control areas worldwide. Mosier 
and others (2007) determined that 90 percent of the control 
areas have more than 100 VMS deposits per 100,000 km2 and 
that both map scales and sizes of the control areas are predic-
tors of deposit density. Map scales used to delineate permis-
sive tracts also must be considered because they directly 
affect the spatial and frequency distribution of deposits and 
thus deposit densities (Singer, 2008; Singer and Menzie, 
2008). For mineral-resource assessments, the most detailed 
geologic maps therefore should be used in order to maximize 
the knowledge base for VMS experts when estimating the 
numbers of undiscovered deposits in a given tract.

Estimates of the sizes of undiscovered mineral deposits 
rely mainly on statistical data for grades and tonnages for a 
given deposit type (for example, Cox and Singer, 1986). The 
largest resources of metals typically are contained in a few 
giant orebodies, hence very small or low-grade deposits do not 
greatly affect grade-tonnage distributions. Differences in cut-
off grades and other economic factors are not significant, hav-
ing minimal or at most minor influences on these parameters 
(Singer, 1993). Detailed statistical studies have documented 
several key relationships among major types of mineral depos-
its, including VMS: (1) the distribution of tonnages is approxi-
mately lognormal, (2) deposit size is inversely correlated with 
deposit density, (3) the size of the permissive tract and the size 
of contained deposits is correlated, and (4) the total amount 
of mineralized rock is proportional to the size of the median 

deposit (Singer, 1993, 2008). Relationships derived from 
statistical studies, including those between sizes of permis-
sive areas and deposit density, can thus be used together with 
grade-tonnage models as predictors of the number of undis-
covered deposits and the total amount of undiscovered metal 
(Singer, 2008). Also important are craton- and terrane-scale 
features that likely determine metal endowment, including 
the occurrence and location of giant and super-giant deposits 
(Jaireth and Huston, 2010).
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